
Pattern Recognition 45 (2012) 1019–1034
Contents lists available at SciVerse ScienceDirect
Pattern Recognition
0031-32

doi:10.1

� Corr

Cyril an

E-m
journal homepage: www.elsevier.com/locate/pr
Two stage architecture for multi-label learning
Gjorgji Madjarov a,b,�, Dejan Gjorgjevikj a, Sašo Džeroski b

a Faculty of Computer Science and Engineering, Ss. Cyril and Methodius University, Rugjer Boshkovikj 16, 1000 Skopje, Macedonia
b Department of Knowledge Technologies, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia
a r t i c l e i n f o

Article history:

Received 11 January 2011

Received in revised form

1 July 2011

Accepted 8 August 2011
Available online 16 August 2011

Keywords:

Multi-label learning

Multi-label ranking

Multi-label classification

Two stage architecture

Classifier chain
03/$ - see front matter & 2011 Elsevier Ltd. A

016/j.patcog.2011.08.011

esponding author at: Faculty of Computer

d Methodius University, Rugjer Boshkovikj 1

ail address: gjorgji.madjarov@finki.ukim.mk (
a b s t r a c t

A common approach to solving multi-label learning problems is to use problem transformation

methods and dichotomizing classifiers as in the pair-wise decomposition strategy. One of the problems

with this strategy is the need for querying a quadratic number of binary classifiers for making a

prediction that can be quite time consuming, especially in learning problems with a large number of

labels. To tackle this problem, we propose a Two Stage Architecture (TSA) for efficient multi-label

learning. We analyze three implementations of this architecture the Two Stage Voting Method (TSVM),

the Two Stage Classifier Chain Method (TSCCM) and the Two Stage Pruned Classifier Chain Method

(TSPCCM). Eight different real-world datasets are used to evaluate the performance of the proposed

methods. The performance of our approaches is compared with the performance of two algorithm

adaptation methods (Multi-Label k-NN and Multi-Label C4.5) and five problem transformation methods

(Binary Relevance, Classifier Chain, Calibrated Label Ranking with majority voting, the Quick Weighted

method for pair-wise multi-label learning and the Label Powerset method). The results suggest that

TSCCM and TSPCCM outperform the competing algorithms in terms of predictive accuracy, while TSVM

has comparable predictive performance. In terms of testing speed, all three methods show better

performance as compared to the pair-wise methods for multi-label learning.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

The traditional problem of single-label classification is con-
cerned with learning from examples, each associated with a
single label li from a finite set of disjoint labels L¼ fl1,l2, . . . ,
lQ g,Q 41. For Q 42, the learning problem is referred to as a
multi-class classification. On the other hand, the task of learning a
mapping from an example xAX (X denotes the domain of
examples) to a set of labels YDL is referred to as a multi-label

classification. Thus, in contrast to multi-class classification, alter-
natives are not assumed to be mutually exclusive such that
multiple labels may be associated with a single example, i.e.,
each example can be a member of more than one class. The set of
labels Y are called relevant, while the set L\Y represents irrelevant
labels for a given example.

Label ranking studies the problem of learning a mapping from a
set of examples to rankings over a finite number of predefined
labels. It can be considered a natural generalization of conven-
tional (multi-class) classification, where instead of requesting
ll rights reserved.

Science and Engineering, Ss.

6, 1000 Skopje, Macedonia.

Gj. Madjarov).
only a single label (a top label), a ranking of all the labels is
performed.

Besides the concept of multi-label classification, the multi-
label learning introduces the concept of multi-label ranking [1],
which is understood as learning a model that the query example x

associates both with a (label) ranking of the complete label set
fl1,l2, . . . ,lQ g and a bipartite partition of this set into relevant and
irrelevant labels.

The issue of learning from multi-label data has recently
attracted significant attention from many researchers. They are
motivated from an increasing number of new applications, such
as semantic annotation of images and video (news clips, movies
clips), functional genomics (gene and protein function), music
categorization into emotions, text classification (news articles,
web pages, patents, emails, bookmarks,y), directed marketing
and others.

In recent years, many different approaches have been developed
to solve the multi-label learning problems. Tsoumakas and Katakis
[2] summarize them into two main categories: (a) algorithm
adaptation methods, and (b) problem transformation methods.
Algorithm adaptation methods extend specific learning algorithms
to handle multi-label data directly. Examples include lazy learning
[3–5], neural networks [6,7], boosting [8,9], classification rules [10],
etc. Problem transformation methods, on the other hand, transform
the multi-label learning problem into one or more single-label

www.elsevier.com/locate/pr
www.elsevier.com/locate/pr
dx.doi.org/10.1016/j.patcog.2011.08.011
mailto:gjorgji.madjarov@finki.ukim.mk
dx.doi.org/10.1016/j.patcog.2011.08.011

Gj. Madjarov et al. / Pattern Recognition 45 (2012) 1019–10341020
classification problems. The single-label classification problems are
solved with a commonly used single-label classification approach
and the output is transformed back into a multi-label representa-
tion via some reverse process. A common approach for problem
transformation is to use class binarization methods, i.e., decom-
position of the problem into several binary sub-problems that can
then be solved using a binary base classifier. The simplest strategies
in the multi-label setting are the one-against-all and one-against-
one strategies, also referred to as the binary relevance method [2]
and pair-wise method [11,12], respectively. The computational
complexity of the pair-wise learning approach to the multi-label
scenario is large, especially in learning problems with a large
number of labels.

In this paper, we propose a novel architecture for efficient
pair-wise multi-label learning, named Two Stage Architecture
(TSA). We analyze three different methods/implementations of
this architecture the Two Stage Voting Method (TSVM), the Two
Stage Classifier Chain Method (TSCCM) and the Two Stage Pruned
Classifier Chain Method (TSPCCM). The two stage architecture and
its three methods belong to the group of the problem transforma-
tion methods. Their main idea is to reduce the computational
complexity of pair-wise methods and increase their predictive
accuracy. We evaluate the performance of these methods on a
selection of multi-label datasets that vary in terms of problem
domain, number of labels and label cardinality. The obtained
results demonstrate that our approaches outperform the compet-
ing methods (five problem transformation and two algorithm
adaptation methods) in terms of predictive accuracy. Also, in
terms of testing speed our architecture shows better performance
as compared to the pair-wise methods for multi-label learning.

