
Inter-Task Similarity for Lifelong

Reinforcement Learning in Heterogeneous

Tasks

Sergio Arredondo Serrano, Dr. José Mart́ınez Carranza,

Dr. Luis Enrique Sucar Succar

Technical Report No. CCC-21-001

May, 2021

©Coordinación de Ciencias Computacionales

INAOE

Luis Enrique Error 1,

Santa Maŕıa Tonantzintla,

72840, Puebla, México.

Abstract

Reinforcement learning (RL) is a learning paradigm in which an agent in-

teracts with the environment it inhabits to learn in a trial-and-error way. By

letting the agent acquire knowledge from its own experience, RL has been suc-

cessfully applied to complex domains such as robotics. However, for non-trivial

problems, training an RL agent can take very long periods of time. Lifelong

learning is a learning setting in which the agent learns to solve tasks sequen-

tially, by leveraging knowledge accumulated from previously solved tasks to

learn better/faster in a new one. Most lifelong learning works heavily rely on

the assumption that tasks are similar to each other. However, this may not be

true for some domains that could benefit from adopting a lifelong learning ap-

proach, e.g., service robotics. Therefore, in this research proposal we address

the problem of learning to solve a sequence of RL tasks that differ in their

state-action space. We propose an inter-task similarity measure as the basis

for a lifelong reinforcement learning agent. By employing a similarity mea-

sure as a heuristic, we expect the agent to effectively select knowledge from

previous tasks to improve its performance in a new one, despite the mismatch

between their state-action spaces. As the agent accumulates new knowledge,

the similarity measure can be used to assess which pieces of knowledge can be

stored together without harming each other. We present preliminary results

on the development of an inter-task similarity measure. After evaluating on

a set of RL tasks, we were able to establish correlation to some degree be-

tween the similarity scores and the benefit of transferring knowledge between

the pairs of tasks. These results seem to suggest that a similarity measure ap-

proach is a feasible solution to transfer knowledge between tasks with different

state-action spaces. Finally, the main expected contributions of this work are:

i) an inter-task similarity measure, ii) a transfer learning algorithm and iii) a

lifelong reinforcement learning algorithm, all three for tasks that do not share

the state-action space.

Keywords: Lifelong Reinforcement Learning, Inter-task Similarity, Hetero-

geneous Tasks, Robotics.

Contents

1 Introduction 6

2 Background 7

2.1 Reinforcement Learning . 7

2.2 Markov Decision Processes . 8

2.2.1 Policy . 9

2.2.2 Learning Approaches . 10

2.3 Transfer Learning . 11

2.4 Multi-Task Reinforcement Learning 12

2.5 Lifelong Reinforcement Learning . 13

2.6 Distance and Similarity Functions . 14

3 Related Work 15

3.1 Task Similarity Measures . 15

3.2 Multi-task Reinforcement Learning 21

3.3 Lifelong Reinforcement Learning . 25

3.4 Summary . 31

4 Research Proposal 31

4.1 Motivation . 31

4.2 Justification . 32

4.3 Problem Statement . 33

4.4 Research Questions . 34

3

4.5 Hypotheses . 34

4.6 General Objective . 34

4.6.1 Specific Objectives . 35

4.7 Scope and Limitations . 35

4.8 Expected Contributions . 36

4.9 Methodology . 36

4.9.1 Analysis and selection of RL tasks 36

4.9.2 Design and development of inter-task similarity measure . . . 37

4.9.3 Design and development of transfer learning algorithm 38

4.9.4 Design and development of knowledge consolidating algorithm 40

4.9.5 Design and development of lifelong learning algorithm 42

4.10 Work Plan . 43

4.11 Publications Plan . 43

5 Preliminary Results 44

5.1 Environments . 45

5.2 Measuring inter-task similarity . 45

5.3 Transferring Knowledge . 48

5.4 Results . 49

6 Final Remarks 55

References 55

4

Acronyms

BKT Backward Knowledge Transfer.

CF Catastrophic Forgetting.

FKT Forward Knowledge Transfer.

LML Lifelong Machine Learning.

MDP Markov Decision Process.

MTL Multi Task Learning.

RL Reinforcement Learning.

TL Transfer Learning.

TSM Task Similarity Measure.

5

1 Introduction

Reinforcement Learning (RL) is a subarea of machine learning concerned with se-

quential decision-making. RL encompasses a class of learning problems that differ

from other learning paradigms (supervised and unsupervised learning) mainly due

to how the learner acquires knowledge: through its own experience [1]. An RL agent

learns as a result of interacting through trial-and-error with its environment. Hence,

RL provides a powerful tool to address problems that are too difficult to model with

precision. Instead, one can let the learning agent interact with the environment until

it figures out how to properly behave.

Recent developments in the area of RL have led to decision-making agents that

achieved outstanding results in tasks that, until a few years ago, were considered

too complicated for a computer to learn how to solve them, e.g., pixel-based games

[2, 3, 4] and the game of Go [5]. Even more than video games, robotics applications

require robust decision-making systems in order to solve complex tasks. However,

considering that RL methods usually require long training periods, it is infeasible

to let a real robot interact with its surroundings until it learns, because of the wear

and tear this would cause on it (curse of real-world samples [6]). Thus, additional

methods are required to reduce the training time in RL.

In recent years, Transfer Learning (TL) methods have shown a great capability to

decrease the training time required in RL tasks [7, 8], which is possible by transferring

useful knowledge between a pair of tasks. In Lifelong Machine Learning (LML),

a special case of TL, the agent learns to solve tasks sequentially, leveraging the

knowledge from previous tasks (see Fig. 4). Thus, the agent is able to undertake

large sequences of tasks. However, there are some robotic domains (e.g., service

robotics) with a great task diversity [9] that limits the usage of TL methods, since

inter-task similarity is necessary for them to work.

In this document, we present a research proposal with the aim of extending the

capabilities of current lifelong reinforcement learning systems, to cope with scenarios

in which tasks differ in their state-action spaces (i.e., heterogeneous tasks [10]). Our

research efforts will be focused on using inter-task similarity methods to estimate the

6

benefit of transferring knowledge between a set of previously learned tasks and a new

one. Also, we believe that an inter-task similarity measure has the potential to aid

a lifelong reinforcement learning agent to decide when a pair of tasks can be stored

together, without harming each other. Thus, with a similarity-measure approach,

we will develop a new lifelong reinforcement learning methodology to address tasks

that do not share the state-action space.

2 Background

In this section, background knowledge that is relevant to our dissertation proposal is

presented. First, basic definitions on RL and Markov decision processes are covered,

followed by transfer learning, multi-task learning, lifelong learning and similarity

functions concepts.

2.1 Reinforcement Learning

Reinforcement Learning (RL) a subarea of machine learning that addresses sequen-

tial decision-making problems. The main objective of an RL algorithm is to learn

a satisfactory behavior, through a trial-and-error interaction of the learning agent

with the environment (see Fig. 1). According to [1], RL is a machine learning

paradigm on its own since it holds important differences with supervised learning

and supervised learning. These differences are described below:

• Supervised Learning: the main difference lies in the source of knowledge from

which the system learns. In supervised learning, an external entity (e.g., a

machine learning engineer) provides pairs of scenario examples and the correct

action to perform in that situation (label). Conversely, an RL agent learns

from its own experience, as it interacts with the environment.

• Unsupervised Learning: although unsupervised learning and RL have in com-

mon that labeled data is not required, the main difference between them is their

objective. While in unsupervised learning the system strives to find structure

in a collection of unlabeled data, an RL system will try to maximize a reward

signal.

7

Additionally, the RL problem is formalized as finding the optimal control for a

partially-known Markov Decision Process (see Section 2.2). In this formalization,

the agent must be able to observe the state of the environment, take actions and

have a goal (or a collection of goals). Thus, any technique that is capable of solving

this class of problems is considered to be an RL method.

2.2 Markov Decision Processes

Markov Decision Processes (MDP) are a mathematical framework used to model

sequential decision-making problems for dynamic systems, that is, systems in which

the state changes over time [11]. A discrete MDP is formally specified by a tuple

〈S,A,Φ, R〉, where

• S: finite set of states in which the agent can be found.

• A: finite set of actions the agent can perform.

• Φ: the transition function Φ : S×A×S → [0, 1] specifies a probability distribu-

tion for every state-action pair (s, a), such that Φ(s, a, s′) is the probability of

the agent transiting to s′ after executing action a from state s, where s, s′ ∈ S
and a ∈ A.

• R: the reward function R : S ×A→ R specifies a scalar value for every state-

action pair (s, a), such that R(s, a) is the immediate reward signal the agent

will perceive after executing action a in state s, where s ∈ S and a ∈ A.

The purpose of specifying an MDP is to formally describe the setting in which

an agent can interact with the environment. The transition function (Φ) represents

the stochastic effects of the actions in the state of the system, whereas the reward

function (R) represents (in an implicit form) the desired behavior for the agent.

That is, in the reward function one should assign positive large values to pairs (s, a)

such that executing a from s is desirable. On the other hand, one should penalize

undesirable state-actions pairs by assigning large negative values.

8

2.2.1 Policy

In the context of discrete MDPs, a policy π : S → A is a function that returns an

action a for every state s, where s ∈ S and a ∈ A. Furthermore, in order to solve

a decision-making problem, actions must be carefully selected, in such way that the

criterion of what is considered a desirable behavior is fulfilled, as shown in Fig. 1.

Figure 1: In an MDP setting, every time the agent executes an action (a) it will receive in
return a reward signal (r) associated to the performed action and the current state (s) of the
world (also called system or environment). Then, the agent consults its policy to perform
the best action given the new state of the world.

Thus, an optimal policy π∗ will select, for every state, the action that maximizes

the expected reward, that is, the best possible action. For an infinite horizon MDP

(those in which the number of steps that the task will last is unknown) with a

discount factor γ (where 0 ≤ γ < 1), the optimal policy is defined by equation 2,

which is obtained from equation 1 (Bellman’s equation [12]).

V π(s) = maxa

{
R(s, a) + γ

∑
s∈S

Φ(s, a, s′)V π(s′)

}
(1)

π∗(s) = argmaxa

{
R(s, a) + γ

∑
s∈S

Φ(s, a, s′)V π(s′)

}
(2)

9

Vt(s) = maxa

{
R(s, a) + γ

∑
s∈S

Φ(s, a, s′)Vt−1(s
′)

}
(3)

In order to compute π∗ for a fully specified MDP, an iterative algorithm is capable

of finding such policy. For instance, value iteration is an algorithm that starts by

assigning every state with a value of 0, and through an iterative process the value of

every state is updated using equation 3. The algorithm stops once |Vt(s)−Vt−1(s)| <
ε is satisfied for every state in S, given a margin of error ε [13].

2.2.2 Learning Approaches

The way an MDP policy can be computed greatly depends on how much information

about the environment there is available. That is, the more information the agent

has, the easier it will be to compute a good policy. According to [14], there are many

ways in which a policy can be obtained, from which we present three of the most

common approaches:

1. Dynamic programming: value iteration and policy iteration are examples of

algorithms of this type of approach, in which the algorithm assumes that a

fully specified MDP is available (i.e., 〈S,A,Φ, R〉). Therefore, as the system

has a full model of the environment (which is also assumed to be correct), no

interaction is required.

2. Model-based: these methods relax the assumption dynamic programming ap-

proaches make on the availability of the full MDP, as they interact with the

environment in order to estimate an approximated model of it, i.e., Φ and R.

This approach is mostly used in environments where the model is stationary

but unknown, hence, once the model is estimated it can be reused.

3. Temporal difference (TD): methods that learn an action-value functionQ : S×
A→ R by backing up all the rewards that have been perceived through time.

For a pair (s, a), Q(s, a) represents the expected return when a is executed

from s. At any time, the best current policy is equivalent to select the highest

valued action form the current state, i.e., argmax
a

Q(s, a). Q-learning [15] and

Sarsa [16] are examples of TD algorithms.

10

4. Deep Reinforcement Learning: according to [17], deep RL results from using

a deep neural network (i.e., a neural network with two or more layers) to

approximate an RL component, such as a value function, a policy, a transition

model or a reward model. The parameters that describe these components

consist of the weight and bias values in the neural network. Deep Q-Network

[3] and A3C [18] are some examples of deep RL algorithms.

