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Abstract. We have developed a method that extracts all maximal fre-
quent word sequences from the documents of a collection. A sequence is
said to be frequent if it appears in more than σ documents, in which σ
is the frequency threshold given. Furthermore, a sequence is maximal, if
no other frequent sequence exists that contains this sequence. The words
of a sequence do not have to appear in text consecutively.
In this paper, we describe briefly the method for finding all maximal fre-
quent word sequences in text and then extend the method for extracting
generalized sequences from annotated texts, where each word has a set
of additional, e.g. morphological, features attached to it. We aim at dis-
covering patterns which preserve as many features as possible such that
the frequency of the pattern still exceeds the frequency threshold given.

1 Introduction

We have developed an automatic method for discovering textual patterns that
can be used as compact content descriptors of documents [1,2,3]. The patterns
have the form of a word sequence, i.e., we attempt to extract from the text a
small set of word sequences that describe the contents of the document. Word
sequences were chosen as a representation, since they have great potential to be
a rich computational representation for documents, such that, on the one hand,
feature sets for various further forms of analysis (e.g. text classification) can be
easily retrieved, but, on the other hand, also a human-readable description of
the document (e.g. a summary) can be generated from the representation.

Our discovery method extracts all the maximal frequent word sequences from
the text. A sequence is said to be frequent if it appears in more than σ documents,
in which σ is the frequency threshold given. Furthermore, a sequence is maximal,
if no other frequent sequence exists that contains this sequence. The words of
a sequence do not have to appear in text consecutively: a parameter g tells
how many other words two words in a sequence can have between them. The
parameter g usually gets values 1 − 3. For instance, if g = 2, in both of the
following two text fragments:

. . .President of the United States Bush. . .

. . .President George Bush. . .
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a sequence president bush would be found (the articles and prepositions are
not counted as words).

The ability to extract maximal sequences of any length, i.e., also very long
sequences, and the allowance of gaps between words of the sequence distinguish
our method from the other methods that could be used for extracting word
sequences from text, e.g. the work on sequential patterns by Agrawal and Srikant
[4] and the work on episodes by Mannila, Toivonen, and Verkamo [5]. The gaps
make the word sequences flexible: the usual variety in natural language can be
addressed. In addition to that long maximal sequences are very descriptive, they
are also very compact representations. If we restricted the length of the sequences
to, e.g., 8 words, and there actually were a frequent sequence of 25 words in the
collection, we would find thousands of sequences that only represent the same
knowledge as the one maximal sequence.

In this paper, we describe briefly the method for finding all maximal frequent
word sequences in text and then extend the method for extracting generalized
sequences from annotated texts, where each word has a set of additional, e.g.
morphological, features attached to it. We aim at discovering patterns which
preserve as many features as possible such that the frequency of the pattern still
exceeds the frequency threshold given.

The following application illustrates the problem. A common type of language
analysis is to create a concordance for some word, i.e., to list all the occurrences of
the word in a text corpus, with some left and right context. A human analyst can
then study the contexts and try to gather some generalized knowledge about the
use of the word. If there are many occurrences, it may not be easy to characterize
the contexts, particularly if the word has several senses. For instance, consider
the following occurrences of a word ‘right’:

Is that the right time?
...that things weren’t right between us.
Stay right here.
They had the right to strike.

In characterizing the contexts, the analyst might find out that some other
words seem to occur frequently together with the word, or that the surrounding
words belong to some class of words (e.g. nouns), or that they have a special
form (e.g. singular, accusative). We can easily obtain this kind of information
for words by using morphological analysis. A morphological analysis attaches
each word with, e.g., the base form, number, case, tense, and part of speech.
This process is rather fast with current tools. The analysis of a concordance
could be automated by discovering generalized sequences, in which the infrequent
features are removed, whereas features that appear often — and are probably
more significant for the structures studied — are preserved, e.g.:

the right ‘Noun’
be right between ‘Pronoun’
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‘Verb’ right here
the right to ‘Verb’

The paper is organized as follows. In Section 2 the method for discovering
maximal frequent word sequences is described. In Section 3 the method is ex-
tended to find generalized sequences in morphologically annotated texts. Section
4 contains some discussion.

