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Abstract. Several methods have been presented in the literature that
successfully used SIFT features for object identification, as they are rea-
sonably invariant to translation, rotation, scale, illumination and partial
occlusion. However, they have poor performance for classification tasks.
In this work, SIFT features are used to solve problems of object class
recognition in images using a two-step process. In its first step, the pro-
posed method performs clustering on the extracted features in order to
characterize the appearance of classes. Then, in the classification step, it
uses a three layer Bayesian network for object class recognition. Experi-
ments show quantitatively that clusters of SIFT features are suitable to
represent classes of objects. The main contributions of this paper are the
introduction of a Bayesian network approach in the classification step to
improve performance in an object class recognition task, and a detailed
experimentation that shows robustness to changes in illumination, scale,
rotation and partial occlusion.
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1 Introduction

In the last few years, local features have proven to be very effective in finding
distinctive features between different views of a scene. The traditional idea of
these methods is to first identify structures or significant points in the image
and to obtain a discriminant description of these structures from its surround-
ings, which is then used for comparison using a similarity measure between these
descriptors. A keypoint detector is designed to find the same point in different im-
ages even if the point is in different locations and scales. Different methods have
been proposed in the literature. A study and comparison of these approaches is
presented in [11].

One of the most popular and widely used local approach is the SIFT (Scale
Invariant Features Transform) method, proposed by Lowe [7]. The features ex-
tracted by SIFT are largely invariant to scale, rotation, illumination changes,
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noise and small changes in viewing direction. The SIFT descriptors have shown
better results than other local descriptors [10].

The SIFT and local features have been mainly used for the identification
of particular objects within a scene. For instance, a particular book is given
to a system, which extracts its SIFT features and uses them to recognize that
particular book. However, such features cannot be used to recognize another
book or books in general on the scene.

In this work we use SIFT features to recognize object classes (e.g. books) in
order to provide robustness to changes in scale, rotation, illumination and partial
occlusion. The proposed method, in the training phase, performs clustering on
the features extracted from the training set. Each feature in each cluster is
labeled with its corresponding class in order to characterize the appearance of
object classes. In the classification step, for a new image, the SIFT features are
extracted, and for each feature the cluster from the learned model to which it
belongs is identified. Information from the identified clusters is then used to
find the most probable class. To represent this idea, we introduce the use of
a three layer Bayesian network. Three experiments were conducted to test the
performance of the proposed method. These experiments showed quantitatively
that the use of SIF'T local features, clustering and Bayesian networks are suitable
to represent and recognize object classes. They also showed the invariance of the
method in the presence of changes in illumination, scale, rotation and partial
occlusion.

The main contributions of this paper are the following. Firstly, we introduce
a Bayesian network approach in the classification step to improve performance
on this stage. Secondly, we show that clustering over local features provides
robustness to changes in illumination, scale, rotation and partial occlusion. We
also show that this kind of approach outperforms a straightforward classification
method using SIFT features. These last two issues are mentioned in the literature
but there is no detailed experimental evidence to support them.

2 Related Work

Most objects class recognition methods characterize objects by their global ap-
pearance, usually of the entire image. These methods are not robust to occlusion
or variations such as rotation or scale. Moreover, these methods are only appli-
cable to rigid objects. Local features have become very popular to give solution
to the limitations of these methods in object detection and recognition.

For object class recognition, many methods use clustering as an intermedi-
ate level of representation [1][6]. Due to the robustness of local features and the
good results of clustering in objects classification, several authors have recently
been investigating the use of clustering for object class recognition using local
features based approaches. In [2], for invariant region detection, the authors use
the Harris-Laplace [9] and the Kadir and Brady [5] detector. These regions are
described using the SIFT descriptor [7]. In their work, Dorké and Schmid per-
form clustering of descriptors to characterize class appearance. Then, they build
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classifiers of smaller parts of objects from the clusters formed. By discarding
several of these clusters they kept only the most discriminative ones.