2.3 Transfer Learning

The purpose of transfer learning (TL) is to improve the performance of machine

learning methods by means of transferring knowledge between tasks [19]. Further-

more, according to [14], the main insight that motivates the use of TL methods is

that generalization might occur across tasks, and not only within them. Although

several taxonomies have been proposed for TL methods (e.g., based on the avail-

ability of labeled data [20] or the goal in a multi-agent setting [21]), we present a

taxonomy based on the availability of tasks and the order in which they must be

learned (see Fig. 2). Additionally, the performance of a TL method applied to RL

tasks can be measured in multiple ways (see Fig. 3).

• Jumpstart: The performance of a learning agent at the beginning of the train-

ing process. This metric can potentially be improved if knowledge is transferred

from a source task before the training begins in the target task.

• Asymptotic Performance: The final performance of a learning agent.

• Total Reward: The total reward accumulated by the agent. Visually, the area

under the learning curve represents this metric.

• Transfer Ratio: This metric is equivalent to the ratio of the total reward

accumulated by the transfer learning method and the total reward accumulated

by the non-transfer learner.

• Time to Threshold: The required by a learning agent to achieve a pre-specified

performance level.

Hence, TL methods can help an RL agent to reduce the time to the threshold (learn

faster) and to raise its total reward and asymptotic performance (learn better). In

11

Figure 2: Classification of transfer learning settings based on the availability of source
(blue) and target (green) tasks at the moment knowledge needs to be transferred, as well
on the order in which tasks must be learned. Solid arrows indicate the direction in which
knowledge is transferred, whereas dashed arrows indicate that it is up to the TL system to
decide whether to transfer knowledge in that direction. In the multiple target setting, tasks
can behave both as a source and target task.

RL, the learning time is known as sample complexity, which is the amount of data

required by an algorithm to learn. Additionally, when a TL method harms the

performance of a learning agent in a target task (i.e., increases sample complexity or

decreases the jumpstart, asymptotic performance, or total reward) is called negative

transfer [14].

2.4 Multi-Task Reinforcement Learning

In Multi-Task Learning (MTL) there are multiple learning tasks, from which a subset

of them is assumed to be related to each other in some way that is unknown. Then,

the objective of an MTL system is to improve the generalization performance, since

learning tasks that are related jointly can lead to a better performance [22]. MTL

can be seen as a particular form of TL, in which each of the tasks that are being

learned is both a source and a target task.

In the context of deep RL, MTL can be applied in different forms, e.g., a single

agent for multiple tasks or multiple agents for multiple tasks [23] (wherein the num-

12

Figure 3: Example of improvement in the jumpstart, asymptotic performance, total reward
and time to threshold as a result of transferring knowledge (figure taken from [14]).

ber of agents is not necessarily the same as the number of tasks). For instance, one

could train a single network on multiple tasks by having multiple task-specific ex-

pert networks teaching it on their respective task [24]. Alternatively, one could train

multiple networks to solve multiple tasks, while they share the first layers (usually

the feature-extraction layers) [25].

2.5 Lifelong Reinforcement Learning

Lifelong Machine Learning (LML) is a continual learning process in which, at any

time, the learning system has learned to perform a sequence of N tasks (tasks can

be from different domains). When the (N + 1)-th task is encountered, the learning

system can exploit the past knowledge in its knowledge base to improve the learning

process in the current task [26] (see Fig. 4).

In the context of RL, tasks are represented by MDPs, while the learning system

(agent) can be modeled in a variety of ways. According to [27], lifelong RL systems

can be classified in two categories, depending on how parameters are shared among

the tasks learned:

• Single-model: In this approach, the learning system consists of only one model

13

Figure 4: Lifelong learning system. The system learns to solve tasks sequentially. When
it encounters with a new task, the system leverages knowledge from previous tasks that
are similar to the current one. After the current task has been learned, the knowledge base
is updated by storing the knowledge recently acquired.

to learn and store the knowledge of multiple tasks. However, it is necessary

that one of the next two assumptions holds: all tasks must be very similar, or

the model must be over-parameterized to learn the diversity among the tasks.

• Multi-model: The multi-model approach consists of a learning system consti-

tuted by a set of parameters that are shared among all tasks, and a collection

of task-specific parameters. The set of shared parameters enable transferring

knowledge across tasks, while the task-specific parameters are responsible for

capturing the particularities tasks may have.

2.6 Distance and Similarity Functions

According to [28], the concepts of similarity and distance are important for artificial

intelligence in general as they provide a way to organize, classify, and generalize over

some class of objects. Despite distance and similarity functions have been widely

explored for propositional representations (i.e., feature vectors), they can also be

employed to assess the similarity of objects from a graph-based representation (e.g.,

an MDP).

Distance and similarity functions can be seen as a complement to each other.

Distance functions assign larger values to pairs of objects that are more dissimilar,

whereas similarity functions associate larger values to pairs of objects that are more

14

similar, or closer, with respect to some criterion. A formal definition of distance

metric and similarity function [29] is provided below.

Definition 1 (distance metric) A distance metric d over objects in a set X is a

function d : X ×X → [0,∞) such that, for each x, y, z ∈ X the following properties

are satisfied:

• d(x, y) ≥ 0 (Non-negativity)

• d(x, y) = 0 ⇐⇒ x = y (Identity)

• d(x, y) = d(y, x) (Symmetry)

• d(x, z) ≤ d(x, y) + d(y, z) (Triangle inequality)

Definition 2 (similarity function) A similarity function s over objects in a set X

is a function s : X × X → [0, u], where u is an upper bound, and where for each

x, y ∈ X the following properties are satisfied:

• s(x, y) ≥ 0 (Non-negativity)

• s(x, y) ≤ u (Boundedness)

• s(x, y) = u ⇐⇒ x = y (Identity)

• s(x, y) = s(y, x) (Symmetry)

3 Related Work

This section presents a review of related work in the areas of measuring task simi-

larity, MTL and LML in reinforcement learning tasks.

3.1 Task Similarity Measures

With the objective of compressing similar states to reduce the size of an MDP state

space, in [30, 31] the concept of bisimulation is used as an equivalence class for

15

states, resulting in a partitioned state space where states that belong to the same

partition are considered to be equivalent. Essentially, two states of a stochastic

process (e.g., an MDP) are deemed to be bisimilar if their transitions match and

the transition results are also bisimilar. The authors propose two bisimulation-based

semimetrics which differ in the metric employed to measure the similarity between

probability distributions (i.e., the transition distributions): i) Kantorovich metric

[32] and ii) total variation distance (TVD) [33]. Despite the Kantorovich-based

metric is computationally more expensive than TVD, the former is better suited

to provide useful information about the similarity between the value function of

two states. That is, the Kantorovich-based bisimulation is a tighter bound of the

difference between the optimal value of two states than TVD, and does not require

the exact bisimulation partition to be computed.

In [34] three task similarity measures are proposed, one of them is based on the

immediate reward of state-action pairs (dR), while the other two are based on what

the agent has learned, that is, policy overlap in states (dP) and mean square error

between Q-values (dQ). These measures are evaluated by computing their correlation

to the speed up a target task experiences when knowledge is transferred from a source

task. Results show that when dQ and dP are completely learned in the target task,

they are capable of approximating the learning speedup a learned source task will

provide, however, both of them fail to provide a good approximation when the target

task is partially learned. Despite the aforementioned drawback, dQ and dP showed

to be useful for task clustering, as they generated cluster trees of subtasks that are

meaningful, semantically speaking.

Similar to the work presented in [31], where the notion of similarity is built upon

an equivalence class, in [35] the concept of MDP homomorphism [36] is extended

to a probabilistic variation, called soft homomorphism. Roughly speaking, an MDP

homomorphism from M to M ′ is a surjection hM 7→M
′

: S → X, where S and X are

the state spaces of M and M ′, respectively. The homomorphism hM 7→M
′
preserves an

algebraic structure with respect to the immediate reward of s ∈ S and h(s) ∈ X, as

well as with respect to their transition functions (see Eq. 4, where T and T ′ are the

transition functions of M and M ′, respectively). Since these restrictions are quite

hard to suffice in stochastic processes, in [35] a soft version of them is introduced, by

defining the soft homomorphism as fM 7→M
′

: S × X → [0, 1]. The main advantage

16

of using fM 7→M
′

over using hM 7→M
′

is that fM 7→M
′

can be learned (approximately)

from data within certain bounds, even in online learning settings, thus dismissing

the need for the transition model of the target task.

T ′(h(s), a, x) =
∑

s′:h(s′)=x′,s′∈S

T (s, a, s′) (4)

In [37] a family of metrics to measure state similarity in MDPs whose state space

has an infinite cardinality is proposed. These metrics extend the notion of bisimu-

lation to continuous state spaces, and provide a method to compute the difference

between the value function of two states in an approximated way, with guarantees

of bounds for the error introduced by the approximation. These metrics have the

potential to serve as a criterion for state abstraction in continuous state spaces, as

well as for transfer learning.

In [38] a data-driven MDP similarity measure is proposed, in which the difference

of the transition models of two tasks is the criterion upon which similarity is assessed.

A Restricted Boltzmann Machine (RBM) [39] is trained to estimate the distribution

of a data set DA of state transitions sampled from a task TA. Then, the trained

RBM reconstructs each transition in the data set DB sampled from task TB, where

the average reconstruction error over DB is the similarity between TA and TB (the

smaller the error, the more similar TA and TB are). Experimental results show

that the proposed measure successfully separates tasks with parameters significantly

different, and groups those that are similar. Furthermore, the measure shows a

positive correlation to the jumpstart [14] a learning agent exhibits in the target task

after knowledge is transferred from the source task.

In [40] the bisimulation-based metric for states in an MDP (introduced in [31])

is employed as the basis for two MDP distance metrics, which are based on the

Kantorovich and Hausdorff metric [41], respectively. The Kantorovich and Hausdorff

metrics are used to composite the distance of every pair (si, sj) into an MDP distance,

where si ∈ S1 and sj ∈ S2 are the state sets of MDPs M1 and M2, respectively. To

compute the Kantorovich distance between MDPs M1 and M2, the sets S1 and S2 are

treated as two uniform distributions. This work also introduces the conditions that

17

a pair of MDPs (homogeneous MDPs) must suffice so that the proposed metrics can

be used to compute the distance between the MDPs. The metrics are evaluated with

respect on two dimensions: i) their correlation to the knowledge transfer performance

between a pair of MDPs, and ii) the transfer performance achieved when they are

used to select a source task from a pool of tasks. Both metrics showed to consistently

select source tasks that bring a positive transfer in the target task, however, only the

Kantorovich-based metric showed a positive correlation to the transfer performance

of the pairs of tasks.

Alternatively to previous works that define task similarity based on bisimulation

or homomorphisms, in [42] the Jensen-Shannon Distance (JSD) is proposed to mea-

sure the similarity between state-action distributions of two MDPs, such that the

summation of all the distances JSD(·, ·) represents the distance between two MDPs

(i.e., tasks). After evaluating in a Taxi-like domain [43], the JSD showed correlation

to the transfer performance of several source tasks with the same transfer algorithm.

In [44] a measure for structural similarity of states and actions within the same

MDP is introduced. The authors propose a graph representation GM , for an MDP

M , that contains nodes for each state and each valid state-action pair (see Fig. 5).

Since in a graph GM state nodes only have action nodes for neighbors (and vice

versa), the authors define similarity between states as a function of the similarity of

their neighbor action nodes, and action similarity between action nodes based on the

similarity of their neighbor state nodes. To compute the state and action similarities,

an iterative algorithm is proposed (since the similarities are defined recursively), that

guarantees convergence to a unique solution. Also, the measures provide boundaries

on the differences of state value functions and action value functions. Experimental

results show that the structural measure is better than bisimulation at capturing

state similarity. Despite that the structural measure is restricted to operate within

a single MDP, contrary to previous works, it does not rely on the labels and is able to

identify similarity between different actions solely based on their reward-transition

structure.

Table 1 summarizes the task similarity measure (TSM) works covered in this

section, where some of these works were revised to provide context, since they are not

18

Table 1: Summary of task similarity measure works. Columns show (left to right): the
reference to the work, if the similarity can be measured between different state and ac-
tion spaces, whether the state and action spaces can be discrete (D), continuous (C) or
both (D/C), if the similarity can be measured between different MDPs, if the measure pro-
vides bounds for the difference in pairs of value functions, temporal complexity and the
knowledge required from the MDPs (where full means a complete MDP is required). In
the complexity column, N.P. means that the temporal complexity of the method was not
provided, nor sufficient details to infer it.