2 Finding Maximal Frequent Word Sequences

Assume S is a set of documents, and each document consists of a sequence of
words.

Definition 1. A sequence p = a1 · · · ak is a subsequence of a sequence q if all
the items ai, 1 ≤ i ≤ k, occur in q and they occur in the same order as in p. If
a sequence p is a subsequence of a sequence q, we also say that p occurs in q.

Definition 2. A sequence p is frequent in S if p is a subsequence of at least σ
documents of S, where σ is a given frequency threshold.

Note that we only count one occurrence of a sequence in a document: several
occurrences within one document do not make the sequence more frequent.

Definition 3. A sequence p is a maximal frequent (sub)sequence in S if there
does not exist any sequence p′ in S such that p is a subsequence of p′ and p′ is
frequent in S.

The discovery process is presented in Algorithm 1. In the initial phase (steps
1–3) we collect all the ordered pairs, or 2-grams, (A, B) such that words A and
B occur in the same document in this order and the pair is frequent in the
document collection. Moreover, we restrict the distance of the words of a pair
by defining a maximal gap; in our experiments we used a maximal gap of 2,
meaning that at most 2 other words may be between the words of a pair.

The maximal frequent sequences are extracted in the discovery phase of Al-
gorithm 1 (steps 4–19), which combines bottom-up and greedy approaches. A
straightforward bottom-up approach is inefficient, since it would require as many
levels as is the length of the longest maximal frequent sequence. When long max-
imal frequent sequences exist in the collection, this can be prohibitive, since on
every level the join operation increases exponentially the number of the grams
contained in the maximal frequent sequences. Although the greedy approach
increases the workload during the first passes, the gain in efficiency is still sub-
stantial.

In the discovery phase, we take a pair and expand it by adding items to it, in a
greedy manner, until the longer sequence is no more frequent. The occurrences of
longer sequences are computed from the occurrences of pairs. All the occurrences
computed are stored, i.e., the computation for ABC may help to compute later
the frequency for ABCD . In the same way, we go through all pairs, but we
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Algorithm 1 Discovery of all maximal frequent subsequences in the document
collection.

Input: S: a set of documents, σ: a frequency threshold
Output: Max: the set of maximal frequent sequences

// Initial phase: collect all frequent pairs.
1. For all the documents d ∈ S
2. collect all the ordered pairs within d
3. G2 = all the ordered pairs that are frequent in S

// Discovery phase: build longer sequences by
// expanding and joining grams.

4. k := 2
5. Max := ∅
6. While Gk is not empty
7. For all grams g ∈ Gk

8. If g is not a subsequence of some m ∈ Max
9. If g is frequent
10. max := Expand(g)
11. Max := Max ∪max
12. If max = g
13. Remove g from Gk

14. Else
15. Remove g from Gk

16. Prune(Gk)
17. Gk+1 := Join(Gk)
18. k := k + 1
19. Return Max

only try to expand a pair if it is not already a subsequence of some maximal
sequence, which guarantees that the same maximal sequence is not discovered
several times. When all the pairs have been processed, every pair belongs to
some maximal sequence. If some pair cannot be expanded, it is itself a maximal
sequence. If we knew that every maximal sequence contains at least one unique
pair, which distinguishes the sequence from the other maximal sequence, then
one pass through the pairs would discover all the maximal sequences. As this
cannot be guaranteed, the process must be repeated iteratively with longer k-
grams.