In [8], Mikolajczyk et al. evaluate the performance of various methods of
local features in the object class recognition task. The invariant region detec-
tors evaluated were Harris-Laplace, SIFT, Hessian-Laplace, and MSER. The
evaluated features descriptors were SIFT, GLOH, SIFT-PCA, Moments, and
Cross-Correlation. In their paper the authors evaluate several detector-descriptor
combinations. Clustering is also performed on the descriptors to characterize the
appearance of classes. To classify a new sample, the extracted descriptors are
matched with the clusters obtained and a threshold determines the class mem-
bership.

In these works it is mentioned that their proposed methods have invariance
to occlusion, changes in illumination, rotation and scale. However, there is no
experimentation for the above, neither do they express how robust these methods
are. It is also assumed that their proposed methods outperform a straightforward
classification method using local features, but no evidence of this is given. In
this paper, we analyze these facts through a set of detailed experiments over our
proposed method.

The method proposed in this work also performs clustering on the descriptors
of the features extracted from training images. The main difference with the
previous mentioned methods is the use of a Bayesian network in the classification
stage in order to improve performance on this stage. A deeper experimentation
to measure the behavior against changes in illumination, scale, viewpoint and
partial occlusion is presented as well. It is also shown how the use of clustering
and Bayesian networks outperforms the traditional use of local features in object
class recognition tasks.

3 SIFT Features Descriptors

SIFT is one the most widely used local approaches. It finds local structures that
are present in different views of the image. It also provides a description of these
structures reasonably invariant to image variations such as translation, rotation,
scale, illumination and affine transformations. Moreover, several studies have
shown that SIFT descriptor performs better than others.

The first stages of the SIFT algorithm find the coordinates of keypoints in
a certain scale and assign an orientation to each one. The results of these steps
guarantee invariance to image location, scale and rotation. Then, a descriptor
is computed for each keypoint. This descriptor must be highly distinctive and
partially robust to other variations such as illumination and 3D viewpoint.

To create the descriptor, Lowe proposed an array of 4 x 4 histograms of
8 bins [7]. These histograms are calculated from the values of orientation and
magnitude of the gradient in a region of 16 x 16 pixels around the point so that
each histogram is formed from a subregion of 4 x 4. The descriptor vector is
a result of the concatenation of these histograms. Since there are 4 x 4 = 16
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histograms of 8 bins each, the resulting vector is of size 128. This vector is
normalized in order to achieve invariance to illumination changes.

The distinctiveness of these descriptors allows us to use a simple algorithm
to compare the collected set of feature vectors from one image to another in
order to find correspondences between feature points in each image. These cor-
respondences are adequate to identify particular objects in the image, but not to
identify object classes. With this purpose in mind, in this paper, SIFT feature
descriptors are clustered to characterize object classes and are incorporated in
a Bayesian network classifier.

4 Learning Object Classes

A model able to generalize beyond each object in the training set and that allows
us to learn a general structure of each class is desired. Moreover, learning should
be possible from a small number of samples. With this aim and in accordance
with several studies reported in the literature (mentioned in Section 2), clustering
is performed on feature descriptors extracted from the training images.
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Fig. 1. SIFT local features are extracted from the training set formed by several sample
images per class. Later, features descriptors are clustered and each feature in each
cluster is labeled with its corresponding class.

Figure 1 shows a high level diagram of the class learning method used, which
is summarized as follows:
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1. For each training image, SIFT local features are extracted.
2. Then, clustering is performed over the features descriptors.
3. Finally, each descriptor in each cluster is labeled with its corresponding class.

Clusters are expected to have high accuracy, i.e. each cluster is representative
of only one class. In practice, this not always occurs, so, there could be clusters
that are shared by several classes. Additional methods will be needed in the
classification stage to solve these ambiguities.