For the readers’ convenience, Section 2 surveys some previous
work in multi-label learning. The Two Stage Architecture and its
computational complexity are presented in Section 3. Section 4
presents the experimental results, that compare the performance
of the proposed approaches (TSVM, TSCCM and TSPCCM) with
other competing methods. The conclusion and directions for
further work are given in Section 5.
2. Related work

In this section, we will give an overview of different methods
for solving multi-label learning problems. These methods can be
summarized in two main categories: Algorithm adaptation meth-
ods and problem transformation methods. Additionally, the
problem transformation methods can be grouped in three sub-
categories: Binary relevance methods, label power-set methods
and pair-wise methods.
2.1. Algorithm adaptation methods

AdaBoost.MH and AdaBoost.MR [8] are two extensions of
AdaBoost for multi-label data. While AdaBoost.MH is designed
to minimize Hamming loss, AdaBoost.MR is designed to find a
hypothesis which places the correct labels at the top of the
ranking. A combination of AdaBoost.MH with an algorithm for
producing alternating decision trees [9] has been proposed, with
the motivation of producing multi-label models that can be
understood by humans.

Clare et al. [13] adapted the C4.5 algorithm for multi-label data
(ML-C4.5). They modified the formula of entropy calculation (Eq. (1))
in order to solve the multi-label problem. They also allowed
multiple labels in the leaves of the tree. The modified entropy
sums the entropies for each individual class label.

entropyðSÞ ¼�
XN

i ¼ 1

ðpðciÞ log pðciÞþqðciÞ log qðciÞÞ ð1Þ

where S is the set of examples, pðciÞ is the relative frequency of
class ci and qðciÞ ¼ 1�pðciÞ.

ML-kNN [3] is based on the popular k nearest neighbors (kNN)
lazy learning algorithm. The first step in this approach is the same as
in kNN, i.e., retrieving the k nearest examples. It uses the maximum
a posteriori principle in order to determine the label set of the test
example, based on prior and posterior probabilities, i.e., the fre-
quency of each label within the k nearest neighbors. Other kNN
based approaches for multi-label learning also exist [4,5].

Neural networks have also been adapted for multi-label
classification [6,7]. BP-MLL [7] is an adaptation of the popular
back-propagation algorithm for multi-label learning. The main
modification to the algorithm is the introduction of a new error
function that takes multiple labels into account.

2.2. Problem transformation methods

An extensive bibliography of learning algorithms for problem
transformation methods is given by Tsoumakas and Katakis [2].
The simplest strategy in the multi-label setting is the one-against-
all strategy also referred to as the binary relevance method
(BR) [2]. It addresses the multi-label learning problem by learning
one classifier for each class, using all the examples labeled with
that class as positive examples and all remaining examples as
negative examples. At query time, each binary classifier predicts
whether its class is relevant for the query example or not,
resulting in a set of relevant labels. In the ranking scenario, the
labels are ordered according to the probability association of each
label from each binary classifier. A method closely related to the
BR method is the Classifier Chain (CC) method proposed by Read
et al. [14]. This method involves Q binary classifiers as in BR.
Classifiers are linked along a chain where each classifier deals
with the binary relevance problem associated with label liAL,
ð1r irQ Þ. The feature space of each link in the chain is extended
with the 0/1 label associations of all previous links. The ranking
and the prediction of the relevant labels in the CC method are the
same as in the BR method.

Second problem transformation method is the label combina-
tion method, or label power-set (LP) method, which has been the
focus of several recent studies [15,16,2]. The basis of this method
is to combine entire label sets into atomic (single) labels to form a
single-label problem for which the set of possible single labels
represents all distinct label subsets in the original multi-label
representation. Each ðx,YÞ is transformed into ðx,lÞ where l is the
atomic label representing a distinct label subset. In this way, LP
based methods directly take into account label correlations. To
solve the problem of the large number of label combinations,
Read [17] developed a pruned problem transformation method
(PPT), that selects only the transformed labels that occur more
than predefined number of times. A disadvantage of these
methods, however, is their worst-case time complexity.

Third problem transformation approach to solving the multi-
label learning problem by using binary classifiers is pair-wise
classification or round robin classification [11,12]. Its basic idea is
to use QnðQ�1Þ=2 classifiers covering all pairs of labels. Each
classifier is trained using the samples of the first label as positive
examples and the samples of the second label as negative
examples. To combine these classifiers, the pair-wise classifica-
tion method naturally adopts the majority voting algorithm.
Given a test example, each classifier delivers a prediction for
one of the two labels. This prediction is decoded into a vote for

Gj. Madjarov et al. / Pattern Recognition 45 (2012) 1019–1034 1021
one of the labels. After the evaluation of all QnðQ�1Þ=2 classifiers,
the labels are ordered according to their sum of votes. To predict
only the relevant labels for each example a label ranking algo-
rithm is used.

Brinker et al. [1] propose a conceptually new technique for
extending the common pair-wise learning approach to the multi-
label scenario named Calibrated Label Ranking (CLR). The key idea
of calibrated label ranking is to introduce an artificial (calibration)
label l0, which will represent the split-point between relevant
and irrelevant labels. The calibration label l0 is assumed to be
preferred over all irrelevant labels, but all relevant labels are
preferred over it. At prediction time (when majority voting is
usually used), one will get a ranking over Qþ1 labels (the Q

original labels plus the calibration label l0). CLR is considered a
combination of multi-label classification and ranking.