Work Diff.
S

Diff.
A S A Diff.

MDP Bound Complexity MDP K.

[31] no no D D no yes O(|A||S|4log|S| lnδ
lnCT

) full

[34] yes yes D/C D/C yes no

OP (|S1||A1|+ |S2||A2|
+|S1||S2|)

S,A

OQ(|S||A|) S,A
OR(|S||A|) S,A,R

[35] yes no D D yes yes N.P. S,A
[37] no no D/C D no yes N.P. full
[38] no no D/C D/C yes no N.P. S,A

[40] yes no D D yes no
O(|S1 + S2||S1|
|S2|log(S1 + S2))

full

[42] no no D D yes no O(|S|2|A|) S,A,T
[44] no no D D no yes O(N |S|2|A|K

2
max

ε2
) full

19

Figure 5: Example of an MDP (left) and its corresponding graph representation (right).
Edge labels have the format ”(action/)transition probability/reward”. In this example,
the graph representation exposes the similarity shared by actions b and a when they are
performed in states u and v, respectively (figure taken from [44]).

applicable to the model-free learning setting (e.g., [31, 37, 40, 44]). Considering that

our research proposal is to measure inter-task similarity to transfer knowledge, we are

interested in three dimensions regarding TSM works: i) the theoretical guarantees

of the similarity measure, ii) the assumptions about characteristics tasks have in

common and iii) their applicability to model-free settings. Only a subset of the

reviewed works offers theoretical bounds for the difference between the value function

of a pair of MDPs ([31, 35, 37, 44]). This feature is highly desirable, as it bounds how

different the solutions for the MDPs might be. Therefore, they have the potential to

serve as a heuristic for transferring pieces of a value function to a task that is being

learned. However, only in [35] a TSM that does not need a complete description of

the MDPs is presented.

On the other hand, in [34] the most flexible work is introduced since it is able

to measure similarity between different MDPs, with different state and action sets,

which may be discrete or continuous. Some of these works enable comparing MDPs

with different state sets or action sets (e.g., [34, 35, 40]), however, they require their

states to come from the same representation and their sets of actions to hold a

known one-to-one correspondence (which are requirements for what is defined to be

homogeneous MDPs [40]).

20

Although there is an interest in being able to transfer knowledge across tasks that

do not share state-action spaces, and whose possibly existing relations are unknown

[8, 45], to the best of our knowledge there are no works focused in measuring inter-

task similarity in this scenario. This is probably due to how difficult it might be to

provide theoretical guarantees for tasks defined over different representations.

Therefore, in order to apply inter-task similarity concepts in tasks that do not

share state-action spaces, it is necessary to develop methods that contextualize MDP

components (i.e., states, actions, transition and reward functions) so that tasks can

be compared. Thus, a lifelong learning agent will be able to make informed decisions

on how to transfer and consolidate knowledge across a sequence of tasks, in a way

that is beneficial.

3.2 Multi-task Reinforcement Learning

In [46] the authors propose an MTL architecture that follows a teacher-student ap-

proach, based on the policy distillation technique [47]. In a setting where a collection

of networks trained on specific tasks is assumed to be available, a multi-task network

is trained by following the guidance of the expert networks. For each expert avail-

able, the loss function of the actor-mimic network (AMN) includes a loss term that

penalizes the divergence between the policies of the AMN and the expert network.

The AMN network is evaluated as an MTL agent and as a knowledge transfer method

by initializing the parameters of a network. After evaluating the system in 20 Atari

games from the Arcade Learning Environment [48], AMN showed a competitive final

performance (in most of the games) in comparison to the expert network. Also, the

weights of the AMN showed to be beneficial, as initial parameters, for learning a

specific task. However, AMN had problems to learn on some games (such as seaquest

which is known to be among the difficult ones), which might be a consequence of

compressing the knowledge of multiple tasks into a single model (knowledge inter-

ference). Additionally, the authors provide convergence bound guarantees for the

AMN learning agent with respect to the performance of the guiding expert, which

is important since neural networks are known to be unstable learners, however, the

potential negative transfer that an expert may induce is not assessed.

21

In [49] authors expand the actor-critic architecture to the MTL setting by propos-

ing a network that contains an actor subnetwork for each task, and a critic subnet-

work that is shared across all the actors. Since the authors assume that tasks share

the state-action space, the architecture exploits this inter-task similarity to learn the

critic subnet in conjunction for all tasks, so that knowledge is shared across actors.

After evaluating the architecture in a mobile robot environment, where maneuvers

are regarded as tasks, it showed to learn all the tasks almost as fast as the single-task

networks. This shows the potential MTL networks have for knowledge compression

when beforehand tasks are known to be similar. However, the network is unable to

decide to which of the actors it should obey when the state is fed into its input layer,

thus, requiring states to be task-labeled for it to operate.

In [50] an extension of the A3C architecture [18] to the MTL problem is proposed

by running the thread works in several environments, rather than in several copies

of the same environment (as in the original work). By evaluating in two pairs of

games from the Arcade Learning Environments (ALE) [48], the authors test the

potential of the A3C architecture in the MTL setting. Results show that A3C could

be employed as MTL since it outperformed 3 out of 4 single-task learners, however,

results on the last task suggest that A3C is prone to negative knowledge transfer

and that additional mechanisms may be necessary to prevent this issue.

In [51] the MTL problem is addressed with a multi-model architecture called Dis-

tral, which models common and task-specific knowledge separately. Distral consists

of a shared policy network π0 and a collection of task-specific networks which are

simultaneously trained as follows: the task-specific policies distill common behav-

iors into the shared policy and the shared policy guides the task-specific policies via

regularization by adding the Kullback-Leibler (KL) divergence in their loss function.

Furthermore, they also include a loss term that models the entropy in task-specific

policies, which is employed to promote exploration. Experimental results suggest

that the entropy loss term improves the final performance of the system, since the

agent keeps exploring even if the optimal solution for one of the tasks has been

found.

22

In [24] a teacher-student framework is proposed to train, via policy distillation

[47], a student network when multiple task-specific expert networks are available.

During the training phase of the student network, via the KL divergence between

the student and a teacher policy, the student is encouraged to behave similar to the

teacher. However, an important difference with respect to previous distillation-based

works is that in [24] the KL divergence is dynamically weighted so that the influence

a teacher has over the student can be adjusted while training. The authors employ

Population Based Training (PBT) [52] to schedule the value for distillation weight

throughout the training process. Results show that by using a larger distillation

weight at the beginning of the training and decreasing towards the end, the student

is able to exploit the knowledge from its teachers in early stages, and ignore them

later on. In this way, the student is not restricted to replicate its teachers but it is

capable of keep improving beyond their performance.

In [25] an MTL architecture is proposed (shown in Fig. 6). Constituted by a

collection of n subnetworks to learn the parameters for m tasks, with an additional

subnetwork (the attentive network) the goal is to learn to weight the outputs of the

other subnetworks in a way that can be used to solve the m tasks. That is, instead

of assigning a subnetwork for each task, during the training phase the attentive

network learns to adjust the sub-network outputs to solve all m tasks. Thus, the

attentive network decides which tasks are similar enough to share the parameters of

a subnetwork and which require a specialized subnetwork. The attentive architecture

was able to outperform both of its baseline competitors (Distral [51] and PNN [53])

while requiring fewer parameters with respect to the number of tasks.

In [54] authors address the challenge of simultaneously learning multiple tasks

whose reward signals vary in sparsity and magnitude. That is, since the reward

signal can be an arbitrarily large/small scalar, tasks with reward functions that differ

in magnitude might hinder the learning of an MTL agent, due to the imbalance in

the signals. Therefore, the authors propose a method to normalize the value function

to deal with variance of rewards among a set of tasks. Experimental results show

that their normalization step enables learning on a large set of tasks (57 games from

the ALE [48]) and outperforms more simple normalization methods (e.g., reward

clipping).

23

Figure 6: Architecture proposed by [25] (figure taken from [25]). The architecture is
constituted by a shared (gray), the attentive network (blue), the subnetworks (red) and a
collection of task-specific weight matrices and bias vectors (green).

Despite MTL and LML are two different problem settings, they share a fair amount

of characteristics: having to i) train an agent to solve a set of tasks, ii) store knowl-

edge from multiple tasks in way that does not harm the performance of the agent in

any task and iii) exploit similarity (if it exists) across tasks to improve the overall

performance. These common attributes present an opportunity to extrapolate ideas

from MTL and adapt them to the lifelong learning setting.

Nevertheless, learning to solve multiple tasks with a single agent is still an open

problem in both MTL and lifelong learning. Some of the works covered in this sec-

tion [46, 50] showed to suffer from a low performance in certain tasks, probably due

to negative knowledge transfer [23]. Conversely, other works (such as [25]) use a

mechanism specifically to cope with negative knowledge transfer (e.g., instantiat-

ing several subnetworks to learn multiple tasks (see Fig. 6) but do not provide a

methodology to specify parameters that are critical for those mechanisms to work

(e.g., how many subnetworks are necessary to learn a particular set of tasks).

Therefore, by adapting an MTL system to the lifelong learning setting the learning

agent must still face a set of open challenges: to decide which pieces of knowledge

(parameters) can be reused among several tasks (i.e., knowledge transfer) and how

should the knowledge be stored, such that the agent is both memory efficient and

effective in solving all the tasks it has seen (i.e., scalability and catastrophic forget-

ting). In this context, an inter-task similarity has the potential to help solve these

24

challenges.

Similar to the work presented in [25], in which the attentive network learns during

training to extract task-specific parameters from the set of shared subnetworks, a

similarity measure could be used, interleaved with the training process, to evaluate

which tasks are similar enough so that by sharing parameters they might improve

their performance. On the other hand, identifying which tasks are too different and

assigning them their own set of parameters would prevent harming the knowledge

of the rest of the tasks.

3.3 Lifelong Reinforcement Learning

In [53] authors propose a framework for lifelong learning agents, called Progressive

Neural Networks (PNN). Given a sequence of tasks T1, ..., Tt−1 that PNN has learned

to solve with the neural networks N1, ..., Nt−1, respectively, and new task Tt, PNN

instantiates a network Nt and connects the output of every hidden layer from each

previous neural network (via lateral connections), then, it trains the parameters in

Nt and the lateral connections by feeding the input to every network while freezing

the parameters in the previous networks (as shown in Fig. 7). The PNN framework

shows to effectively counter catastrophic forgetting, since it maintains a good per-

formance on previously learned tasks, while it successfully transfers knowledge when

it learns to solve the most recent task. However, since each network is connected

to all previous models, the number of parameters in PNN grows quadratically with

respect to the number of tasks.

In a similar fashion to PNNs, in [55] a transfer learning approach called PathNet

that suits the lifelong learning setting is proposed. PathNet is a neural network

whose layers are constituted by modules, which are also neural network themselves.

During training, a genetic algorithm is used to evolution a population of genotypes,

each representing a pathway that connects modules from different layers and deter-

mines where the gradient descent should be performed to update the weight and bias

parameters. To transfer knowledge, after learning a pathway for task A, its param-

eters are frozen (like in a PNN) and used in the forwards passes while learning the

pathway for task B. After evaluating in 18 different RL tasks (from Atari [48] and

25

Figure 7: Example of a PNN architecture that is learning to solve a third task (figure taken
from [53]). Each column represents a task-specific neural network, the dashed lines are
connection parameters that remain fixed while the solid lines are parameters that will be
optimized to solve the latest task. The gray boxes represent adapters that combine the
outputs from layers of previous models.

Labyrinth [56] games), PathNet showed a consistent capability to transfer positive

knowledge.

In [57] authors address the lifelong learning setting with a hierarchical architecture

that uses previously learned skills in new tasks. Reusable knowledge is encapsulated

in skills, that they call Deep Skill Networks (DSN), and train a policy that is capable

of invoking both primitive and temporally extended actions (DSN). The architecture

is evaluated on several tasks, from the Minecraft game, that require the agent to

perform a sequence of subtasks (e.g., going to a specific room, pickup an object,

take it to another room, etc.) in a specific order. Results show that by invoking

the DSNs, the hierarchical approach is able to obtain higher success rates than a

non-hierarchical agent, such as the vanilla DQN [3].