4.1 SIFT Features Clustering

To build clusters of descriptors, the agglomerative hierarchical clustering method
proposed by [4] is used. Unlike K-means or EM-clustering, this algorithm does
not depend on initialization. Furthermore, it has been reported superior to K-
means [3].

Given F features descriptors extracted from all the images in the training set,
the clustering is initialized with F' clusters, each one containing one descriptor
only. In each iteration the two clusters with the highest cohesion are merged.

The similarity between any two clusters can be measured in several ways, the
most common are single linkage, complete linkage and average linkage. In this
paper, average linkage is used, which is defined as the average distance of every
element in a cluster to any other element in other cluster:

1 M N
D(kal) = W Z Zd(kmvln)a (1)
n=1

m=1

where M and N are the number of descriptors in the clusters k and [ respectively.

Agglomerative clustering produces a hierarchy of associations of clusters until
the cut off criterion halts the process. Therefore, after each iteration, a new
cluster is obtained from the pair of clusters with the highest similarity above a
given value. This value is used as cut off criterion.

5 Recognizing Object Classes

Given a new sample image, classification is performed by first extracting the
SIFT features from the input image. Then, for each of these features, a cluster
is associated from the learned model and finally, from this instantiation of the
model, the class of the input object is determined. Figure 2 shows a layout of
the proposed method.

This idea can be represented as a three layer Bayesian network (BN). The
graphical representation of this BN is shown in Figure 3. At the first layer
we have the trained object classes represented by ci,cs,...,cc where C' is the
number of classes. At the second layer, clusters obtained in the training phase
are represented by ki, ko, ..., kx where K is the number of obtained clusters.
Finally, the third layer represents the features extracted from the new object,
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Fig. 2. Classification scheme for a new image. SIFT features are extracted from this
image and for each feature the cluster from the learned model to which it belongs is
identified. The object class is the majority class in these clusters.

Fig. 3. Graphical representation of the three layer Bayesian network used to classify a
new object.

and are represented by the nodes fi, fo, ..., fr where F' is the number of features
extracted from the image.
Using this model, the classification of a new image I is performed as follows:

1. SIFT features are extracted from the input image I.

2. For each feature f extracted from I, cluster ks to which it belongs is ob-
tained. It is selected the cluster which the membership probability of the
feature f is the highest. This probability is function of the distance between
the cluster and the feature, which is normalized by the distance between the
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two most distant clusters. The same distance D defined in Equation 1 is
used:
ky = argmax P(f|k;)P(k;), where

_ D(fu kz)
maxg; D(kk, k[)

3. For each cluster ky,, ky,, ..., ks, selected in the previous step (note that more
than one feature could be in the same cluster), the probability of each class
given this evidence is obtained, this probability is extracted from the trained
model, propagating further the probability obtained in step 2.

4. Finally, the object class is the one whose sum of occurrence probabilities
given each cluster selected in step 2 is the highest:

= arg max Z P(Cilks)P(ky)
f

P(flk) =1

6 Experiments and Results

This section presents a quantitative evaluation of the proposed method and
discusses the main results obtained.

For the conducted experiments, images from the Pascal? collection were used.
This database contains 101 different classes of objects and different numbers of
images per class, the format is JPG and the average size is 300 x 300 pixels.
Each image contains only one object centered in the image.

In order to test the performance of the proposed method, a system was
trained to recognize four classes of objects (i.e. camera, dollar bill, motorcycle,
wristwatch), which were randomly selected. For training, 20 images per class
were used, also randomly selected. Example images from the training set are
shown in Figure 4.

Three experiments were conducted to evaluate the proposed method. The
goal of the first experiment is to measure the performance of the proposed
method in normal conditions (i.e. illumination, occlusion, rotation and scale
problems-free images). The second experiment compares the method proposed in
this paper with a straightforward classification method also using SIFT features.
Finally, the third experiment measures how the performance of the proposed
method behaves in the presence of partial occlusion and variation in illumina-
tion, scale and rotation in the test set.