Besides majority voting in CLR, Park et al. [18] propose
another, more effective voting algorithm named Quick Weighted
Voting (QWeighted) for multi-class classification. QWeighted
computes the class with the highest accumulated voting mass,
while avoiding the evaluation of all possible pair-wise classifiers.
It exploits the fact that during voting some classes can be
excluded from the set of possible top rank classes early in the
process, when it becomes clear that even if they reach the
maximal voting mass in the remaining evaluations they cannot
exceed the current maximum. Pair-wise classifiers are selected
depending on a voting loss value, which is the number of votes
that a class has not received. The voting loss starts with a value of
zero and increases monotonically with the number of performed
preference evaluations. The class with the current minimal loss is
the best candidate for the top ranked class. If all preferences
involving this class have been evaluated (and it still has the
lowest loss), it can be concluded that no other class can achieve a
better ranking. Thus, the QWeighted algorithm always focuses on
classes with low voting loss. An adaptation of QWeighted to
multi-label learning (QWeightedML) [19] is to repeat the process
while all relevant labels are not determined, i.e., until the
returned label is the artificial label l0, which means that all
remaining labels will be considered to be irrelevant.

Several ensemble approaches have been developed based on
the common problem transformation methods. Good examples
are the RAKEL system by Tsoumakas et al. [15] and ensembles of
classifier chains (ECC) [14]. Note that binary methods are occa-
sionally referred to as ensemble methods because they involve
multiple binary models. However, none of these models is multi-
label itself and therefore we use the term ensemble strictly in the
sense of an ensemble of multi-label methods.

The Calibrated Label Ranking (CLR) method often demon-
strates better prediction accuracy as compared to the other
non-ensemble methods for multi-label learning. Its major pro-
blem is the need for querying a quadratic number of classifiers for
making a single prediction. That can be very time consuming
especially in learning problems with a large number of labels.
3. Two stage architecture (TSA) and its implementations

3.1. Two stage architecture (TSA)

In this paper, we propose a novel Two Stage Architecture (TSA)
for efficient pair-wise multi-label learning that is related to the
CLR algorithm [20]. The main idea of this architecture is to reduce
the number of classifiers that are needed to be consulted in the
prediction phase of the CLR algorithm and increase the predictive
accuracy. We first introduce the architecture and then present
three different methods/implementations of this architecture: the
Two Stage Voting Method (TSVM), the Two Stage Classifier Chain
Method (TSCCM) and the Two Stage Pruned Classifier Chain
Method (TSPCCM). This section concludes with an analysis of
the computational complexity of these methods.

The conventional pair-wise approach learns a model Mij for all
combinations of labels li and lj, 1r io jrQ . In this way
QnðQ�1Þ=2 different pair-wise models are learned. Each pair-
wise model Mij is a traditional one-against-one binary classifier
and is learned with the li examples labeled as positive and the lj

examples labeled as negative. This means that, for a given training
set S¼ fðx1,Y1Þ,ðx2,Y2Þ, . . . ,ðxp,YpÞg (xiAX,YiDL, where X denotes
the domain of examples and L¼ fl1,l2, . . . ,lQ g is a finite set of
labels), each model Mij is trained with the examples ðxr ,Y 0rÞ
(0orrp) where Y 0r is defined as

Y 0r ¼
þ1 if liAYr and lj=2Yr

�1 if ljAYr and li=2Yr

(
ð2Þ

This transformation of the dataset is known as the two-label
transformation. If the training example xr is labeled with the
labels li and lj at the same time, it is not involved in the learning
process of the model Mij. It cannot be used to distinguish between
labels li and lj and cannot be viewed as either a positive or a
negative example. In the prediction process the other pair-wise
models Mil (io lrQ and la j) and Mli (1r lo i and la j) for label
li and Mjl (jo lrQ and la i) and Mlj (1r lo j and la i) for label lj

are expected to make the decision on whether these labels are
relevant or not. The model Mij only votes about which label (li or
lj) should be better ranked. The main disadvantage of this
approach is that in the prediction process a quadratic number of
base classifiers (models) have to be consulted for each test
example.

As a result of introducing the artificial calibration label l0 in
the calibrated label ranking algorithm [20], the number of the
base classifiers is increased by Q, i.e., an additional set of Q binary
preference models Mk0 ð1rkrQ Þ is learned. The models Mk0 that
are learned by a pair-wise approach to calibrated ranking, and the
models Mk that are learned by conventional binary relevance are
equivalent. By definition, for the binary relevance (traditional
one-against-all) approach, the training example x is a positive
example in the training set for the model Mk, if the label lk is a
relevant label for the training example x. Similarly, if the label lk

is irrelevant for the training example x, x is negative example for
learning the model Mk. Using the same notation as in the case of
the pair-wise models (Mij), each model Mk0 is trained with the
examples ðxr ,Y 0rÞ (rA1 . . .p) where Y 0r is defined as

Y 0r ¼
þ1 if lkAYr

�1 if lk=2Yr

(
ð3Þ

This transformation of the datasets is addressed as single-label
transformation.

The binary relevance models Mk ð1rkrQ Þ almost always
have higher time complexity than pair-wise models Mij

ð1r io jrQ Þ because they are learned with all the examples
from the training set, while the pair-wise models Mij are learned
only with the examples labeled with labels li and lj. In the
standard voting algorithm for calibrated label ranking, each test
example needs to consult all the models (classifiers) Mk

ð1rkrQ Þ and Mij ð1r io jrQ Þ in order to rank the labels by
their order of preference.

As a result of the increased number of models, the CLR method
leads to more accurate prediction, but also leads to slower testing
and higher computational complexity, especially when the num-
ber of the labels in the problem is large.

The Two Stage Architecture is organized in two layers (Fig. 1).
The first layer has Q binary relevance models Mk0, while the
second layer has QnðQ�1Þ=2 pair-wise models Mij. Each model

Table 1
The training procedure of the TSVM.