In the expansion step (step 10) of Algorithm 1, all the possibilities to expand
have to be checked, i.e., at any point, the new item can be added to the tail,
to the front or in the middle of the sequence. If one expansion does not pro-
duce a frequent sequence, other alternatives have to be checked. The expansion
is greedy, however, since after expanding successfully it proceeds to continue
expansion, rather than considers alternatives for the expansion. The choice of
items to be inserted is restricted by the k-grams, i.e., also after expansion the
sequence is constructed from the existing k-grams.
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In the next step, we join pairs to form 3-grams, e.g., if there exist pairs AB ,
BC , and BD , we form new sequences ABC and ABD . Then we make a pass
over all these 3-grams, and, as with the pairs, we try to expand grams that are
not subsequences of the known maximal sequence and that are frequent. We
can always remove those grams that are themselves maximal sequences, since
such a gram cannot be contained in any other maximal sequence. The discovery
proceeds respectively, variating expansion and join steps, until there are no grams
left in the set of grams.

Algorithm 2 Prune.
Input: Gk: a gram set
Output: Gk: a pruned gram set

1. For each g = a1 · · · ak ∈ Gk

2. Let LMaxg = {p | p ∈ Max and a1 · · · ak−1 is a subsequence of p}
3. Let RMaxg = {p | p ∈ Max and a2 · · · ak is a subsequence of p}
4. For each p = b1 · · · bn ∈ LMaxg

5. LStrp,g = {b1 · · · bi1−1 | a1 · · · ak−1 occurs in i1 · · · ik−1 in p}
6. For each p = b1 · · · bn ∈ RMaxg

7. RStrp,g = {bik+1 · · · bn | a2 · · · ak occurs in i2 · · · ik in p}
8. LStrg = {LStrp,g | p ∈ LMaxg}
9. RStrg = {RStrp,g | p ∈ RMaxg}
10. For each s1 ∈ LStrg

11. For each s2 ∈ RStrg

12. snew = s1.g.s2

13. If snew is not a subsequence of a maximal sequence
14. For each frequent subsequence s of snew

15. If s is not a subsequence of a maximal sequence
16. Mark all grams of s
17. For each g = a1 · · · ak ∈ Gi

18. If g is not marked
19. Remove g from Gk

Often it is not necessary to wait until the length of the grams is the same
as the length of a maximal sequence, in order to remove a gram from the set of
grams. After a discovery pass over the set of grams, every gram is a subsequence
of at least one maximal sequence. Moreover, any new maximal sequence that can
be generated has to contain grams either from at least two maximal sequences or
two grams from one maximal sequence in a different order than in the existing
maximal sequence. Otherwise a new sequence would be a subsequence of an
existing maximal sequence.

This motivates the pruning phase of the algorithm, which proceeds as follows.
For every gram it is checked how the gram might join existing maximal sequence
to form new sequences. If a new candidate sequence is not a subsequence of some
existing maximal sequence, all subsequences of the candidate sequence are con-
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sidered in order to find new frequent sequences that are not contained in any
maximal sequence, remembering that if a sequence is not frequent, its superse-
quences cannot be frequent. If a frequent sequence is found, all its grams are
marked. After all grams are processed, grams that are not marked are removed
from the gram set.

3 Finding Maximal Frequent Generalized Feature
Sequences

We now move on to consider annotated documents, like in the sample collection
of four documents in Figure 1. We assume again that S is a set of documents,
but now each document consists of a sequence of feature vectors.

* Document 1
i i nom pron
saw see past v
a a sg det
red red abs a
ball ball nom n
and and nil cc
a a sg det
green green abs a
ball ball nom n
* Document 2
the the nil det
red red abs a
ball ball nom n
was be past v
small small abs a
* Document 3
the the nil det
green green abs a
ball ball nom n
was be past v
big big abs a
* Document 4
he he nom pron
saw see past v
the the nil det
balls ball nom n
as as nil adv
well well nil adv

Fig. 1. A sample document collection.
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In the sample, the first feature is an inflected word, the second is the base
form, and the fourth is the part of speech. The third feature varies based on the
part of speech of the word. For instance, ‘nom’ means nominative (nouns, pro-
nouns), ‘abs’ an absolute (adjectives; as opposite to comparatives and superla-
tives), and ‘past’ means a past tense (verbs). Some parts of speech (adverbials,
determiners) do not have any special information. Thus, the third feature has a
value ‘nil’ for them.