In [58] authors focus in addressing the problem of catastrophic forgetting in neu-

ral networks that learn to solve a collection of tasks sequentially (like a lifelong

learning agent). Contrary to the approach adopted in [53], instead of instantiating

task-specific networks, the authors propose to stick to a single neural network and

26

slow down the modification of those wights that are more important. With their

method, Elastic Weight Consolidation (EWC), the network learns to solve new tasks

by optimizing the parameters that are less important (based on the Fisher informa-

tion matrix, which is included as a loss term) for the previously learned tasks. After

evaluating in supervised (MNIST [59]) and RL (ALE [48]) settings, by employing

EWC the network showed to retain knowledge better than by using stochastic de-

scent gradient and an L2 regularization. Thus, EWC shows to effectively make the

most out of a single neural network by retaining knowledge, while being scalable.

Similar to the work in [58], in [60] is proposed to counter catastrophic forgetting

in a single neural network by replaying data from previous tasks based on a ranking

function, thus, the network is periodically trained on previous experiences to avoid

forgetting them. Besides the FIFO experience replay buffer neural networks usually

incorporate to eliminate the correlation in data when RL settings are addressed,

the authors propose an additional FIFO buffer that works as a long-term episodic

memory. Four ranking functions (which sort the data in the additional buffer) were

evaluated, from which two of them showed a capacity to effectively retain knowledge:

coverage maximization (prefers data examples that have fewer data neighbors, i.e.,

outliers) and distribution matching (prioritizes experiences randomly, by using a

reservoir sampling strategy).

In [61] authors propose a lifelong learning framework that incorporates the con-

cepts of EWC, policy distillation and lateral connections (like in PNN) to learn new

tasks with one network (the active column), while retaining knowledge of previous

tasks in a second one (the knowledge base), see Fig. 8. The Progress and Com-

press (P&C) process handles new tasks by following a two-step procedure: i) when

a new task arrives, the weights in the active column are reset, the knowledge base

is connected to it (via lateral connections) and trained to solve the task at hand,

then, ii) the new knowledge is distilled into the knowledge base, using EWC so that

previous knowledge is retained (see Fig. 8). In experimental results, P&C shows a

capability to retain knowledge that is comparable to EWC, in addition to an ability

to positively transfer knowledge when learning a new task that outperforms EWC.

27

In [62] is presented a lifelong learning model that extends on policy gradient

methods for RL tasks, called Policy Gradient Efficient Lifelong Learning Algorithm

(PG-ELLA). A factored representation L · si is proposed for the policy parameters

of multiple tasks, where L is a matrix that encodes a latent basis for the set of

tasks, and si is a task-specific vector. In this setting, the system does not know a

priori the total number of tasks, nor has control over the order in which they are

presented, however, it may encounter the same task in multiple occasions. Every

time the i -th task Ti is encountered, L and si are updated with state-action-reward

trajectories gathered from Ti. In case Ti has not been visited before, the system does

not start from scratch since it has the knowledge from other tasks encoded in L, and

which is employed to initialize the policy parameters in an informed way, rather than

using random initial values. After evaluating in four domains, PG-ELLA successfully

overcome the base PG learner, showing its capability to effectively employ knowledge

across tasks.

Figure 8: Progress and Compress learning process (figure taken from [61]). New tasks
are learned by the active column network (green) and knowledge is transferred to it via
lateral connections from the knowledge base (blue). Then, knowledge is distilled to the
knowledge base through a Kullback-Leibler divergence term, while EWC helps to retain
already stored knowledge.

In [63] authors introduce a teacher-student framework that can be seen as a general

version of PNN [53]. In their proposal, rather than restricting all teacher layers to be

connected to their respective student layer (like in PNN), any subset of teacher layers

can be connected to any student layer through lateral connections. After evaluating

in several games from ALE [48], and comparing to PNN [53] and PathNet [55], their

architecture outperformed both baselines in most of the games.

28

In [27] the lifelong learning setting is addressed with a learning framework in which

knowledge is represented in a multi-model approach, and extends the work in [62] to

the cross-domain setting. That is, knowledge is shared across tasks through a matrix

(L) of latent components, while task-specific vectors (si) are learned, such that L ·si
returns the parameters for the model that solves the i -th task (e.g., the parameters of

a policy network). Thus, knowledge is factorized in L and si. After evaluating their

architecture in several continuous control tasks from the MuJoCo physics engine [64],

it showed a capability to learn almost as fast as EWC in most tasks, while achieving

the highest average performance across all tasks. Thus, this work showed promising

results on retaining knowledge and learning tasks (like Progress and Compress), with

the benefit that it is not restricted to neural networks, since the task-specific vectors

si are model-agnostic.

In [65] a lifelong reinforcement learning algorithm is proposed based on the concept

of task similarity. Considering that for a state-action pair (s, a), the optimal action

value functions Q∗M(s, a) and Q∗
M

(s, a) (for MDPs M and M) are Lipschitz continuous

in the MDP space, this work exploits this property to estimate, with a probably

approximate correct (PAC) approach, provable upper bounds on the difference of the

optimal Q-function of two MDPs. For every new MDP M , the algorithm estimates

an upper on the difference between the Q-function of every MDP Mi solved so far

and M . As M is being explored, Q-values are transferred from the Q-function of

the previously solved MDP with the lowest upper bound. The proposed algorithm

outperforms another state-of-the-art transfer learning work [66] (that also computes

upper bounds on tasks) by learning new tasks faster, as a consequence of estimating

tighter bounds.

According to [61], a continual learning system (such as a lifelong learning agent)

should ideally meet the following characteristics:

1. It should not forget how to solve previously learned tasks (catastrophic forget-

ting).

2. It should exploit knowledge from previously solved tasks to learn better/faster

a new task (forward knowledge transfer).

3. It should be able to train on a large number of tasks (scalability).

29

Table 2: Comparative table of lifelong reinforcement learning works. The columns (from
left to right) show the authors, model approach, main assumptions made by the work,
whether the work addresses catastrophic forgetting (CF), scalability, and whether the work
performs forward knowledge transfer (FKT) and backward knowledge transfer (BKT).

Work Model approach Assumptions CF Scalability FKT BKT
[53] Multi Same state space × ×
[55] Multi Same state space × ×

[57] Single
Pre-training of reusable
skills × ×

[58] Single Same state-action space ×
[60] Single Same state-action space ×

[61] Single
Same state-action space,
agent can be revisit tasks

[62] Single
Same state-action space,
agent can be revisit tasks ×

[63] Multi Same state-action space × ×
[27] Multi State-action space may differ ×
[65] Multi Same state-action space × ×

4. It should strive to improve its performance on previously learned tasks after a

learning new tasks that are similar (backward knowledge transfer).

5. It should be able to learn without task labels and clear task boundaries.

Despite the works reviewed in this section are aimed towards lifelong reinforcement

learning (which are summarized in Table 2), they do not tackle the same set of

challenges. None of them meets the fifth characteristic as tasks are assumed to

be bounded, while all of them address catastrophic forgetting and perform forward

knowledge transfer. A subset of these works is concerned with the scalability of their

model ([27, 58, 60, 61, 62]), and only [61] performs backward knowledge transfer.

Considering that our research proposal attempts to address the problem of lifelong

reinforcement learning with a similarity measure approach, [65] present the most

similar approach to ours. On the other hand, [27] is the closest related work, since

they do not make assumptions about tasks having the same state-action space, and

meets the first three characteristics from the desiderata presented by [61] (which

is the aim of our proposal). However, none of the works presented in this section

30

meets the three aspects of the desiderata list in heterogeneous tasks with a similarity

measure approach.

3.4 Summary

In this section, we presented the main related works in the areas of TSM for MDPs,

multi-task reinforcement learning and lifelong reinforcement learning. Currently,

most of the work developed in these areas is focused in measuring the similarity

and transferring knowledge between tasks that have a common state-action space.

Alternatively, with our proposal we aim at relaxing this assumption in the lifelong

reinforcement learning setting with an approach based on a TSM.

4 Research Proposal

In this section, a research proposal is presented to address the problem of lifelong

reinforcement learning in heterogeneous tasks with a TSM-based approach.

4.1 Motivation

Reinforcement learning is a learning paradigm in which, contrary to supervised learn-

ing, the engineer/programmer does not need to know nor provide the correct answer

on what the learning agent should do in certain situation. Conversely, the agent

learns through trial-and-error, as it interacts with its environment. However, for

non-trivial problems, learning in this way takes long periods of time to train. In

applications such as robotics, long training periods are prohibitive because of the

curse of real-world samples [6], which refers to the physical wear and tear suffered

by robots as a consequence of interacting with the real world.

In certain robotics applications, such as service robotics, in which the robot is ex-

pected to face an indefinite long series of tasks, a sequential learning mechanism such

as lifelong learning represents a natural approach to exploit previous experiences for

the sake of learning faster in new tasks. However, considering that the inter-task

diversity may manifest not only as differences in the dynamics (i.e., transition and

31

reward functions) but also as differences in the representation (i.e., state and ac-

tion sets), it is critical to develop strategies to identify similar tasks and transfer

knowledge between them despite the mismatch between their state-action spaces.

Additionally, adaptability is essential for robots, as they may experience modifica-

tions to their hardware, both intentional (e.g., changing a robotic arm [67]) and

unintentional (e.g., a leg failure in a walking robot [68]).

On the other hand, measuring inter-task similarity has been widely explored for

transfer learning applications in reinforcement learning, as a heuristic to decide when

will transferring knowledge between a pair of tasks improve the performance of

the learning agent instead of harming it [40]. Therefore, employing an inter-task

similarity measure in a lifelong reinforcement learning setting might lead to a robot

with the ability to decide when and how it should transfer previous experiences to

improve its performance in a new task, in spite of the overall inter-task diversity.

4.2 Justification

The following open problems reported in the literature, related to transfer learning

and lifelong reinforcement learning, will be addressed in this research.

1. Large sample complexity: This problem refers to the large amount of data

samples reinforcement learning agents usually require to learn to solve a task.

2. Negative transfer: This issue refers to the decrease in the performance of a

learning agent in a target task, as a consequence of transferring knowledge

from a source task.

3. Catastrophic forgetting: This problem refers to the situation in which a life-

long learning agent decreases its performance in old tasks as a consequence of

learning to solve new tasks.

4. Poor scalability: This issue refers to how fast the number of parameters of a

lifelong learning agent increases with respect to the number of tasks learned

so far.

32

4.3 Problem Statement

To consecutively learn a finite sequence of heterogeneous RL tasks (of unknown

length) with a lifelong learning approach is difficult for several reasons. The chal-

lenges a lifelong RL agent must face in this scenario are the following:

1. The agent must be able to compare tasks that do not share state-action spaces

in order to identify in which of the previously solved tasks there may be pieces

of reusable knowledge that can help to solve a new task faster/better.

2. Considering that knowledge of previous tasks must be retained to (possibly)

reuse it in future tasks, the agent must consolidate knowledge in a way that is

scalable with respect to the number of tasks seen so far.

3. Knowledge of previous tasks should not only be used to speed up the process

of learning of new tasks, but also to solve the tasks from which it was learned.

Thus, the agent should avoid forgetting how to solve previous tasks after new

tasks are learned.

Formally: Let a task T = 〈S,A,E, t〉 be defined by a pair of (finite or infinite)

sets S and A that contain the states and actions the agent can adopt and perform,

a function E : S × A → S × R that models the dynamics of the environment, and

a threshold performance t ∈ R that indicates when a task has been learned. Also,

let (T1, ..., Ti, ..., TN) be a finite sequence of heterogeneous RL tasks (i.e., if i 6= j

then Si 6= Sj and Ai 6= Aj), DL be a lifelong RL agent, DR be a regular RL agent,

KL({T1, ..., TM}) and KR(T) be the size of the knowledge acquired by agents DL

and DR after learning to solve the set of tasks {T1, ..., TM} and task T , respectively,

and Pi(DL, Tj) be the performance of agent DL on task Tj after DL learned to solve

task Ti, where j < i ≤ N . Hence, this research will address the problem of a

lifelong RL agent DL transferring knowledge between {T1, ..., Ti−1} and Ti, as well

of consolidating the knowledge learned in each task, such that ∀i ∈ [1, N]:

• DL learns task Ti at least as fast (requires less data queries of Ei to achieve a

performance equal or higher than ti) or as good (achieves a larger asymptotic

performance) as DR,

• KL({T1, ..., Ti}) ≤
∑i

j=1KR(Tj), and

33

• ∀j ∈ [1, i− 1], Pi(DL, Tj) ≥ Pi−1(DL, Tj).