Training first layer—TSVM
ðS¼ fðx1 ,Y1Þ, . . . ,ðxp ,YpÞgÞ

1: for kA1, . . . ,Q do

2: Sk0 ¼ SingleLabelTransformationðS,lkÞ

3: Mk0 ¼ TrainingModelðSk0Þ

Training second layer—TSVM
ðS¼ fðx1 ,Y1Þ, . . . ,ðxp ,YpÞgÞ

1: for iA1, . . . ,Q�1 do

2: for jA iþ1, . . . ,Q do

3: Sij ¼ TwoLabelTransformationðS,li ,ljÞ

4: Mij ¼ TrainingModelðSijÞ

Table 2

Fig. 1. Two Stage Architecture.

Gj. Madjarov et al. / Pattern Recognition 45 (2012) 1019–10341022
Mk0 from the first layer is connected to Q�1 models Mij from the
second layer, where k¼ i or k¼ j ð1r irQ�1,iþ1r jrQ Þ. It is
responsible for learning and predicting the probability association
of label lk. On the other hand, each model of the second layer
Mij is connected to exactly two binary relevance models from the
first layer (Mi0 and Mj0) and is responsible for learning and
predicting the probability associations of label li and label lj

(pðliÞ ¼ 1�pðljÞ).
In the following subsections, we present three different imple-

mentations of this architecture (Two Stage Voting Meth-
od—TSVM, Two Stage Classifier Chain Method—TSCCM and Two
Stage Pruned Classifier Chain Method—TSPCCM). All of them have
the same organization of the binary relevance and the pair-wise
models in the two layers. Each method itself introduces a
different approach for training and testing the classifiers from
the architecture. All three methods improve the testing speed
in comparison to the pair-wise methods. TSCCM and TSPCCM also
improve the predictive accuracy, as a result of the classifier
chain which will be explained in the next subsection, while the
TSVM has comparable predictive performance to the competing
methods.
Testing procedure of the TSVM.

Classify(x)—TSVM

1: for kA1, . . . ,Q do

2: probabilityðMk0Þ ¼ classifyðMk0ðxÞÞ

3: if probabilityðMk0Þ40:5 then

4: votes[lk]þþ

5: else

6: votes[l0]þþ

7: for iA1, . . . ,Q�1 do

8: for jA iþ1, . . . ,Q do

9: if probabilityðMi0Þ4t & probabilityðMj0Þ4t then

10: // first case

11: probabilityðMijÞ ¼ classifyðMijðxÞÞ

12: if probabilityðMijÞ40:5 then

13: votes[li]þþ

14: else

15: votes[lj]þþ

16: else
17: // second case

18: if probabilityðMi0Þ4t then

19: votes[li]þþ

20: if probabilityðMj0Þ4t then

21: votes[lj]þþ

22: order(votes[])
3.2. Two stage voting method—TSVM

The training phase of TSVM is the same as in the CLR method.
Each model of the architecture is trained with the corresponding
examples of a given training dataset. The training procedure of the
first and the second layer is outlined in Table 1. Recall the notation
for a training example ðx,YÞ, where YDL ðL¼ fl1,l2, . . . ,lQ gÞ, and x

is an instance feature vector.
In the prediction phase, each model Mk0 tries to determine the

relevant labels for the corresponding test example. Each model Mk0

gives the probability (the output value of model Mk0 is converted to
probability) that the test example is associated with the label lk. If
that probability is appropriately small (under some predetermined
threshold), we can conclude that the artificial calibration label l0 is
preferred over the label lk, i.e., the label lk belongs to the set of
irrelevant labels. In that case, we conclude that, the pair-wise
models of the second layer Mij where i¼k or j¼k, do not need to be
consulted for the corresponding test example, because the binary
relevance model Mk0 from the first layer has suggested that the
label lk belongs to the set of irrelevant labels. For each label lk that
belongs to the set of irrelevant labels, the number of pair-wise
models that should be consulted decreases of Q�1.

In order to decide which labels belong to the set of irrelevant
labels, i.e., which pair-wise models Mij from the second layer do
not have to be consulted, a threshold t (0rtr1) is introduced.

As previously described, every test example first consults all
binary relevance models Mk0 of the first layer of the two stage
architecture. For each corresponding model Mk0 (1rkrQ) its
output is converted to probability and compared to the threshold t.
�
 If the prediction probability is above the threshold, the test
example is forwarded to all the models Mij of the second layer
of the architecture that are associated to the model Mk0.

�
 If the prediction probability is under the threshold, the test

example is not forwarded from Mk0 to any model of the second
layer of the architecture.

From the viewpoint of the pair-wise models Mij, if we consider the
prediction probabilities of the binary relevance models Mi0 and
Mj0 of the first layer, three distinct cases in the voting process can
appear:
1.
 The prediction probabilities of both binary relevance models
Mi0 and Mj0 that are connected to the pair-wise model Mij are
above the threshold t.
2.
 The prediction probability of only one of the binary relevance
models (Mi0 or Mj0) is above the threshold t.
3.
 The prediction probabilities of the binary relevance models Mi0

and Mj0 are both under the threshold t.

In the first case, the model Mij is consulted and its prediction is
decoded into a vote for one of the labels li or lj. In the second
case, Mij is not consulted and its vote goes directly to the label
whose binary relevance model prediction probability is above the
threshold t. In the third case Mij is not consulted and it does not
vote at all. The votes of all Mk0 models and Mij models (where at
least one prediction probability of the models Mi0 and Mj0 is
above the threshold t) are then aggregated to obtain the final
prediction by majority voting. The classification process is out-
lined in Table 2.

Table 4
Testing procedure of the TSCCM.

Classify(x)—TSCCM
1: x0’fxg

2: for kA1, . . . ,Q do

3: probabilityðMk0Þ ¼ classifyðMk0ðxÞÞ

4: if probabilityðMk0Þ40:5 then

5: votes[lk]þþ

6: else

7: votes[l0]þþ

8: x0’x0 [ðprobabilityðMk0ÞÞ

9: for iA1, . . . ,Q�1 do

10: for jA iþ1, . . . ,Q do

11: if probabilityðMi0Þ4t & probabilityðMj0Þ4t then

12: // first case

13: probabilityðMijÞ ¼ classifyðMijðx
0ÞÞ

14: if probabilityðMijÞ40:5 then

15: votes[li]þþ

16: else

17: votes[lj]þþ

18: else
19: // second case

20: if probabilityðMi0Þ4t then

21: votes[li]þþ

22: if probabilityðMj0Þ4t then

23: votes[lj]þþ

24: order(votes[])

Table 5
Training procedure of the TSPCCM.