We model each feature vector as an ordered set of feature values. In order
to simplify the problem, though, we make some restrictions. First, we need the
following notation.

Definition 4. Let r[ui, . . . , uj ], 1 ≤ i ≤ k, i ≤ j ≤ k, be the set of occurrences
of the feature vectors u in the document collection for which {ui, . . . , uj} ⊂ u.

The constraints are the following.

– Each feature vector has k feature values, i.e. u =< u1, . . . , uk >, and the ith
value of each vector, 1 ≤ i ≤ k represents a comparable generalization level
within all the vectors.

– Dropping a feature value from the beginning of a feature vector generalizes
the feature vector. That is, r[ui, . . . , uk] ⊆ r[uj , . . . , uk], in which 1 ≤ i ≤ k,
i ≤ j ≤ k.

The second condition holds for many interesting linguistic features, like the
ones in our sample. However, this condition does not hold, if we consider at the
same time features like number, case, and gender for nouns, or tense, mood and
aspect for verbs, since these features are on the same generalization level.

Note that the second condition could not be replaced by using taxonomies.
That is, there is not necessarily an ISA relationship between feature values ui

and ui′ , i < i′ ≤ k. For instance, from a feature vector < saw, see, past, v > we
cannot deduce that all the words with a base form ‘see’ are in the ‘past’ tense.

The definitions for word sequences can be updated for the generalized case
in an obvious way.

Definition 5. A sequence p = a1 · · · ak is a g-subsequence of a sequence q =
b1 · · · bn, if there exists a sequence of feature vectors s = bj1 · · · bjk

such that bji

occurs before bji+1 in q, 1 ≤ i ≤ k, and ai ⊆ bji
for each i.

Definition 6. A sequence p is g-frequent in S if p is a g-subsequence of at least
σ documents of S, where σ is a given frequency threshold.

Definition 7. A sequence p is a maximal g-frequent (sub)sequence in S if there
does not exist any sequence p′ in S such that p is a g-subsequence of p′ and p′

is g-frequent in S.

We can apply Algorithm 1 for the generalized case by modifying the initial
phase. In the initial phase, all the frequent ordered pairs are collected. In Algo-
rithm 1, two words that have at most g other words between them are collected,
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the frequencies of pairs are counted, and the frequent pairs are selected. The
main difference, when we consider generalized sequences, is that, even if two
feature vectors u and v that occur close enough may not be frequent in the col-
lection, a pair (u′, v′), where u′ ⊆ u and v′ ⊆ v, may be. Hence, the initial phase
of Algorithm 1 has to be enhanced by discovering which subsets of the feature
vectors form frequent pairs.

The straightforward way would be to collect for each pair of feature vectors
(< u1, . . . , un >, < v1, . . . , vm >) all the pairs (< ui, . . . , un >, < vj , . . . , vm >),
in which 1 ≤ i ≤ n and 1 ≤ j ≤ m and count the frequencies. There are, how-
ever, some possibilities for optimization. The Lemma 9 below expresses a similar
constraint as the ‘Apriori trick’, which is used in the discovery of association
rules [6].

Lemma 1. If a feature value f does not occur in at least σ documents, any
sequence of feature vectors containing f is not g-frequent.

The following lemma uses the knowledge of the features, as given in the
conditions above.

Lemma 2. Let u =< u1, . . . , un > and v =< v1, . . . , vm > be feature vectors.
If a pair (< ui, . . . , un >, < vj , . . . , vm >) is not g-frequent, also any pair (<
ui′ , . . . , ui, . . . , un >, < vj′ , . . . , vj , . . . , vm >), in which 1 ≤ i′ ≤ i and 1 ≤ j′ ≤
j, is not g-frequent.