4.4 Research Questions

The main questions that will guide this research are the following:

1. How can similarity between tasks that do not share state-action spaces be

measured, in a way that helps determining if positive knowledge transfer can

be performed between them?

2. What form of knowledge and how can it be transferred between tasks that

do not share state-action spaces in a way that produces a positive knowledge

transfer?

3. How can knowledge be consolidated in such way that helps prevent catastrophic

forgetting and increases the scalability of a lifelong RL agent?

4.5 Hypotheses

Given a finite sequence of reinforcement learning tasks and a lifelong reinforcement

learning agent, by measuring inter-task similarity between tasks that do not share

state-action spaces it is possible to:

1. Learn tasks faster than learning from scratch when previous related tasks have

been learned,

2. Maintain a model smaller than having multiple single-task models, and

3. Consolidate knowledge and transfer knowledge between related tasks in a way

that the agent does not forget to solve previous tasks.

4.6 General Objective

To design and develop a transfer learning methodology, for a lifelong reinforcement

learning agent, that is capable of performing positive knowledge transfer across tasks

that do not share state-action spaces.

34

4.6.1 Specific Objectives

1. To design and develop an inter-task similarity measure that can be applied to

heterogeneous RL tasks, such that selects source tasks that produce positive

knowledge transfer and sets of parameters that can be shared across tasks

without harming performance in those tasks.

2. To design and develop a transfer learning algorithm for heterogeneous RL

tasks that learns better than a scratch learner: requires less data to achieve a

threshold performance, or achieves a larger asymptotic performance.

3. To design and develop a knowledge consolidation algorithm for heterogeneous

RL tasks, such that knowledge acquired from multiple tasks is stored in a

compact way (requires equal or less memory space than multiple single-task

models) and the learner does not forget how to solve any of these tasks (the

performance of the learner is not harmed on any of the tasks).

4. To integrate the similarity measure and algorithms from the previous objectives

to develop a lifelong reinforcement learning algorithm for heterogeneous RL

tasks, such that the agent: learns better than a scratch learner, maintains a

compact model of the knowledge being stored, and does not forget how to solve

previous tasks.

4.7 Scope and Limitations

• Each task is modeled as a simulated environment from which the agent can

sample as many data pieces as it needs.

• This research is concerned with control and robotic tasks.

• Tasks with discrete and continuous state-action spaces are considered.

• The state of the environment is assumed to be fully observable.

• RL tasks whose observations are images are out of the scope of this research.

• The agent does not have knowledge nor control over the order in which the

sequence of tasks is presented to it.

35

4.8 Expected Contributions

1. An inter-task similarity measure for RL tasks that do not share their state-

action spaces.

2. A transfer learning algorithm for RL tasks that do not share their state-action

spaces.

3. A lifelong reinforcement learning algorithm for RL tasks that do not share

their state-action spaces.

4.9 Methodology

The methodology to follow along the present research project consists of five main

stages, as described in detail below.

4.9.1 Analysis and selection of RL tasks

In order to validate the inter-task similarity measure and the algorithms that consti-

tute the specific objects of this research (see Section 4.6.1), a collection of RL tasks is

required. The task selection criteria are based on the scope of this research: control

and robotic RL tasks whose state spaces are fully observable and whose state-action

spaces may be discrete or continuous. Furthermore, considering that the motivation

of our work is to enhance the robustness of decision-making agents in the face of

task-diversity, the set of validation tasks should contain groups of tasks that are

similar, and also tasks that significantly differ from each other. In this way, with a

set of tasks that is rich in both diversity and similarity, we will be able to evaluate

the proficiency of the lifelong RL agent to exploit similarity across tasks to improve

the learning process, and identify the differences between them to avoid harming its

performance.

Considering our requirements, in the Gym OpenAI library [69] one can find a wide

variety of RL tasks that include discrete small-scale tasks from RL literature, classic

control problems, control tasks involving 2D and 3D robots and classic Atari games

(pixel-based tasks). For the evaluation of our algorithms, we are considering to use

36

discrete small tasks, classic control tasks and 2D/3D robot control tasks. Figure 9

shows an example of a task from each one of these categories.

(a) (b) (c) (d)

Figure 9: Examples of RL tasks that will be employed for evaluation purposes. From
left to right: the taxi domain [43] (Fig. 9a), mountain car [70] (Fig. 9b), inverted double
pendulum (Fig. 9c) and four-legged ant [71] (Fig. 9d).

4.9.2 Design and development of inter-task similarity measure

In this stage, the design and development of an inter-task similarity measure for

RL tasks that do not share state-action spaces will take place. In order to develop

the similarity measure, it is necessary to analyze how feasible it is to extend ideas

in similarity measures that have been proposed in the revised literature for tasks

that share the state-action space. The purpose of this analysis is to determine how

the mismatch between the state-action spaces precludes the use of these works, and

explore ways to evaluate similarity despite the differences in the state-action spaces.

Since this research will address the model-free RL setting, the similarity measure

developed in this stage must be able to compare tasks without having at its disposal

the transition and reward function of the tasks, and should refine its estimation as

new data is observed by the learning agent.

Considering that we need to compare RL tasks with different state-action spaces,

it is not possible to measure similarity based on bisimulation [40] or MDP homo-

morphisms [35], since they rely on the assumption that the states that are being

compared exist in the same space. Hence, a similarity measure based solely on

behavioral properties (such as the transition and reward functions) fits better the

restrictions imposed by our problem. Additionally, tasks with discrete and continu-

ous spaces present particular challenges and opportunities.

37

Since RL tasks with small and discrete spaces can usually be solved with iterative

methods with convergence guarantees (e.g., Value iteration and Q-learning), one

can expect reproducibility after training several agents in the same task under the

same circumstances. This is convenient for evaluating initial ideas of the similarity

measure, as iterations over the design and development process will take less time,

in comparison to training agents with function approximation methods (e.g., neural

networks [2]). On the other hand, when tasks have spaces defined over continuous

variables, the total ordering present in the values these variables can take provides

additional information that does not exist in discrete tasks. For this reason, the

design and development of the inter-task similarity measure will start considering

discrete RL problems and subsequently in continuous domains.

Validation: the evaluation of the inter-task similarity measure will consist in com-

puting the similarity between source-target pairs of tasks, transfer knowledge be-

tween them, and compute the difference between the performance of the agent in

the target task with and without using knowledge from the source task. Two metrics

will determine the success of the similarity measure:

1. The correlation between the similarity score of two tasks and the improvement

of the agent in the target tasks when knowledge is transferred.

2. How many data is required by the similarity measure to provide a good estimate

of how similar two tasks are.

That is, the greater the correlation is and the less data needed the better. In order

to evaluate the correlation between the similarity measure with the improvement of

performance in target tasks, a simple value-transfer approach will be employed as

transfer learning technique (in both discrete and continuous space tasks).

4.9.3 Design and development of transfer learning algorithm

In this stage, the transfer learning algorithm for RL tasks that do not share state-

action spaces will be designed and developed. Once the inter-task similarity measure

from stage 2 has been developed, the transfer learning algorithm will be designed

based on the characteristics we find relevant to establish similarity across different

38

tasks. The main focus of this stage will be to define a procedure to map knowledge

between a pair of source and target tasks, such that the performance of an agent

improves on the target task when knowledge is transferred from the source task, in

comparison to learning without an additional source of knowledge. Besides evaluat-

ing ways to adapt knowledge across domains, we will explore at which rate should

knowledge be transferred to exploit it as much as possible while learning the target

task, i.e., should knowledge be transferred as a single batch of data at some period

of the learning process (perhaps at the beginning), or should it be gradually poured

depending on the current stage of the learning process.

Since the focus of this stage is to explore ways in which knowledge can be trans-

ferred between tasks with different state-action spaces, similar to the second stage of

the methodology with the use of a value-transfer approach (see Section 4.9.2), and

considering that the third stage in the methodology is responsible for defining how

knowledge should be represented, in this stage several forms of knowledge will be

employed to evaluate the transfer learning algorithm. In [14], a classification of the

types of knowledge that can be transferred between RL agents is presented, and it

consists of two categories:

1. Low-level knowledge: Refers to knowledge that can be directly used by the

learner in the target task. For example, 〈s, a, r, s′〉 instances, a policy, an

action-value function (Q-function), a prior distribution or a full task model

(transition and reward models).

2. High-level knowledge: The type of knowledge that cannot be employed by

a learning algorithm as training data, but that can help guide the learning

process in the target task. For instance, subsets of actions that should be pri-

oritized in certain situations, partial policies or options [72], shaping rewards,

important features, sub-task definitions or rules.

Validation: The evaluation of the transfer learning algorithm will consist in trans-

ferring knowledge between several pairs of tasks, in a single direction (i.e., only

form source to target task), and the success of the algorithm will be measured based

on the five metrics described by [14] for transfer learning systems in reinforcement

learning tasks: time to threshold, jump start, asymptotic performance, total reward

39

and transfer ratio. For comparison purposes, there are several works that can per-

form transfer learning between tasks that do not share state-action spaces, such

as [8, 27, 45, 73]. Additionally, there are works that could be slightly modified to

evaluate them over tasks with different state-action spaces such as [53, 61].

4.9.4 Design and development of knowledge consolidating algorithm

In this stage of the methodology, the knowledge consolidating algorithm will be

designed and developed. Given that a lifelong RL agent must consecutively learn to

solve a sequence of tasks, an algorithm for the consolidation of the knowledge learned

in each task should employ a representation that is compact (since the agent does

not know how long the sequence of tasks is), and adaptable so that a mismatch in

the state-action space of a pair of tasks does not hinder sharing knowledge between

them. In a similar fashion to stage 3, in this stage we will incorporate in this

algorithm the features that we find relevant for the similarity between tasks. The

main objective of the knowledge consolidating algorithm is to exploit the similarity

across tasks to avoid redundancy in the knowledge that is shared, as well to identify

pieces of knowledge that are significantly different, so that they are stored separately

to prevent harming the overall performance of the agent as a consequence of the

interference of knowledge.

According to [27], lifelong RL systems can be grouped in two broad classes based

on how they share parameters (which store the knowledge learned in each task):

1. Single-model: This type of lifelong system assumes that there is one set of

parameters (or model) that will be used to learn all tasks. For example, Elastic

Weight Consolidation [58] (EWC) and Selective Experience Replay [74] (SER),

in which a single neural network is submitted to solve a sequence of tasks.

2. Multi-model: This class of lifelong system assumes that there is a set of param-

eters that are shared across all tasks, as well that there is a set of task-specific

parameters for each task. For instance, PG-ELLA [62], PNN [53] and Knowl-

edge Flow [63].

40

In terms of scalability, single-model systems have the advantage over the multi-

model approach due to their size remains constant throughout the entire sequence

of tasks, whereas multi-model agents add certain number of parameters as new

tasks are learned. On the other hand, in terms of overall performance, multi-model

systems usually perform better than single-model agents, because with the sets of

task-specific parameters the learning algorithm has more space to store separately

pieces of knowledge that conflict with each other.

Regarding the knowledge consolidating algorithm from this stage, we consider that

the inter-task similarity measure from stage 2 (see Section 4.9.2) could be used to

develop an algorithm to consolidate knowledge in a multi-model approach. However,

instead of adding a predefined number of task-specific parameters for each new task,

the similarity measure could be employed to evaluate the similarity between the

latest task and the previously learned ones. Thus, the agent could determine if

it is necessary to instantiate new task-specific parameters (because storing it with

any of the previous tasks would cause knowledge interference), or if the new task

can be stored among the knowledge of some of the previous tasks (since they are

similar). Hence, the lifelong agent would be able to make informed decisions about

increasing its total amount of parameters, in a way that prevents harming its overall

performance as a consequence of conflicting pieces of knowledge, and maintains an

affordable scalability as the number of parameters will only increase if it is necessary.