Training first layer—TSPCCM
ðS¼ fðx1 ,Y1Þ, . . . ,ðxp ,YpÞgÞ

1: for kA1, . . . ,Q do

2: Sk0 ¼ SingleLabelTransformationðS,lkÞ

3: Mk0 ¼ TrainingModelðSk0Þ

Training second layer—TSPCCM
ðS¼ fðx1 ,Y1Þ, . . . ,ðxp ,YpÞgÞ

1: for iA1, . . . ,Q�1 do

2: for jA iþ1, . . . ,Q do
3: S0’fg

4: for ðx,YÞAS do
5: x0’x

6: probabilityðMi0Þ ¼ classifyðMi0ðxÞÞ

7: x0’x0 [ðprobabilityðMi0ÞÞ

8: probabilityðMj0Þ ¼ classifyðMj0ðxÞÞ

9: x0’x0 [ðprobabilityðMj0ÞÞ

10: S0’S0 [ðx0 ,YÞ

11: S0ij ¼ TwoLabelTransformationðS0 ,li ,ljÞ

12: Mij ¼ TrainingModelðS0ijÞ

Gj. Madjarov et al. / Pattern Recognition 45 (2012) 1019–1034 1023
By increasing the value of the threshold, the number of pair-
wise models that should be consulted decreases. For t¼1 no
example is forwarded to the second layer of the architecture and
the decision is made by the classifiers of the first layer. On the
other hand, for t¼0, for each test example all pair-wise models of
the second layer are consulted and TSVM becomes CLR.

3.3. Two stage classifier chain method—TSCCM

In this subsection we propose a modification of the Two Stage
Voting Method (TSVM) that uses a classifier chain in order to
improve the predictive accuracy. In this context, the term classi-
fier chain can be explained as extending the feature space of each
example involved in the learning and in the testing process of the
model Mij from the second layer with the probability predictions
of all binary relevance models Mk0 (the models from the first
layer) for that example. This means that the feature space of each
link which connects the binary relevance models and the pair-
wise models is extended with the probability predictions of all
models of the first layer. This approach will be referred to as Two
Stage Classifier Chain Method (TSCCM).

All models (Mk0) in the first layer of the architecture in TSCCM
are learned in the same way as in TSVM. The only difference
between TSVM and TSCCM is in the learning phase of the models
from the second layer of the architecture. In this phase, all
training examples consult the models Mk0 first, and then the
feature space of each example is extended with the probability
predictions of those models. The training examples with extended
feature vectors are used in the learning phase of the models from
the second layer of the architecture in TSCCM. In the testing
phase, before an example is forwarded to the models in the
second layer, its feature space is extended with the probability
predictions of all models from the first layer.

TSCCM reduces the number of base classifiers that need to be
consulted in order to make a final prediction for a given test
example in the same way as TSVM. Besides, it also improves the
predictive performance as a result of the introduced classifier
chain. The training procedure of TSCCM is outlined in Table 3,
while the classification process is outlined in Table 4. We use the
same notation as for TSVM.

3.4. Two stage pruned classifier chain method—TSPCCM

As mentioned above, the feature space of each link which
connects the binary relevance and the pair-wise models in TSCCM
is extended with the probability predictions of all binary
Table 3
Training procedure of the TSCCM.

Training first layer—TSCCM
ðS¼ fðx1 ,Y1Þ, . . . ,ðxp ,YpÞgÞ

1: for kA1, . . . ,Q do

2: Sk0 ¼ SingleLabelTransformationðS,lkÞ

3: Mk0 ¼ TrainingModelðSk0Þ

4: x0’x

5: S0’fg

6: for ðx,YÞAS do

7: for kA1, . . . ,Q do

8: probabilityðMk0Þ ¼ classifyðMk0ðxÞÞ

9: x0’x0 [ðprobabilityðMk0ÞÞ

10: S0’S0 [ðx0 ,YÞ

Training second layer—TSCCM
ðS0 ¼ fðx01 ,Y1Þ, . . . ,ðx

0
p ,YpÞgÞ

1: for iA1, . . . ,Q�1 do

2: for jA iþ1, . . . ,Q do

3: S0ij ¼ TwoLabelTransformationðS0 ,li ,ljÞ

4: Mij ¼ TrainingModelðS0ijÞ
relevance models (all models of the first layer). In this subsection
we propose a modification of the TSCCM in which the feature
space of each example, involved in the learning and testing
process of the model Mij of the second layer, is extended not by
all but only with the probability predictions of the binary
relevance models Mi0 and Mj0, i.e., the models that are directly
connected to the model Mij. These predictions are the most
relevant for the model Mij because the model Mij tries to
distinguish the label li from the label lj. This approach will be
called the Two Stage Pruned Classifier Chain Method (TSPCCM).
The training procedure of TSPCCM is outlined in Table 5, while the
classification process is outlined in Table 6. We use the same
notation as for TSVM and for TSCCM.

3.5. Computational complexity

The computational complexities of the calibrated label ranking
method and the two stage voting method (TSVM) in the learning
phase are equal, because the models learned by both methods are

Table 6
Testing procedure of the TSPCCM.

