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Abstract - We describe an application of 1-Dimensional 
Kohonen Networks to the classification of color 2D images 
which has been evaluated in Popocatépetl Volcano’s images. 

The Popocatépetl, located in the limits of the State of Puebla in 
México, is active and under monitoring since 1997. We 
address the question if our application of the Kohonen 
Network classifies according to the total intensity color of an 
image or, if it classifies according to the connectivity, i.e. the 
topology, between the pixels that compose an image. To 
support the hypothesis that our system classifies according to 
the topology of the pixels in the images, we will present two 
approaches based a) in the evaluation of the classification 

given by the network when the pixels in the images are 
permuted; and, b) when an additional metric to the Euclidean 
distance is introduced. 

Index Terms – 1-Dimensional Kohonen Networks, 

Automated Image Classification, Metrics on Euclidean Spaces, 
Non-Supervised Classification. 
 

INTRODUCTION 
 

It is well known the use of 1-Dimensional Kohonen Networks in 
non-supervised classification of data with an elevated redundancy 
degree [5]. On the other hand, non-supervised image classification 
is an important vision task where images with similar features are 
grouped in classes. Many processing tasks (description, object 
recognition or indexing, for example) are based on such 
preprocessing [9]. In this paper, we consider these ideas in order 

to apply Kohonen Networks to provide solutions to automatic 
classification of images. The paper is organized as follows: 
Section I describes basic concepts of 1-Dimensional Kohonen 
Networks, Section II describes some procedures to take in account 
in order to avoid training bias, Section III describes procedures 
and applications related to the classification of 2D color images 
through Kohonen networks  results and discussion, Section IV 
presents conclusions and future work. 
 

I. FUNDAMENTALS OF THE 1-DIMENSIONAL KOHONEN 

NETWORKS 
 

A. Classifying Points Embedded in a n-Dimensional Space 

Through a 1-Dimensional Kohonen Network 
 

A Kohonen Network with two layers, where the first one 
corresponds to n input neurons and the second corresponds to m 
output neurons ([4], [8]) can be used to classify points embedded 
in a n-dimensional space in m categories. The input points have 
the form (x1, …, xi, …, xn). The total number of connections of 
neurons in the input layer to neurons in the output layer will be  

n × m (See Figure 1). Each neuron j, 1 ≤ j ≤ m, in the output layer, 

will have associated a n-dimensional weight vector which descri-
bes a representation of class Cj. All these vectors have the form: 

Output neuron 1: W1 = (w1,1, …, w1,n) 

M  

Output neuron m: Wj = (wj,1, …, wj,n) 
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Fig 1. Topology of a 1-dimensional Kohonen Network [5]. 

 

B. Training the 1-dimensional Kohonen Network 
 

A set of training points are presented to the network T times. 

According to [5], all values of weight vectors can be initialized 
with random values. In that neuron whose weights vector Wj,  

1 ≤ j ≤ m, is the most similar to the input point Pk is chosen as 

winner neuron, for each t, 0 < t < T. Such selection is based on the 
squared Euclidean distance. The selected neuron will be that with 
the minimal distance between its weight vector and the input  
point Pk: 
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Once the j-th winner neuron in the t-th presentation has been 
identified, its weights are updated according to: 
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When the T presentations have been achieved, the final values of 
the weights vectors correspond to the coordinates of the ‘gravity 
centers’ of the points, or clusters of the m classes. 
 

II. REDISTRIBUTION IN THE n-DIMENSIONAL SPACE OF 

KOHONEN NETWORK’S TRAINING SET 
 

To avoid training bias, the training data used for the experiments 
presented here needs to be redistributed. Consider a set of points 

distributed in a 2D subspace defined by rectangle [0,1] × [0,1]. 

Moreover, this set of points is embedded in a sub-region deli-

mited, for example, by rectangle [0.3,0.6] × [0.3,0.6] (Figure 2).  
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Fig 2. A set of points embedded in [0.3,0.6] × [0.3,0.6] ⊂ [0,1] × [0,1]. 

 

Because the points are not uniformly distributed in the 2D space, 
we can expect important repercussions during their classification 
process. For example, for a number of classes, we can obtain some 

clusters that coincide with other clusters or classes without 
associated training points. Next we present a simple methodology 
to distribute uniformly the points of a training set for the general 
case of a n-dimensional space. 
 