Validation: To validate the knowledge consolidating algorithm, the inter-task sim-

ilarity measure developed in stage 2 will be employed to define several sequences of

tasks that will vary in length and the overall inter-task diversity. In each sequence of

tasks, for each task a base RL agent (e.g., [15] and [18] for discrete and continuous

state-actions spaces, respectively) will be trained from scratch and the knowledge

consolidating algorithm will store the new knowledge. Once the knowledge of ev-

ery task in the sequence has been stored, an agent will be instantiated from the

knowledge base and tested in each task. The success of the knowledge consolidating

algorithm will be measured based on the overall performance achieved with the agent

instantiated from the knowledge base (asymptotic performance and total reward),

the size of the knowledge base, and the overall inter-task diversity of the sequence

of tasks. Hence, it is desirable for the algorithm to achieve a high performance and

a low knowledge base size, in relation to the length of the sequence of tasks and its

41

overall inter-task diversity. For comparison purposes, [27] is a lifelong RL system

that supports tasks with different state-action space. Also, there are works that

could be compared in a sequence of tasks that share state-action spaces, such as

[53, 58, 60, 61, 75].

4.9.5 Design and development of lifelong learning algorithm

In this stage of the methodology, the lifelong reinforcement learning algorithm will

be designed and developed. The design of this algorithm will consist in coupling the

knowledge consolidating algorithm from stage 4 with the transfer learning algorithm

from stage 3, and defining how the similarity measure will control the interactions

between them. The objective is to analyze what needs to be modified in both

algorithms, so they can work in a single system, as the transfer learning will depend

on the representation employed by the knowledge consolidating algorithm, and on

the knowledge it decides to maintain from each task.

In order to transfer knowledge, there are multiple approaches that can be adopted.

To transfer knowledge forward (from old tasks to the latest task), ranking the old

tasks based on their similarity to the most recent task might help to select a subset of

useful source tasks. Alternatively, the system could employ the inter-task similarity

measure from stage 2 (see Section 4.9.2) to evaluate which pieces of knowledge should

be transferred from each previous task (rather than transferring tasks as a whole).

Validation: In order to validate the lifelong RL algorithm, similarly to the eval-

uation of the knowledge consolidating algorithm, several sequences of tasks will be

defined so that they vary in length and in inter-task diversity (according to the inter-

task similarity measure from stage 2). The success of the lifelong learning algorithm

will be determined based on the following aspects:

1. The improvement of the agent in the target task, with respect to the five met-

rics described by [14], when knowledge is transferred from the tasks previously

solved, in comparison to learning from scratch.

2. The total size of the agent (expressed in number of parameters or bits) after

every task in a sequence has been learned.

42

3. Its capacity to not forget how to solve older tasks, despite the differences these

might have with upcoming tasks.

For comparison purposes, we will contrast the algorithm to a single-task learner in

each task (base learner), to [27] a lifelong RL system that works in sequences of

tasks that do not share state-action space, and to the following lifelong RL works

that assume tasks share the state-action space: [53, 58, 60, 61, 75].

4.10 Work Plan

In Fig. 10 is shown the Gantt chart for the activity schedule to carry out during

this research project.

4.11 Publications Plan

The expected publications and their respective objectives are presented below.

1. Conference article.

International Joint Conference on Artificial Intelligence. The objective is to

publish an inter-task similarity measure that can be applied to tasks that do

not share the state-actions space.

Estimated submission date: October 2021.

2. Journal article.

Machine Learning. The objective is to publish the results obtained from the

integration of the transfer learning and knowledge consolidating algorithm.

Impact factor: 2.672.

Estimated submission date: May 2022.

3. Conference article.

International Conference on Machine Learning. The objective is to publish a

lifelong reinforcement learning algorithm that can be applied to tasks that do

not share the state-actions space.

Estimated submission date: January 2023.

43

Figure 10: Activity schedule.

5 Preliminary Results

In this section, we present preliminary experimental results related to measuring

similarity between tasks that differ in their state-action space.

44

5.1 Environments

In order to evaluate the inter-task similarity measure, a set of three discrete RL

environments with different state-action spaces are employed. These environments

are described below (see Fig. 11).

• Taxi domain: Originally introduced by [43], this task consists of a 5×5 grid in

which there are four locations (labeled with a letter). The taxi (flat learning

agent) must pick up a passenger from one of the locations and drop it in

another one. The agent has six actions (up, down, left, right, pickup, drop)

and there are 500 possible states.

• Frozen Lake: The environment consists of a 4× 4 grid in which the agent can

move between adjacent tiles in four directions (i.e., up, down, left, right). At

the beginning of the episode, the agent starts in the initial location (labeled

with the letter S) and its objective is to reach a goal location (labeled with the

letter G) without falling into the hole locations (labeled with the letter H).

• Frozen Lake 8 × 8: This environment very similar Frozen Lake, the only dif-

ference lies in the size of the grid, which is 8× 8.

Figure 11: RL environments employed to evaluate inter-task similarity measures. From
left to right: taxi domain, frozen lake and frozen lake 8× 8.

5.2 Measuring inter-task similarity

The Q-table of an optimal policy can be seen as a map of where the agent would

prefer to be within the state-action space. In an optimal Q-table, the state-action

45

pairs that take the system to a goal state will be among the highest q-value pairs.

However, in tasks where the agent must travel through long sequences of state tran-

sitions, sub-goal states are likely to be present, as well as undesirable states that

should be avoided.

Despite tasks having different state-action spaces, it is possible for them to have

a similar structure in terms of undesirable, sub-goal, and goals states. Thus, if

an LML agent could identify that the task it is currently exploring has a similar

structure to one of the tasks it already solved, then it might be able to transfer

some of the previous knowledge to the current task, such that the exploration phase

could be reduced and, hopefully, learn faster. Hence, in this section an inter-task

similarity measure based on the concept of sub-goals structure for heterogeneous

tasks is presented. The goal of the will be to identify pairs of state-action pairs

that perform similar roles (e.g., as undesirable, sub-goal, or goal states) in their

respective task, based on their q-value.

To measure the similarity between two tasks, the method presented in this section

takes as input the Q-functions of two tasks, in the form of matrices Q1 and Q2

with dimensions N1 ×M1 and N2 ×M2, respectively. In matrices Q1 and Q2, rows

correspond to states whereas columns correspond to actions. Thus, the following

steps describe how to measure the similarity between Q1 and Q2.

First, the following steps are performed to Q ∈ {Q1, Q2}, where N ×M are the

dimensions of matrix Q, and K is the number of clusters to be generated.

1. Computation of row-cluster matrix Crow ∈ NN×M . Let Qi,∗ = [Qi,0, ..., Qi,M−1]

be the i -th row of matrix Q. K-means is applied to the elements of Qi,∗ to gen-

erate K clusters. The i -th row of matrix Crow, i.e., Crow
i,∗ = [Crow

i,0 , ..., Crow
i,M−1],

consists of the cluster labels assigned to each element of Qi,∗. Thus, Crow
i,j holds

the label assigned to Qi,j after generating K clusters with the elements of Qi,∗.

2. Computation of column-cluster matrix Ccol ∈ NN×M . LetQ∗,j = [Q0,j, ..., QN−1,j]
T

be the j -th column of matrix Q. K-means is applied to the elements of

Q∗,j to generate K clusters. The j -th column of matrix Ccol, i.e., Ccol
∗,j =

[Ccol
0,j , ..., C

col
N−1,j]

T , consists of the cluster labels assigned to each element of

46

Q∗,j. Thus, Ccol
i,j holds the label assigned to Qi,j after generating K clusters

with the elements of Q∗,j.

3. Computation of actions-frequency matrix FA ∈ RM×K . The j -th row of FA,

i.e., FA
j,∗ = [FA

j,0, ..., F
A
j,K−1], represents a normalized histogram of the label

frequencies in the j -th column of matrix Crow. Thus, FA
j,k holds the proportion

of times label k appears in Crow
∗,j = [Crow

0,j , ..., C
row
N−1,j]

T .

4. Computation of states-frequency matrix F S ∈ RN×K . The i -th row of F S,

i.e., F S
i,∗ = [F S

i,0, ..., F
S
i,K−1], represents a normalized histogram of the label

frequencies in the i -th row of matrix Ccol. Thus, F S
i,k holds the proportion of

times label k appears in Ccol
i,∗ = [Ccol

i,0 , ..., C
col
i,M−1].

After the frequency matrices F S1 , FA1 and F S2 , FA2 have been computed for Q1

and Q2, respectively, the intersection matrices IA and IS are computed.

• Computation of actions-intersection matrix IA ∈ RM1×M2 . The element IAi,j
holds the intersection value between the i -th row of matrix FA1 (i.e., FA1

i,∗ =

[FA1
i,0 , ..., F

A1
i,K−1]) and the j -th row of matrix FA2 (i.e., FA2

j,∗ = [FA2
j,0 , ..., F

A2
j,K−1]).

That is, IAi,j = Intersection(FA1
i,∗ , F

A2
j,∗) (see Eq. 5).

• Computation of states-intersection matrix IS ∈ RN1×N2 . The element ISi,j
holds the intersection value between the i -th row of matrix F S1 (i.e., F S1

i,∗ =

[F S1
i,0 , ..., F

S1
i,K−1]) and the j -th row of matrix F S2 (i.e., F S2

j,∗ = [F S2
j,0 , ..., F

S2
j,K−1]).

That is, ISi,j = Intersection(F S1
i,∗ , F

S2
j,∗) (see Eq. 5).

Intersection(u, v) =
∑
i

min(u(i), v(i)) (5)

Considering that the clusters generated for the cluster matrices are sorted (i.e.,

label 0 is assigned to elements that belong to the cluster with the centroid of lowest

value, whereas label K − 1 to those in the cluster with highest valued centroid), the

i -th row of Crow (row cluster) can be seen as a grouping of actions based on how

preferred they are from the i -th state. Analogously, the j -th column of Ccol (column

cluster) groups states based on how preferred the j -th action is from each of them.

47

As Fig.12 shows, the label frequency histograms are computed transversely with

respect to the row and column clusters. The j -th histogram computed across the

row clusters in Crow represents the distribution of labels the j -th action received in

the row clusters. Similarly, the i -th histogram computed across the column clusters

in Ccol represents the distribution of labels the i -th state received in the row clusters.

Thus, histograms computed across row clusters represent the overall preference of

actions from all states, whereas histograms computed across column clusters show

the overall preference of states from all actions.

Hence, when the intersection value between the rows of two different FA matrices

is computed, the similarity of a pair of actions from different MDPs is being assessed.

A high intersection value means that the pair of actions are preferred by the states

from their respective in a similar way. For instance, in matrix IA from Fig. 12

action a1 ∈ A1 is the most similar to action a3 ∈ A2, since a histogram [1, 0] is closer

to [0.7, 0.3] than to [0.3, 0.7].

Once the intersection matrices have been computed, their Frobenius norm ‖ IS ‖F ,

‖ IA ‖F and their mean Mean(IS), Mean(IA) are computed to obtain four similarity

scores between Q1 and Q2.

5.3 Transferring Knowledge

After the intersection matrices IA and IS have been computed, in order to transfer

knowledge from a source task to a target task, we define a matrix T ∈ RN2×M2 , which

will temporally hold q-values selected from the Q matrix of the source task (i.e.,

Q1). T (i, j) will hold the q-value Q1
k,l, where k = argmaxk′ I

S
k′,i and l = argmaxl′ I

A
l′,i.

Finally, after the previous step has been performed for every pair (i, j) ∈ N2 ×M2,

matrix T is used to initialize the Q-function of the target task (i.e., Q2).

In other words, considering that the values in IS and IA represent the intersection

between states and actions from two different tasks, we consider the k -th state

from the source task to be the most similar to the i -th state from the target task.

Similarly, the action from the source task that maximizes the intersection with the

j -th action from the target task is considered to be the most similar one. Therefore,

48

Figure 12: Computation of the intersection matrices IS and IA for a pair of Q-tables
Q1 and Q2, whose rows and columns correspond to the states and actions in their re-
spective task, using a number of two clusters. A row-cluster matrix (Crow) contains the
labels assigned to the elements of the Q-table if they were clustered row-wise (red dotted
ovals), similarly, a column-cluster matrix contains labels for elements clustered column-
wise (blue dotted ovals). Then, each row in a states-frequency matrix (FS) is a histogram
for the label frequency of each row in Ccol, whereas each row in an actions-frequency
matrix counts the label frequency of each column in Crow. Finally, each element in the
states intersection matrix (IS) contains the intersection value between a pair states-labels
histograms that belong to different state-frequency matrices. Analogously, the actions
intersection matrix (IA) is computed with a pair of actions-frequency matrices.

the q-value of the (k, l) state-action pair from the source task is transferred to the

(i, j) state-action pair from the target task. For instance, considering the example

in Fig. 12, to transfer a q-value for the pair Q2(s2, a3) in task 2 from the Q-table in

task 1, we would assign it either Q1(s1, a1), Q
1(s2, a1) or Q1(s3, a1), since a1 (from

task 1) has the highest intersection value with a3 (from task 2), and every state from

task 1 has the same intersection value with s2 (from task 2).