Classify(x)—TSPCCM
1: x0’fxg

2: for kA1, . . . ,Q do

3: probabilityðMk0Þ ¼ classifyðMk0ðxÞÞ

4: if probabilityðMk0Þ40:5 then

5: votes[lk]þþ

6: else

7: votes[l0]þþ

8: for iA1, . . . ,Q�1 do

9: for jA iþ1, . . . ,Q do

10: if probabilityðMi0Þ4t & probabilityðMj0Þ4t then

11: // first case

12: x0’x0 [ðprobabilityðMi0ÞÞ

13: x0’x0 [ðprobabilityðMj0ÞÞ

14: probabilityðMijÞ ¼ classifyðMijðx
0ÞÞ

15: if probabilityðMijÞ40:5 then

16: votes[li]þþ

17: else

18: votes[lj]þþ

19: else
20: // second case

21: if probabilityðMi0Þ4t then

22: votes[li]þþ

23: if probabilityðMj0Þ4t then

24: votes[lj]þþ

25: order(votes[])

Gj. Madjarov et al. / Pattern Recognition 45 (2012) 1019–10341024
practically the same. On the other hand, in spite of the equal
number of learned models, the computational complexity of the
two stage classifier chain and the two stage pruned classifier
chain methods (TSCCM and TSPCCM) in the learning phase is
slightly higher than CLR, as a result of the increase in the feature
vector size in each model of the second layer of the architecture.

The increase of the computational complexity in the learning
phase of TSCCM as compared to CLR, depends on the number of
labels in the multi-label learning problem. If this number is small,
as compared to the number of features in the learning problem,
then the computational complexity of the learning phase of
TSCCM is similar to the computational complexity of the learning
phase of CLR. In most classification problems, the number of
features is significantly larger (more than 10 times) than the
number of labels, so the training times of TSCCM are inconsider-
ably longer than those of CLR. The computational complexity in
the learning phase of TSPCCM is practically the same as that of
CLR, because in this case the feature vectors of the training
examples are extended by only two additional features for each
model located in the second layer of the architecture. However,
the computational complexity of the training phase of the pair-
wise approaches for problems with a large number of labels,
remains the main drawback of the methods proposed here as
well, as a result of the quadratic number of models that should be
learned.

In the rest of this section, we analyze the computational
complexity of the TSA comparing to the computational complex-
ity of the CLR method in the prediction phase. Since the main idea
of the proposed architecture is to reduce the number of consulted
models in the prediction process, the biggest advance is expected
here. In the following, we use the term computational complexity,
strictly in the sense of a computational complexity in the
prediction phase.

The computational complexity of TSA significantly differs from
the computational complexity of CLR. The computational com-
plexity of the calibrated label ranking method (OCLR) can be
defined as the sum of the computational complexity of the binary
relevance models (OBR) and the pair-wise models (OP):

OCLR ¼OBRþOP ð4Þ
The computational complexity of TSA can be defined as the sum
of the computational complexity of the models located in the first
layer of the architecture (OFL) and the computational complexity
of the models located in the second layer of the architecture (OSL):

OTSA ¼ OFLþOSL ð5Þ

The computational complexity of the first layer of the TSA and the
computational complexity of the binary relevance models of the
CLR method are equal (OBR ¼OFL). In both methods, the models
are the same and each test example must consult all of these
models in order to predict the class the example belongs to.

The main difference in computational complexity between CLR
and TSA (TSVM, TSCCM and TSPCCM) is in the computational
complexity of the pair-wise models of CLR and the second layer of
TSA. As noted in the previous section, if the threshold is set to
zero (t¼0), in the TSA method, all models of the second layer are
consulted and we have OSL ¼ OP for TSVM. For TSCCM and
TSPCCM this equality is only approximal OSL �OP as a result of
the extended feature vector that adds some complexity to the
classifiers themselves. If the threshold is set to one (t¼1), no
models of the second layer will be consulted, so OSL will be 0 and
OTSA ¼ OFL ¼OBR. For threshold values 0oto1, OSL ¼ rnOP where r

is a reduction parameter specific for each multi-label dataset
(0oro1). The reduction parameter r is related to label cardin-
ality (lc) [2], i.e., the average number of relevant labels per
example in a given multi-label dataset.

As mentioned in the previous section, if the binary relevance
model of the first layer of TSA predicts a value that is above the
threshold t, the test example will be forwarded to the second
layer. If all of the models from the first layer of TSA forward the
test example to the second layer, all pair-wise models from the
second layer will be consulted and the number of consulted pair-
wise models becomes QnðQ�1Þ=2 (TSVM becomes CLR). If only
one model Mk0 ð1rkrQ Þ from the first layer of TSA forwards the
test example to the second layer, it means that only the label lk is
preferred over the calibration label l0 and all the votes from the
pair-wise models Mik and Mkj ð1r iok,ko jrQ Þ go to lk. In this
case, the pair-wise models Mik and Mkj are not consulted and
the OSL is still equal to 0. If two models Mm0 and Mn0 ð1r
mrQ ,1rnrQ ,manÞ from the first layer of TSA forward the test
example to the second layer, only one pair-wise model Mmn

ðmonÞ or Mnm ðnomÞ is consulted and the label that will win
the vote from this model will be the top ranked label, while the
other label of the model will be ranked second. If we assume
nearly ideal prediction by the binary relevance models from the
first layer of the TSA, the number of pair-wise models consulted
for one test example becomes rlnðrl�1Þ=2, where rl is the number
of relevant labels, i.e., the number of labels that are preferred over
the calibration label l0 for the corresponding test example. This
means that, the average number of pair-wise models consulted
for each test example from the dataset, becomes lcnðlc�1Þ=2,
where lc is the label cardinality of the multi-label dataset men-
tioned above. In this (ideal) case (prediction accuracy of 100% by
the binary relevance models), the reduction parameter r can be
determined as

r¼
lcnðlc�1Þ

QnðQ�1Þ
ð6Þ

However, for a real world problem the reduction parameter rreal

will be

rreal ¼
abrmf nðabrmf�1Þ

QnðQ�1Þ
ð7Þ

where abrmf is the average number of binary relevance models
located in the first layer of TSA that give a probability that is
above the threshold t in the prediction process. The value of the

Gj. Madjarov et al. / Pattern Recognition 45 (2012) 1019–1034 1025
parameter rreal is always greater than or equal to the value of the
parameter r (rrealZr).
4. Experiments

In this section, we present the results of our experiments with
several algorithms on a number of multi-label classification
problems. The problems come from the areas of classification of
text, music, images and gene function. We compare the perfor-
mance of the proposed methods (TSVM, TSCCM and TSPCCM) to
the performance of two algorithm adaptation methods (Multi-
Label k-NN—ML-kNN [3] and Multi-Label C4.5—ML-C4.5 [13])
and five problem transformation methods (Binary Relevance—BR
[2], Classifier Chain—CC [14], Calibrated Label Ranking with
majority voting—CLR [20], the Quick Weighted method for pair-
wise multi-label classification—QWeightedML [19] and the Label
Powerset—LP method [2]).