Consider a unit n-dimensional hypercube H where points are 
embedded in their corresponding minimal orthogonal bounding 

hyper-box h such that h ⊆ H. The point with the minimal 

coordinates ),,...,,(
minminminmin 121min nn xxxxP −=  and the point with the 

maximal coordinates ),,...,,(
maxmaxmaxmax 121max nn xxxxP −=  will describe 

the main diagonal of h. We proceed to apply to each point 
),,...,,( 121 nn xxxxP −=  in the training set, including Pmin and Pmax, 

the geometric transformation of translation given by: 

min
' 1 (3)i i ix x x i n= − ≤ ≤  

 

By this way, we will get a new hyper-box h’ and the points that 
describe the main diagonal of h’ will be )0,...,0('min 321

n

P =  and 

)',',...,','('
maxmaxmaxmax 121max nn xxxxP −= . See Figure 3.  

 
 

 
a) 

 
b) 

Fig. 3. a) A training set and its minimal orthogonal bounding hyper-box h.  

b) Translation of h and the training points such that P’min is the origin of 

the 2D space. 
 

The second part of the distribution procedure consists in the 
extension of the current hyper-box h’ to the whole n-dimensional 

hypercube H. The scaling of a point ),,...,,( 121 nn xxxxP −=  is given 

by multiplying their coordinates by factors S1, S2, …, Sn each one 
related with x1, x2, …, xn respectively in order to produce the new 
scaled coordinates x1’, x2’, …, xn’ [6]. Because the goal is to 
extend the bounding hyper-box h’ and the translated training 
points to the whole unit hypercube H, by scaling the point 

)',',...,','('
maxmaxmaxmax 121max nn xxxxP −=  we must obtain the new point 

{)1,...,1(
n

. That is to say, we define the set of n equations: 

max
1 ' 1 (4)

i i
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Starting from these equations we obtain the scaling factors to 
apply to all points included in the bounding hyper-box h’ (see 
Figure 4): 
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a) 

 
b) 

Fig. 4. a) Applying to the translated training set scaling factors such that it 

will be (b) redistributed to the whole 2D space.  
 

Finally, each one of the coordinates in the original points of the 
training set must be transformed in order to be redistributed in the 
whole unit n-dimensional hypercube [0,1]n through: 
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III. IMAGE CLASSIFICATION THROUGH 1-DIMENSIONAL 

KOHONEN NETWORKS 
 

A. Representing Images through Vectors in ℜn
 

 

Let m1 (rows) and m2 (columns) be the dimensions of a  

two-dimensional image. Let n = m1 ⋅ m2. Each pixel in the image 

has associated a 3-dimensional point (xi, yi, RGBi) such that RGBi 

∈ [0, 16777216], 1 ≤ i ≤ n, where RGBi is the color value 

associated to the i-th pixel (assuming that the color of pixels are 
based in the color model RGB). The color values of the pixels will 
be normalized such that they will be in [0.0, 1.0] through the 

transformation: 

_ (7)
16777216

i
i

RGB
normalized RGB =  

 

Basically, we will define a vector in the n-Dimensional space by 
concatenating the m1 rows in the image considering for each pixel 
its normalized color RGB value.  By this way each image is now 
associated to a vector in the n-dimensional Euclidean space. Due 

to the color values normalization the scalar values in such vectors 
will be in [0,1]. By this way, a set of training images to be applied 
in a Kohonen Network will be embedded in a unit  
n-Dimensional hypercube once they have been transformed to 
their respective associated vectors.  
 

B. Classifications Results 
 

Our training set contains 148 images selected from CENAPRED 
[3] files. These images represent some of the Popocatépetl volcano 
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fumaroles during the year 2003. The volcano is located in the 

limits of Puebla state in México; and it is active and under 
monitoring since 1997. The selected images have an original 

resolution of 640×480 pixels and 24-bits color under format 

compression JPG. 
 

We present the results obtained by three 1-Dimensional Kohonen 
Networks with different topologies (in each case, we applied a 
scaling to the 148 original images): 
 

• Network  

Topology τ0: 

o Images Resolution: 112×64 

o Input Neurons: n = 112×64 = 7,168 

o Output Neurons (classes): m = 20 
o Presentations: T = 10 

• Network 

Topology τ1: 

o Images Resolution: 56×32 

o Input Neurons: n = 56×32 = 1,792 

o Output Neurons (classes): m = 30 
o Presentations: T = 1,000 

• Network  

Topology τ2: 

o Images Resolution: 260×180 

o Input Neurons: n = 260×180 = 46800 

o Output Neurons (classes): m = 25 
o Presentations: T = 500 

 

The set of 148 training points (images) were presented a number 
of times according to the corresponding topologies. The training 
procedures were applied as described at Section II. All the weights 
vectors were initialized to 0.5.  
 