5.4 Results

In order to evaluate the inter-task similarity measures presented in the section above,

they were applied among a set of three tasks: Taxi, Frozen Lake, and Frozen Lake

8 × 8 (see Fig. 11). The similarity scores are summarized in Tables 3 and 4. The

49

similarity measures here presented describe how similar two tasks are based on the

similarity between their states (‖ IS ‖F , Mean(IS)) and the similarity between their

actions (‖ IA ‖F , Mean(IA)). Thus, the larger the similarity scores, the greater the

similarity between the tasks.

The Q-table matrices employed to compute the similarity scores reported in Tables

3 and 4 were obtained after training an agent with Q-learning [15] during 300,000

episodes. The initial exploration probability and learning rate were set to 1, and

were scheduled to reach the final values of 0.05 and 0.01 respectively, by decreasing

them linearly with respect to the training episodes. Additionally, a fixed amount of

3 clusters were built to compute the inter-task similarity.

Table 3: Inter-task similarity Frobenius-norm scores among three tasks: Taxi domain
(Taxi), Frozen Lake (FL) and Frozen Lake 8 × 8 (FL8). The larger a score is, the more
similar a pair of tasks are to each other.

Taxi FL FL8
‖ IS ‖F ‖ IA ‖F ‖ IS ‖F ‖ IA ‖F ‖ IS ‖F ‖ IA ‖F

Taxi 317.52 4.29 53.04 3.13 111.91 3.27
FL - - 9.86 3.19 19.29 3.07

FL8 - - - - 43.41 3.43

Table 4: Inter-task similarity mean-based scores among three tasks: Taxi domain (Taxi),
Frozen Lake (FL) and Frozen Lake 8× 8 (FL8). The larger a score is, the more similar a
pair of tasks are to each other.

Taxi FL FL8
Mean(IS) Mean(IA) Mean(IS) Mean(IA) Mean(IS) Mean(IA)

Taxi 0.5196 0.6222 0.4814 0.6215 0.4923 0.6468
FL - - 0.4961 0.7813 0.4634 0.7627

FL8 - - - - 0.5125 0.8516

From Table 3 one can observe that the largest scores are located in the first row.

According to the ‖ IS ‖F scores, Frozen Lake is more similar to Taxi than to itself.

This is simply not true; however, these results show that computing the Frobenius

norm to the intersection matrices may not be the best option. On the other hand,

the highest ‖ IA ‖F scores are in the main diagonal, which means that each task is

closer to itself than to any other task. Regarding the mean similarity scores, Table

50

4 shows that by averaging the state intersection values of two Q-tables, Mean(IS)

is able to report a greater similarity for tasks with themselves than with any other

task (such as ‖ IA ‖F). On the other hand, Mean(IA) fails to do the same due to

the scores from the first row.

Moreover, since the end goal of our proposal is to use the similarity measure as

a heuristic to make better decisions about other problems, such as transferring and

consolidating knowledge, the similarity scores were compared against the transfer ra-

tios (see Table 5) obtained after transferring knowledge with the method described

in Section 5.3. Similar to the agents that learned the Q-tables employed to com-

pute their similarity, the agents that were trained from scratch and with knowledge

transferred to them, were given 300,000 episodes to train. However, for the transfer

learners, the initial exploration probability and learning rate were set to 0.25 and

0.5 (instead of 0.05 and 0.01). This is because, since the transfer learner is given

an initial boost of knowledge, it should not ignore it (therefore a smaller explo-

ration probability). On the other hand, the smaller learning rate is for preventing

the agent to completely erase the initial knowledge with a few interactions with the

environment.

Table 5: Transfer ratio scores among three tasks: Taxi domain (Taxi), Frozen Lake (FL)
and Frozen Lake 8 × 8 (FL8). Rows correspond to the source task while columns corre-
spond to the target task. Transfer ratio values above 1 indicate that the target task benefited
from the knowledge that was transferred from the source task.

Taxi FL FL8
Taxi 1 0.358 0.059
FL 0.994 1 1.276

FL8 0.992 1.167 1

Table 6: Mean square error (MSE) of the four similarity measures through the learning
process in three tasks: Taxi domain (Taxi), Frozen Lake (FL) and Frozen Lake 8×8 (FL8).
The MSE is computed between the similarity score for the final Q-table with itself and the
similarity scores for the final Q-table with the Q-table that is being learned. Figure 14
illustrates the error of the four measures through the learning process.

‖ IS ‖F MSE ‖ IA ‖F MSE Mean(IS) MSE Mean(IA) MSE
Taxi 161.8 0.0768 0.0014 0.0012
FL 0.1371 0.1139 0.0005 0.0073

FL8 32.9373 1.3871 0.0116 0.0942

51

From the set of evaluated tasks, a positive transfer of knowledge was exhibited

only between the Frozen Lake and Frozen Lake 8 × 8 tasks (as shown in Table 5).

This is understandable since they are two variants of the same problem that differ

in the size of their state space. Alternatively, transferring knowledge from the Taxi

domain task only harmed the performance of the other tasks (see Fig. 13). To assess

the relation the similarity measures hold with transferring knowledge, the Pearson

correlation coefficient was computed between the transfer ratios achieved by the

pairs of tasks and their similarity scores. For the Frobenius-based scores ‖ IS ‖F
and ‖ IA ‖F , correlation values of −0.601 and −0.581 were obtained, whereas for

the mean-based scores Mean(IS) and Mean(IA), the correlation values of −0.664

and 0.627 were observed. These correlation values show that, to some degree, the

similarity measures are linearly related to the improvement in performance after

transferring knowledge between tasks.

Additionally, in order to evaluate how much training data is required to compute

a good estimate of the similarity between a task that is being learned and one that

is already solved, the similarity measures were computed at different instants in the

training process of the set of evaluated tasks. Figure 14 shows that the similarity

measures ‖ IA ‖F , Mean(IS) and Mean(IA) are able to stabilize at the final score

significantly before the agent reaches its final performance, which leads to small

MSE values (see Table 6). Regarding the lifelong learning setting, when the agent

starts learning a new task, it is desirable to identify as early as possible which of the

already solved tasks may help in the current training process. Thus, considering the

correlation shown by the similarity measures here presented, and their convergence

at an early stage in different training processes, we believe that employing an inter-

task similarity measure in a lifelong reinforcement learning system is an approach

worth exploring further.

52

Figure 13: Average and standard deviation of accumulated evaluation reward of different
agents learning in the Frozen Lake 8 × 8 environment. From top to the bottom: learning
from scratch, learning after transferring from Frozen Lake, and learning after transferring
from Taxi.

53

Figure 14: Similarity scores (vertical axis on the right) of the four similarity measures:
‖ IS ‖F (IsF), ‖ IA ‖F (IaF), Mean(IS) (IsM) and Mean(IA) (IaM). The dotted lines
show the similarity score between the Q-table that is being learned and the final Q-table.
The solid lines show the similarity score between the final Q-table with itself. The graphs
show from top to the bottom: Taxi domain, Frozen Lake and Frozen Lake 8× 8.

54

6 Final Remarks

Reinforcement learning is one the most powerful learning paradigms that there are,

mainly because the learning agent is responsible for acquiring its own experience. In

an effort to extend the capabilities of current RL systems, in this research proposal

we presented a lifelong reinforcement learning approach based on the concept of task

similarity. We believe that being able to compare tasks is a vital ingredient in any

intelligent system. That is, as the system is able identify similarities and differences

between different problems, it may use this information to decide if any of the

knowledge accumulated so far can be reused. We have presented some preliminary

results on measuring similarity between tasks with different state-action space. From

the four measures presented, ‖ IA ‖F and Mean(IS) were able to correctly rank

tasks to be the most similar one to themselves, which is necessary to effectively

select source tasks in a lifelong learning setting. Additionally, three of the measures

were able to provide an estimate with low error at early stages of three training

processes. Based on the results obtained, we consider that measuring similarity

between tasks with different state-action spaces is a suitable approach to transfer

knowledge, and hopefully, it may also serve to consolidate knowledge. As future

activities, according to the activity schedule, we will continue on developing an

inter-task similarity measure that is useful to our purposes, by evaluating in control

tasks with continuous spaces.

References

[1] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. 2018.

[2] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra,

and M. Riedmiller, “Playing Atari with Deep Reinforcement Learning,” arXiv

preprint arXiv:1312.5602, 2013.

[3] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,

A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al., “Human-

level control through deep reinforcement learning,” Nature, vol. 518, no. 7540,

pp. 529–533, 2015.

55

[4] M. Hessel, J. Modayil, H. Van Hasselt, T. Schaul, G. Ostrovski, W. Dabney,

D. Horgan, B. Piot, M. Azar, and D. Silver, “Rainbow: Combining Improve-

ments in Deep Reinforcement Learning,” in Proceedings of the AAAI Conference

on Artificial Intelligence, vol. 32, 2018.

[5] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez,

T. Hubert, L. Baker, M. Lai, A. Bolton, et al., “Mastering the Game of Go

without Human Knowledge,” nature, vol. 550, no. 7676, pp. 354–359, 2017.

[6] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in robotics:

A survey,” The International Journal of Robotics Research, vol. 32, no. 11,

pp. 1238–1274, 2013.

[7] M. E. Taylor and P. Stone, “Representation Transfer for Reinforcement Learn-

ing,” in AAAI Fall Symposium: Computational Approaches to Representation

Change during Learning and Development, pp. 78–85, 2007.

[8] M. E. Taylor, G. Kuhlmann, and P. Stone, “Autonomous Transfer for Rein-

forcement Learning,” in AAMAS (1), pp. 283–290, Citeseer, 2008.

[9] F. Ingrand and M. Ghallab, “Deliberation for autonomous robots: A survey,”

Artificial Intelligence, vol. 247, pp. 10–44, 2017.

[10] K. Lin, S. Wang, and J. Zhou, “Collaborative Deep Reinforcement Learning,”

arXiv preprint arXiv:1702.05796, 2017.

[11] M. L. Puterman, Markov decision processes: discrete stochastic dynamic pro-

gramming. John Wiley & Sons, 2014.

[12] R. Bellman, “Dynamic Programming,” Science, vol. 153, no. 3731, pp. 34–37,

1966.

[13] L. E. Sucar, “Probabilistic Graphical Models,” Advances in Computer Vision

and Pattern Recognition. London: Springer London. doi, vol. 10, pp. 978–1,

2015.

[14] M. E. Taylor and P. Stone, “Transfer Learning for Reinforcement Learning

Domains: A Survey,” Journal of Machine Learning Research, vol. 10, no. Jul,

pp. 1633–1685, 2009.

56

[15] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, no. 3-4,

pp. 279–292, 1992.

[16] G. A. Rummery and M. Niranjan, On-line Q-learning using connectionist sys-

tems, vol. 37. University of Cambridge, Department of Engineering Cambridge,

UK, 1994.

[17] Y. Li, “Deep Reinforcement Learning: An Overview,” ArXiv preprint

arXiv:1701.07274, 2017.

[18] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver,

and K. Kavukcuoglu, “Asynchronous Methods for Deep Reinforcement Learn-

ing,” in International conference on machine learning, pp. 1928–1937, 2016.

[19] A. Lazaric, “Transfer in Reinforcement Learning: A Framework and a Survey,”

in Reinforcement Learning, pp. 143–173, Springer, 2012.

[20] S. J. Pan and Q. Yang, “A Survey on Transfer Learning,” IEEE Transactions

on knowledge and data engineering, vol. 22, no. 10, pp. 1345–1359, 2009.

[21] F. L. Da Silva and A. H. R. Costa, “A Survey on Transfer Learning for Multi-

agent Reinforcement Learning Systems,” Journal of Artificial Intelligence Re-

search, vol. 64, pp. 645–703, 2019.

[22] Y. Zhang and Q. Yang, “A Survey on Multi-task Learning,” arXiv preprint

arXiv:1707.08114, 2017.

[23] N. Vithayathil Varghese and Q. H. Mahmoud, “A Survey of Multi-task Deep

Reinforcement Learning,” Electronics, vol. 9, no. 9, p. 1363, 2020.