Based on the lemmas above, in the initial phase, the infrequent feature values
are pruned from the feature vectors. Moreover, for each ordered pair of feature
vectors, we can first collect all the pairs of suffixes. The frequencies of the pairs
of suffixes can then be used to guide the creation of combinations in the following
way.

If a pair of suffixes (< ui, . . . , un >, < vj , . . . , vm >) is frequent, in which
1 ≤ i ≤ n and 1 ≤ j ≤ m, all the pairs (< ui′′ , . . . , un >, < vj′′ , . . . , vm >), in
which i ≤ i′′ ≤ n and j ≤ j′′ ≤ m, are frequent and, hence, are added to the
set of 2-grams. Moreover, the pairs (< ui, . . . , un >, < vj′′′ , . . . , vm >), in which
1 ≤ i ≤ n and j ≤ j′′′ ≤ m, and the pairs (< ui′′′ , . . . , un >, < vj , . . . , vm >),
in which i ≤ i′′′ ≤ n and 1 ≤ j ≤ m, may contain frequent pairs. Hence, these
pairs have to be collected and the frequent ones are added to the set of 2-grams.

All the g-frequent pairs are given as input to the discovery phase, as described
by Algorithm 1. This means that one location in text may contribute to several
pairs in the set, as we can see in the following example. If we assume that the
frequency threshold is 2 and the pairs ”I saw” and ”he saw” occur in the text,
the following pairs are g-frequent.

<nom, pron> <saw, see, past, v>
<nom, pron> <see, past, v>
<nom, pron> <past, v>
<nom, pron> <v>
<nom> <saw, see, past, v>
<nom> <see, past, v>



188 H. Ahonen-Myka

<nom> <past, v>
<nom> <v>
<pron> <saw, see, past, v>
<pron> <see, past, v>
<pron> <past, v>
<pron> <v>

All the subsets are necessary, since in longer sequences more general feature
vectors may be needed to make a sequence frequent. Each subset is indexed by
a unique integer, which is passed as input to the discovery phase. Hence the
discovery phase cannot use the knowledge that some subset is a generalization
of some others. After the discovery phase (as in Algorithm 1), the resulting
sequences are not maximal g-sequences, but for each g-frequent sequence also
all the more general variations of the sequence are returned. For instance, a
sequence

<nom, pron> <saw, see, past, v> <det> <ball, nom, n>

also produces 23 other sequences, e.g.

<pron> <saw, see, past, v> <det> <nom, n>
<pron> <v> <det> <n>

As the maximal g-frequent sequences are a compact representation, the more
general sequences should be pruned away from the result. Compared to the
discovery phase, this pruning can be done fast and efficiently. Moreover, it is
rather easy to find all the more general and shorter subsequences that occur more
frequently. In our sample document collection (Fig. 1), the following maximal
generalized frequent sequences can be found. All of them have a frequency 2,
i.e., they occur in two documents.

<det> <green, green, abs, a> <ball, ball, nom, n>

<det> <red, red, abs, a> <ball, ball, nom, n> <abs, a>

<the, the, nil, det> <abs, a> <ball, ball, nom, n> <was, be, past, v> <abs,a>

<nom, pron> <saw, see, past, v> <det> <ball, nom, n>

4 Discussion

Both the basic method for finding maximal frequent word sequences and the
extension for finding generalized sequences have been implemented in Perl. The
basic method has been tested using, e.g., the Reuters-21578 news collection, and
the method is designed — and further developed — to cope with large document
collections. It is not clear, however, how far we can come with the extension. At
the moment, it has been tested with a toy example only, and analysing any larger
collection would probably need development of more efficient data structures.
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The special characteristics of the linguistic features includes the large varia-
tion of the frequency of the features. It seems to be that in any text collection,
however large, half of the words occur only once, while features like the part of
speech form closed sets with a rather small number of distinct values. Hence,
discovering patterns based on the frequency, treating all the features uniformly,
may not be adequate.
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