Figure 5 shows the classification of the training images using the 

three proposed topologies. The figures show the distribution of the 
148 training images in each one of the classes.  
 

C. Intensity Based Classification Vs. Classification Based in  

the Topology of Pixels in the Images 
 

One of the problems to consider is related with the question if our 
implementations  of  the  Kohonen  Networks classify according 
to  the  total  intensity  color  of  an  image  or well, if they classify 
according to the connectivity, i.e. the topology, between the pixels 
that compose an image. In order to give arguments that support 

our hypothesis that our procedures get the classification according 
to the topology of the pixels in the images, we have developed two 
approaches: 

• An approach (section III.C.1) based in a classification of the 

training images but when their pixels are attached to a specific 
permutation. If our implementation classifies by color intensity, 
then we can expect a distribution of the images in the classes 
which would be similar to the distributions presented before 
permutation, as in Figure 5. 

• An approach (section III.C.2) based in the distances between 

the weights vectors associated to each output neuron. The 
clusters themselves are 2D color images if we apply in an 
inverse way the procedure described in section III.A. In this 

approach we will use an additional metric that guarantee the 
comparison of images only by their color intensity. According 
to the Kohonen Network training algorithm, the clusters 
(classes representatives) have been distributed uniformly in an 
unit n-Dimensional hypercube. Such distribution implies, in an 
implicit way, the fact that each cluster has itself specific 
characteristics that allow distinguishing its respective class 
among other classes. By applying the new proposed metric, we 

can expect that the distances provided by it indicate us a 
considerable proximity between clusters, hence, they have 
similar color intensities. Moreover, this last result should 

establish a considerable distinct distribution respect to the 

distribution indicated by the Euclidean metric. In the case that  
Kohonen Network classifies only by color intensity, then the 
clusters distribution reported by both metrics should be similar.  

 

a)  

b)  

c)  
Fig. 5. Classification of the 148 training images according to Network 

Topology a) τ0, b) τ1 and c) τ2. 
 

C.1 Permutation of Pixels in the Training Images 
 

(See Table 1 for examples of the permutations we describe here.) 

• P1: Random permutation of all the pixels in the image. 

• P2: Division of the image in 25 rectangular regions and random 

permutation of the pixels in each region. 

• P3: Division of the image in 25 rectangular regions and random 

permutation of such regions. 

• P4: Division of the image in 25 rectangular regions, random 

permutation of the pixels in each region and random 
permutation of the regions. 

 

Table 1. Permutations of pixels applied to the training images.  

Original Image Permutation P1 Permutation P2 

 
 

  
Permutation P3 Permutation P4  
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Consider to network topology τ1. In the cases of permutations P1, 

P3 and P4, we can observe in their corresponding charts (Table 2) 

the  fact  that  once  the  training  process  has finished  two classes 
 

Table 2. Distribution of the training images in the classes of network topology τ1. 
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grouped the 80% of training images. The results using permutation 

τ2 differs from others by the property that the 80% of training 
images are grouped in seven classes with more than 5 images each 

one. From an informal point of view, permutation P2 can be 
considered visually as a permutation that preserved, compared 
with the remaining permutations, the connectivity of the pixels 
respect to the original training images. This is because if we 
increment the number of rectangular regions (more regions than 
those in permutation P2) and permute its corresponding pixels, as 
the number of regions increase the corresponding image will 
approximate to the original image. In fact, the original images can 

be seen as images divided in regions with only one pixel each one; 
obviously, the permutation of the pixel in each region leave to the 
image in its original state. 
 

C.2 Analysis Based in an Additional Metric over ℜ+ 
 

Definition 1 ([1] & [2]): Let x, y ∈ ℜ+. Let ρ be the function 

described as 

1

( , ) 1 (8)

0

x
if x y

y

y
x y if y x

x

if x y

ρ


− <




= − <


=



 

 

Such function is in fact a metric over ℜ+. See [7] for more details. 

 
Let I be an image. We know that each one of its pixels pi will have 

associated a vector (xi, yi, RGBi), i ∈[1,n], RGBi ∈ [0, 16777216]. 