The performance indicators used were recall, precision, true negative rate
and accuracy. The recall rate measures the proportion of actual positives which
are correctly identified as such (recall = TP/(T P+ FN)). Precision is defined as
the proportion of the true positives against all the positive results (precision =
TP/(TP + FP)). The True Negative Rate (TNR) measures the proportion of
negatives which are correctly identified (TNR = TN/(FP+TN)). The accuracy
is the proportion of true results, both true positives and true negative, in the
population (accuracy = (TP +TN)/(P + N)).

3 Available online at: “http://pascallin.ecs.soton.ac.uk/challenges/VOC/download/10lobjects.tar.gz”
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Fig. 4. Example images from the training set. The training set is composed of 20 images
for each of the 4 classes. These images were randomly selected from the database.

6.1 Experiment 1

In Experiment 1, results were obtained for 100 test images per class. These im-
ages have small variations in occlusion, scale, illumination and rotation. Images
from the training set were not in the test set. Table 1 shows the results obtained
in Experiment 1.

Table 1. Performance indicators for Experiment 1.

Recall (%)|Precision (%)|TrueNegativeRate (%)|Accuracy (%)
Camera 84.0 94.6 98.3 93.5
Dollar bill 100 89.2 96.0 95.0
Motorcycle 99.0 90.5 96.7 95.0
Wristwatch|  89.0 98.9 99.7 94.5
Average 90.7 93.3 97.6 94.5

As could be seen in Table 1, all the measures averages were over 90%, which
indicates the high performance of the proposed method.

6.2 Experiment 2

In order to evaluate the improvement introduced by the clustering of SIFT de-
scriptors on the representation of object classes and the use of a Bayesian network
in the classification phase, in this section we compare the method proposed in
this paper with a straightforward classification method also using SIFT features,
which is taken as baseline. This method is summarized as follows:

1. Extract SIFT features of each image from the training set.
2. For a new image I extract its SIFT features.
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3. This image is matched with each of the images of the training set. The
matching method used is the one proposed by Lowe in [7].

4. The class of the input image will be the one that receives the highest number
of correspondences with image I.

Table 2 shows a comparison between the results obtained by the baseline
method and the results obtained in Experiment 1. To perform this experiment,
the same training and test sets that in Experiments 1 were used.

Table 2. Comparison of Baseline and Experiment 1.

Baseline| Experiment 1
Recall (%) 68.0 90.7
Precision (%) 80.9 93.3
TrueNegativeRate (%)| 89.3 97.6
Accuracy (%) 84.0 94.5

As could be noticed in Table 2, the proposed method surpassed in each of the
performance measures to the baseline method by a wide margin. This result gives
evidence of the improvement introduced by the clustering of SIFT descriptors
on the representation of object classes and the use of a Bayesian network in the
classification phase.

6.3 Experiment 3

The aim of Experiment 3 is to test the robustness of the proposed method to
changes in illumination, occlusion, scale and rotation. For Experiment 3, 10
images that were correctly classified in Experiment 1 were randomly selected
for each class. Variations in occlusion, scale, illumination and rotation were ar-
tificially introduced to each of these images, resulting in 40 images per class.
Example images from the test set used in this experiment are shown in Figure
5.

Table 3 shows the performance results obtained in Experiment 3. As it could
be seen, the average values of performance are maintained above 95%, showing
the robustness of the proposed method to variations in illumination, occlusion,
scale and rotation.

The recall and precision measures obtained for each kind of variation intro-
duced to the test set is shown in Table 4. It could be noticed that there were no
major falls in recall and precision rates, showing the largest variations (30 %) in
the precision on the illumination changed images in the class camera.

7 Conclusions

As a result of this work, a method for recognizing object classes using SIFT fea-
tures have been developed. The proposed method performs clustering on the de-
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Fig. 5. Example images from the test set used for the Experiment 3. These images
present partial occlusion and changes in illumination, rotation and scale.

a 3¢ @R

Table 3. Performance indicators for Experiment 3.