4.1. Evaluation metrics

For a given training set S¼ fðx1,Y1Þ,ðx2,Y2Þ, . . . ,ðxp,YpÞgðxiAX,
YiDLÞ where X denote the domain of examples and L¼ fl1,
l2, . . . ,lQ g is a finite set of labels, the goal of the learning system
is to output a multi-label classifier h : X-2L. In most cases, the
learning system will also produce a real-valued function of the
form f : X � L-R. It is supposed that, for a given example ðxi,YiÞ,
a successful learning system will tend to output larger values for
labels in Yi than those not in Yi, i.e., f ðxi,lmÞ4 f ðxi,lnÞ for any
lmAYi and ln=2Yi.

Performance evaluation for multi-label learning systems thus
differs from that of classical single-label learning systems. Four
different multi-label evaluation metrics (Hamming Loss, One
Error, Coverage and Average Precision) proposed in [8] are used
in this paper. The first one, Hamming Loss is defined in terms of
the function h(x) that predicts the set of labels for a given example
x. The definitions of the other three metrics are based on the real-
valued function f ð�,�Þ that takes into account the ranking quality
of different labels for each example. One Error is a simple
generalization of classification error for multi-label problems,
while the other two evaluation metrics (Coverage and Average
Precision) are based on measures used in information retrieval
and are used to evaluate the performance of the various learning
algorithms in terms of their label rankings. We summarize their
definitions below.
1.
Table 7
Dataset description.

#tr:e: #t:e: #f: #l: lc
Hamming loss evaluates how many times an example-label
pair is misclassified, i.e., throughout a label not belonging to
the instance is predicted or a label belonging to the instance is
not predicted. The smaller the value of hamming_lossðhÞ, the
better the performance. The performance is perfect when
hamming_lossðhÞ ¼ 0. This metric is defined as

hamming_lossðhÞ ¼
1

p

Xp

i ¼ 1

1

Q
hðxiÞDYi

�� �� ð8Þ

where D stands for the symmetric difference between two sets
and Q is the total number of possible class labels.
2.

scene 1211 1159 294 6 1.07

yeast 1500 917 103 14 4.24

enron 1123 579 1001 53 3.38

emotions 391 202 72 6 1.87

tmc2007 21519 7077 49060 22 2.16

medical 645 333 1449 45 1.25

bibtex 4880 2515 1836 159 2.40

corel5k 4500 500 499 374 3.52
One Error evaluates how many times the top-ranked label is
not in the set of relevant labels of the example. The metric
one_errorðf Þ takes values between 0 and 1. The smaller the
value of one_errorðf Þ, the better the performance. This evalua-
tion metric is defined as

one_errorðf Þ ¼
1

p

Xp

i ¼ 1

1½arg max
lAY

f ðxi,lÞ�=2YiU ð9Þ
where lAL¼ fl1,l2, . . . ,lQ g and 1pU equals 1 if p holds and
0 otherwise for any predicate p. Note that, for single-label
classification problems, the One Error is identical to ordinary
classification error.
3.
 Coverage evaluates how far, on average we need to go down
the list of ranked labels in order to cover all the relevant labels
of the instance. The smaller the value of coverage(f), the better
the performance:

coverageðf Þ ¼
1

p

Xp

i ¼ 1

maxlAYi
rankf ðxi,lÞ�1 ð10Þ

where rankf ðxi,lÞ maps the outputs of f ðxi,lÞ for any lAL to
fl1,l2, . . . ,lQ g so that f ðxi,lmÞ4 f ðxi,lnÞ implies rankf ðxi,lmÞo
rankf ðxi,lnÞ. The smallest possible value for coverage(f) is lc, i.e.,
the label cardinality of the given dataset.
4.
 Average Precision is the average fraction of labels ranked
above an actual label lAYi that actually are in Yi. The
performance is perfect when avg_precisionðf Þ ¼ 1; the larger
the value of avg_precisionðf Þ, the better the performance. This
metric is defined as

avg_precisionðf Þ ¼
1

p

Xp

i ¼ 1

1

9Yi9

X
lAYi

9Li9
rankf ðxi,lÞ

ð11Þ

where Li ¼ fl
09rankf ðxi,l

0
Þrrankf ðxi,lÞ,l

0AYig and rankf ðxi,lÞ is
defined as in coverage above.
4.2. Experimental questions

The goal of the experiments is to answer the following
questions:
1.
 Does the Two Stage Architecture improve the predictive
performance and computational complexity in the prediction
phase over the CLR method?
2.
 Are the TSCCM and the TSPCCM better than the TSVM as a
result of the additional information in the feature vector in
each model of the second layer of the architecture?
3.
 Is the TSPCCM more accurate and efficient in the prediction
phase than TSCCM?
4.
 Is there a dependence between the answers of the previous
three questions and the properties of the datasets (such as
number of labels and label cardinality)?
5.
 What is the dependence between the predictive performance
and the testing time of the proposed methods and the values
of the threshold t?
6.
 What are the predictive performance and testing times of the
10 different methods?

In order to answer these questions, we evaluate the predictive
performance and the computational complexity in the prediction
phase of the 10 methods. The evaluation is conducted on a selection

Gj. Madjarov et al. / Pattern Recognition 45 (2012) 1019–10341026
of multi-label datasets that vary in terms of problem domain,
number of labels and label cardinality (question 4). To address
questions 1, 2 and 3, we have employed the non-parametric
Wilcoxon test for statistical significance [21] and we discuss in
detail the results obtained by the proposed methods and CLR.