Lets assume that the dimensions of each pixel are equal to one. 
We will define to the Total Intensity of I, denoted by T(I), as 
follows: 

1

( ) (9)
n

i

i

T I RGB
=

=∑  

Let IA and IB be two images with the same geometrical 
dimensions. Let T(IA) and T(IB) be their corresponding Total 

Intensities. Because T(IA), T(IB) ∈ ℜ+ we can determine its 

distance through metric ρ. 

Now, we will define the similarity between images IA and IB 

according to the value of ρ(T(IA), T(IB)). Let 0 ≤ ε < 1 be an 

arbitrary value such that we establish 

IA is similar to IB ⇔ ρ(T(IA), T(IB)) < ε 
 

A classification based in metric ρ will not take in account the 

connectivity between the pixels in the images. For example, for 

the images presented in Figure 6 we have that ρ(T(IA), T(IB)) = 0. 
 

IA  IB  
Fig. 6. An example where ρ(T(IA), T(IB)) = 0.  

IB is image IA applying permutation P3. 
 

The Kohonen Network we implemented uses as part of its 
processes of training and classification the Euclidean metric over 

ℜn. Because each one of the representatives of the classes 

(clusters) in the network are themselves vectors in ℜn, then we can 

determine the Euclidean distance between any pair of clusters.  
 

We define a false color map that represents the distribution of the 
clusters in the subspace [0, 1]n. The maximal Euclidean distance 

between any two clusters will be nd =max  and the minimal 

distance will be dmin = 0. Every Euclidean distance between two 
clusters will be associated with a color in the grayscale through 

256
max

⋅
d

d . By this way if d = 0 then it will have associated the 

black color while if d = dmax then it will have associated the white 
color. 
 

Moreover, we will define a false color map that represent the 
distances between the clusters in the subspace [0, 1]n under our 

metric ρ. For any clusters a and b, ρ(a, b) will be associated with 

the grayscale through ρ(a, b)⋅256. If ρ(a, b) = 0 then a = b and 

therefore such distance will be represented through the black 

color. On the other hand, ρ(a, b)⋅256 → 256 while ρ(a, b) → 1. 
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Consider Network Topology τ0. The false color maps associated to 

the distances between the clusters under the Euclidean metric and 

ρ metric are presented in Table 3. It can be observed in the map 

under metric ρ that the 47% of the distances between clusters are 

less than 0.20. This indicates that according this metric an 

important number of clusters are similar with ε = 0.20 (the mean 

distance in this metric is 0.2542 with variance 0.0373 and standard 

deviation 0.1933). In the other hand, for topology τ0, n = 7168, 

hence, dmax= 7168  = 84.66. Analogously we consider the number 

of distances whose value is less than the 20% of dmax. By this way, 
the map based in the Euclidean metric reports that only the 19% of 
the distances between clusters are lower than 16.9328 (the mean 
distance under Euclidean metric was 24.2119 with variance 
94.7531 and standard deviation 9.7341). In conclusion, both 
metrics report different distributions of the clusters which make 
visible the differences between a classification based in topology 
of pixels, by the Kohonen Network, and a classification based in 

color intensities of the images. 
 

IV. CONCLUSIONS 
According to the results provided by the approaches discussed in 
sections III.C.1 and III.C.2 we can infer that image classification 
based in a 1-Dimensional Kohonen Network groups an image set 

according to features based in the connectivity between pixels, 
i.e., their topology. As part of future work, we will analyze in a 
detailed way the images contained in each one of the resulting 
classes and their respective neighborhoods in order to determine 
some features shared by these images. By identifying these 
features, in our images domain, we will analyze the possible 
application of our classifications in the prediction of events of 
Popocatépetl volcano. Another objective, with respect to future 

work, considers the comparison of non-supervised classification, 
with other techniques that allow the automated retrieval and 
classification of images such as Case Based Reasoning (CBR) and 
Image Based Reasoning (IBR). 
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Table 3. False Color Maps that show the distances between clusters in Network Topology τ0. 

Distances according to Euclidean Metric Distances according to ρ Metric  



 

Published at Proc. of the International Seminar on Computational Intelligence, 2006. IEEE-CIS Chapter 

México. Tijuana, B. C. October 2006 

 

 
 

 

In both maps: 

 Maximum Distance 

 Minimum Distance 
 
 

 