Recall (%)|Precision (%)|TrueNegativeRate (%)|Accuracy (%)
Camera 94.8 92.0 97.5 96.5
Dollar bill 95.3 98.0 99.3 98.0
Motorcycle 92.5 94.0 97.9 96.5
Wristwatch 100 96.0 98.7 99.0
Average 95.6 95.0 98.3 97.5

Table 4. Recall and precision measures (%) for each type of image alteration in Ex-
periment 3.

Occlusion Illumination Scale 2x Scale 0.5x Rotation

Recall|Precision|Recall|Precision|Recall|Precision|Recall |Precision|Recall|Precision
Camera 100 | 90.0 | 100 | 70.0 [90.9| 100 100 100 |83.3| 100
Dollar bill | 100 100 |[76.9| 100 100 100 100 100 100 | 90.0
Motorcycle| 90.9 100 |81.8| 90.0 100 | 90.0 100 100 90.0 | 90.0
Wristwatch| 100 100 100 | 90.0 | 100 100 100 100 100 | 90.0

scriptors of the detected points to characterize the appearance of object classes.
It also introduces the use of a three layer Bayesian network in the classifica-
tion stage to improve classification rates. Three experiments were conducted to
evaluate the proposed method. They showed that SIFT features are suitable to
represent object classes, and evidenced the improvement achieved by clustering
SIFT descriptors and using a Bayesian network for classification. These exper-
iments also showed quantitatively the invariance of the method to illumination
changes, scale, rotation and occlusion. It also provided experimental evidence
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that supports that a clustering of SIFT features based method outperforms a
straightforward object recognition method to identify object classes.

As future work, the localization of objects in the image will be investigated,

trying to learn the spatial relationships between the local features and clusters
that describe an object class.

References

10.

11.

. Shivani Agarwal, Aatif Awan, and Dan Roth. Learning to detect objects in images

via a sparse, part-based representation. I[EEE Trans. Pattern Anal. Mach. Intell.,
26(11):1475-1490, 2004.
Gyuri Dorké and Cordelia Schmid. Object class recognition using discriminative
local features. Technical report, IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 2005.

. Anil K. Jain and Richard C. Dubes. Algorithms for clustering data. Prentice-Hall,

Inc., Upper Saddle River, NJ, USA, 1988.

S. C. Johnson. Hierarchical clustering schemes. Psychometrika, 2:241-254, 1967.
Timor Kadir and Michael Brady. Scale, saliency and image description. Interna-
tional Journal of Computer Vision, 45(2):83-105, 2001.

Bastian Leibe, Edgar Seemann, and Bernt Schiele. Pedestrian detection in crowded
scenes. In CVPR ’05: Proceedings of the 2005 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (CVPR’05) - Volume 1, pages 878—
885, Washington, DC, USA, 2005. IEEE Computer Society.

David G. Lowe. Distinctive image features from scale-invariant keypoints. Inter-
national Journal of Computer Vision, 60(2):91-110, 2004.

Krystian Mikolajczyk, Bastian Leibe, and Bernt Schiele. Local features for object
class recognition. In ICCV ’05: Proceedings of the Tenth IEEE International Con-
ference on Computer Vision, pages 1792—-1799, Washington, DC, USA, 2005. IEEE
Computer Society.

Krystian Mikolajczyk and Cordelia Schmid. Indexing based on scale invariant
interest points, 2001.

Krystian Mikolajczyk and Cordelia Schmid. A performance evaluation of local
descriptors. IEEE Trans. Pattern Anal. Mach. Intell., 27(10):1615-1630, 2005.
Tinne Tuytelaars and Krystian Mikolajczyk. Local invariant feature detectors: A
survey. Foundations and Trends in Computer Graphics and Vision, 3(3):177-280,
2007.