[24] S. Schmitt, J. J. Hudson, A. Zidek, S. Osindero, C. Doersch, W. M. Czarnecki,

J. Z. Leibo, H. Kuttler, A. Zisserman, K. Simonyan, et al., “Kickstarting Deep

Reinforcement Learning,” arXiv preprint arXiv:1803.03835, 2018.

[25] T. Bräm, G. Brunner, O. Richter, and R. Wattenhofer, “Attentive Multi-

Task Deep Reinforcement Learning,” in Joint European Conference on Machine

Learning and Knowledge Discovery in Databases, pp. 134–149, Springer, 2019.

[26] Z. Chen and B. Liu, “Lifelong Machine Learning,” Synthesis Lectures on Arti-

ficial Intelligence and Machine Learning, vol. 12, no. 3, pp. 1–207, 2018.

57

[27] J. A. Mendez and E. Eaton, “Lifelong Learning of Factored Policies via Policy

Gradients,” 2020.

[28] A. Tversky, “Features of Similarity,” Psychological review, vol. 84, no. 4, p. 327,

1977.

[29] S. Ontañón, “An overview of distance and similarity functions for structured

data,” Artificial Intelligence Review, vol. 53, no. 7, pp. 5309–5351, 2020.

[30] N. F. Ferns, Metrics for Markov Decision Processes. PhD thesis, McGill Uni-

versity, 2003.

[31] N. Ferns, P. Panangaden, and D. Precup, “Metrics for Finite Markov Decision

Processes,” in UAI, vol. 4, pp. 162–169, 2004.

[32] Y. Deng and W. Du, “The Kantorovich Metric in Computer Science: A Brief

Survey,” Electronic Notes in Theoretical Computer Science, vol. 253, no. 3,

pp. 73–82, 2009.

[33] A. L. Gibbs and F. E. Su, “On Choosing and Bounding Probability Metrics,”

International statistical review, vol. 70, no. 3, pp. 419–435, 2002.

[34] J. L. Carroll and K. Seppi, “Task Similarity Measures for Transfer in Reinforce-

ment Learning Task Libraries,” in Proceedings. 2005 IEEE International Joint

Conference on Neural Networks, 2005., vol. 2, pp. 803–808, IEEE, 2005.

[35] J. Sorg and S. Singh, “Transfer via Soft Homomorphisms,” in Proceedings of The

8th International Conference on Autonomous Agents and Multiagent Systems-

Volume 2, pp. 741–748, 2009.

[36] B. Ravindran and A. G. Barto, An Algebraic Approach to Abstraction in Re-

inforcement Learning. PhD thesis, University of Massachusetts at Amherst,

2004.

[37] N. Ferns, P. Panangaden, and D. Precup, “Metrics for Markov Decision Pro-

cesses with Infinite State Spaces,” arXiv preprint arXiv:1207.1386, 2012.

[38] H. B. Ammar, E. Eaton, M. E. Taylor, D. C. Mocanu, K. Driessens, G. Weiss,

and K. Tuyls, “An Automated Measure of MDP Similarity for Transfer in Re-

inforcement Learning,” in Workshops at the Twenty-Eighth AAAI Conference

on Artificial Intelligence, 2014.

58

[39] I. Sutskever, G. E. Hinton, and G. W. Taylor, “The Recurrent Temporal Re-

stricted Boltzmann Machine,” in Advances in neural information processing

systems, pp. 1601–1608, 2009.

[40] J. Song, Y. Gao, H. Wang, and B. An, “Measuring the Distance Between Finite

Markov Decision Processes,” in Proceedings of the 2016 international conference

on autonomous agents & multiagent systems, pp. 468–476, 2016.

[41] J. Henrikson, “Completeness and Total Boundedness of the Hausdorff Metric,”

MIT Undergraduate Journal of Mathematics, vol. 1, pp. 69–80, 1999.

[42] A. Narayan and T. Y. Leong, “Effects of Task Similarity on Policy Transfer

with Selective Exploration in Reinforcement Learning,” in Proceedings of the

18th International Conference on Autonomous Agents and MultiAgent Systems,

pp. 2132–2134, International Foundation for Autonomous Agents and Multia-

gent Systems, 2019.

[43] T. G. Dietterich, “Hierarchical reinforcement learning with the maxq value func-

tion decomposition,” Journal of artificial intelligence research, vol. 13, pp. 227–

303, 2000.

[44] H. Wang, S. Dong, and L. Shao, “Measuring Structural Similarities in Finite

MDPs,” in IJCAI, pp. 3684–3690, 2019.

[45] M. Wan, T. Gangwani, and J. Peng, “Mutual information based knowl-

edge transfer under state-action dimension mismatch,” arXiv preprint

arXiv:2006.07041, 2020.

[46] E. Parisotto, J. L. Ba, and R. Salakhutdinov, “Actor-Mimic: Deep Multitask

and Transfer Reinforcement Learning,” arXiv preprint arXiv:1511.06342, 2015.

[47] A. A. Rusu, S. G. Colmenarejo, C. Gulcehre, G. Desjardins, J. Kirkpatrick,

R. Pascanu, V. Mnih, K. Kavukcuoglu, and R. Hadsell, “Policy Distillation,”

2015.

[48] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling, “The Arcade Learning

Environment: An Evaluation Platform for General Agents,” Journal of Artifi-

cial Intelligence Research, vol. 47, pp. 253–279, 2013.

59

[49] Z. Yang, K. E. Merrick, H. A. Abbass, and L. Jin, “Multi-Task Deep Rein-

forcement Learning for Continuous Action Control,” in IJCAI, pp. 3301–3307,

2017.

[50] M. A. Birck, U. B. Correa, P. Ballester, V. O. Andersson, and R. M. Araujo,

“Multi-Task Reinforcement Learning: An Hybrid A3C Domain Approach,”

2017.

[51] Y. Teh, V. Bapst, W. M. Czarnecki, J. Quan, J. Kirkpatrick, R. Hadsell,

N. Heess, and R. Pascanu, “Distral: Robust Multitask Reinforcement Learn-

ing,” in Advances in Neural Information Processing Systems, pp. 4496–4506,

2017.

[52] M. Jaderberg, V. Dalibard, S. Osindero, W. M. Czarnecki, J. Donahue,

A. Razavi, O. Vinyals, T. Green, I. Dunning, K. Simonyan, et al., “Population

Based Training of Neural Networks,” arXiv preprint arXiv:1711.09846, 2017.

[53] A. A. Rusu, N. C. Rabinowitz, G. Desjardins, H. Soyer, J. Kirkpatrick,

K. Kavukcuoglu, R. Pascanu, and R. Hadsell, “Progressive Neural Networks,”

arXiv preprint arXiv:1606.04671, 2016.

[54] M. Hessel, H. Soyer, L. Espeholt, W. Czarnecki, S. Schmitt, and H. van Hasselt,

“Multi-Task Deep Reinforcement Learning with PopArt,” in Proceedings of the

AAAI Conference on Artificial Intelligence, vol. 33, pp. 3796–3803, 2019.

[55] C. Fernando, D. Banarse, C. Blundell, Y. Zwols, D. Ha, A. A. Rusu, A. Pritzel,

and D. Wierstra, “Pathnet: Evolution Channels Gradient Descent in Super

Neural Networks,” arXiv preprint arXiv:1701.08734, 2017.

[56] M. Jaderberg, V. Mnih, W. M. Czarnecki, T. Schaul, J. Z. Leibo, D. Silver,

and K. Kavukcuoglu, “Reinforcement Learning with Unsupervised Auxiliary

Tasks,” arXiv preprint arXiv:1611.05397, 2016.

[57] C. Tessler, S. Givony, T. Zahavy, D. J. Mankowitz, and S. Mannor, “A Deep

Hierarchical Approach to Lifelong Learning in Minecraft,” in Thirty-First AAAI

Conference on Artificial Intelligence, 2017.

[58] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins, A. A.

Rusu, K. Milan, J. Quan, T. Ramalho, A. Grabska-Barwinska, et al., “Over-

60

coming catastrophic forgetting in neural networks,” Proceedings of the national

academy of sciences, vol. 114, no. 13, pp. 3521–3526, 2017.

[59] L. Deng, “The MNIST Database of Handwritten Digit Images for Machine

Learning Research [Best of the Web],” IEEE Signal Processing Magazine,

vol. 29, no. 6, pp. 141–142, 2012.

[60] D. Isele and A. Cosgun, “Selective Experience Replay for Lifelong Learning,”

arXiv preprint arXiv:1802.10269, 2018.

[61] J. Schwarz, J. Luketina, W. M. Czarnecki, A. Grabska-Barwinska, Y. W. Teh,

R. Pascanu, and R. Hadsell, “Progress & Compress: A Scalable Framework for

Continual Learning,” arXiv preprint arXiv:1805.06370, 2018.

[62] H. B. Ammar, E. Eaton, P. Ruvolo, and M. Taylor, “Online Multi-Task Learn-

ing for Policy Gradient Methods,” in International conference on machine learn-

ing, pp. 1206–1214, 2014.

[63] I.-J. Liu, J. Peng, and A. G. Schwing, “Knowledge Flow: Improve Upon Your

Teachers,” arXiv preprint arXiv:1904.05878, 2019.

[64] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for model-based

control,” in 2012 IEEE/RSJ International Conference on Intelligent Robots and

Systems, pp. 5026–5033, IEEE, 2012.

[65] E. Lecarpentier, D. Abel, K. Asadi, Y. Jinnai, E. Rachelson, and M. L. Littman,

“Lipschitz Lifelong Reinforcement Learning,” arXiv preprint arXiv:2001.05411,

2020.

[66] D. Abel, Y. Jinnai, S. Y. Guo, G. Konidaris, and M. Littman, “Policy and Value

Transfer in Lifelong Reinforcement Learning,” in International Conference on

Machine Learning, pp. 20–29, 2018.

[67] B. Bocsi, L. Csató, and J. Peters, “Alignment-based Transfer Learning for

Robot Models,” in The 2013 international joint conference on neural networks

(IJCNN), pp. 1–7, IEEE, 2013.

[68] A. Nagabandi, I. Clavera, S. Liu, R. S. Fearing, P. Abbeel, S. Levine, and

C. Finn, “Learning to Adapt in Dynamic, Real-World Environments Through

Meta-Reinforcement Learning,” arXiv preprint arXiv:1803.11347, 2018.

61

[69] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang,

and W. Zaremba, “OpenAI Gym,” 2016.

[70] A. W. Moore, Efficient memory-based learning for robot control. PhD thesis,

University of Cambridge, 1991.

[71] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, “High-

Dimensional Continuous Control Using Generalized Advantage Estimation,”

arXiv preprint arXiv:1506.02438, 2015.

[72] R. S. Sutton, D. Precup, and S. Singh, “Between MDPs and semi-MDPs: A

framework for temporal abstraction in reinforcement learning,” Artificial intel-

ligence, vol. 112, no. 1-2, pp. 181–211, 1999.

[73] H. B. Ammar, E. Eaton, J. M. Luna, and P. Ruvolo, “Autonomous Cross-

Domain Knowledge Transfer in Lifelong Policy Gradient Reinforcement Learn-

ing,” in Twenty-fourth international joint conference on artificial intelligence,

2015.

[74] D. Isele, M. Rostami, and E. Eaton, “Using Task Features for Zero-Shot Knowl-

edge Transfer in Lifelong Learning,” in IJCAI, pp. 1620–1626, 2016.

[75] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized Experience Re-

play,” arXiv preprint arXiv:1511.05952, 2015.

62

	Introduction
	Background
	Reinforcement Learning
	Markov Decision Processes
	Policy
	Learning Approaches

	Transfer Learning
	Multi-Task Reinforcement Learning
	Lifelong Reinforcement Learning
	Distance and Similarity Functions

	Related Work
	Task Similarity Measures
	Multi-task Reinforcement Learning
	Lifelong Reinforcement Learning
	Summary

	Research Proposal
	Motivation
	Justification
	Problem Statement
	Research Questions
	Hypotheses
	General Objective
	Specific Objectives

	Scope and Limitations
	Expected Contributions
	Methodology
	Analysis and selection of rl tasks
	Design and development of inter-task similarity measure
	Design and development of transfer learning algorithm
	Design and development of knowledge consolidating algorithm
	Design and development of lifelong learning algorithm

	Work Plan
	Publications Plan

	Preliminary Results
	Environments
	Measuring inter-task similarity
	Transferring Knowledge
	Results

	Final Remarks
	References