To access the dependence of the predictive performance and
the computational complexity in the prediction phase on different
values of the threshold t (question 5), the performance in terms of
Table 8
Parameters t, abrmf and rreal.

abrmf t

TSVM TSCCM TSPCCM TSVM

scene 3.337 3.337 3.337 0.02

yeast 7.928 7.928 7.928 0.15

enron 18.46 18.46 18.37 0.03

emotions 3.118 3.118 3.118 0.25

tmc2007 4.93 4.93 4.93 0.1

medical 7.16 7.16 7.16 0.01

bibtex 15.1 15.1 15.1 0.02

corel5k 33.74 64.01 64.01 0.02

Table 9
The performance of 10 different multi-label classification approaches on eight dataset

Algorithm dataset scene yeast enron em

ML-kNN 0.0989 0.1980 0.0513 0.29

ML-C4.5 0.1506 0.3040 0.0636 0.32

LP 0.0951 0.2056 0.0599 0.30

BR 0.1177 0.2052 0.0660 0.27

CC 0.1142 0.1966 0.0645 0.26

CLR 0.0963 0.1903 0.0476 0.25

QWeightedML 0.0956 0.1909 0.0481 0.26

TSVM 0.0946 0.1906 0.0501 0.25

TSPCCM 0.0943 0.1903 0.0401 0.25
TSCCM 0.0940 0.1900 0.0423 0.25

Table 10
The performance of 10 different multi-label classification approaches on eight dataset

Algorithm dataset scene yeast enron em

ML-kNN 0.2424 0.2344 0.2797 0.40

ML-C4.5 0.4038 0.2584 0.3955 0.37

LP 0.2424 0.2584 0.4801 0.45

BR 0.2867 0.2388 0.2504 0.38

CC 0.2951 0.2475 0.2573 0.38

CLR 0.2349 0.2334 0.2297 0.38

QWieghtedML 0.2349 0.2301 0.2262 0.37

TSVM 0.2366 0.2300 0.2193 0.36

TSPCCM 0.2232 0.2311 0.2193 0.33
TSCCM 0.2228 0.2308 0.2237 0.34

Table 11
The performance of 10 different multi-label classification approaches on eight dataset

Algorithm dataset scene yeast enron emo

ML-kNN 0.5685 6.1413 13.181 2.49

ML-C4.5 1.1086 6.8615 20.272 2.47

LP 0.8210 8.0839 30.174 2.68

BR 0.6973 6.5485 13.245 2.48

CC 0.7081 6.4133 12.661 2.41

CLR 0.4883 6.2758 11.519 2.40

QWeightedML 0.7073 8.6215 20.333 2.84

TSVM 0.4974 6.7633 14.431 2.39
TSPCCM 0.4740 6.0629 12.328 2.40

TSCCM 0.4726 6.0587 12.225 2.40
the four metrics defined above and testing times were recorded
for the threshold values 0.0 to 1.0 with step 0.1, for each proposed
method. To answer the question 6, we compare the performance
of the proposed and competing methods in terms of predictive
accuracy and testing speed. The corrected Friedman test [22] and
the post hoc Nemenyi test [23] were employed to assess whether
the differences in performance between the different approaches
are statistically significant.
rreal

TSCCM TSPCCM TSVM TSCCM TSPCCM

0.02 0.02 0.260 0.260 0.260

0.15 0.15 0.302 0.302 0.302

0.03 0.035 0.117 0.117 0.116

0.25 0.25 0.220 0.220 0.220

0.1 0.1 0.042 0.042 0.042

0.01 0.01 0.022 0.022 0.022

0.02 0.02 0.008 0.008 0.008

0.01 0.01 0.008 0.029 0.029

s in terms of the Hamming Loss metric.

otions tmc2007 medical bibtex corel5k

37 0.0578 0.0168 0.0139 0.0093
59 0.0932 0.0150 0.0160 0.0095

36 0.0285 0.0130 0.0174 0.0166

14 0.0172 0.0810 0.0122 0.0171

73 0.0387 0.0796 0.0122 0.0171

66 0.0177 0.0168 0.0121 0.0117

23 0.0263 0.0169 0.0121 0.0117

90 0.0228 0.0613 0.0121 0.0119

57 0.0177 0.0610 0.0121 0.0116

60 0.0177 0.0619 0.0121 0.0112

s in terms of the One Error metric.

otions tmc2007 medical bibtex corel5k

59 0.1903 0.2792 0.5757 0.7060

62 0.1454 0.2192 0.5292 0.7620

54 0.0837 0.1982 0.7411 0.9300

11 0.0480 0.2072 0.3902 0.6640

61 0.0989 0.1591 0.3862 0.6600

12 0.0411 0.1651 0.3856 0.5920

62 0.0821 0.1652 0.3801 0.5920

63 0.0631 0.1441 0.3741 0.5980

66 0.0431 0.1261 0.3693 0.5780
12 0.0402 0.1321 0.3626 0.5780

s in terms of the Coverage metric.

tions tmc2007 medical bibtex corel5k

00 2.1551 2.8348 56.266 113.05

02 2.6713 3.8828 58.016 279.90

31 4.3105 5.9369 82.593 332.31

01 3.5888 2.4744 25.173 104.00

08 1.7531 2.0030 23.173 104.58

59 1.4213 2.0570 18.551 91.624
65 2.0333 1.8318 57.343 206.88

60 1.7452 1.5945 36.395 193.94

48 1.4324 1.4804 36.351 143.07

60 1.4136 1.5345 36.318 110.69

Table 12
The performance of 10 different multi-label classification approaches on eight datasets in terms of the Average Precision metric.

Algorithm dataset scene yeast enron emotions tmc2007 medical bibtex corel5k

ML-kNN 0.8511 0.7584 0.6345 0.6938 0.8442 0.7841 0.3489 0.2655

ML-C4.5 0.7335 0.7156 0.5658 0.7166 0.8421 0.8053 0.3922 0.1958

LP 0.8244 0.7004 0.4485 0.6742 0.8630 0.7767 0.2645 0.0807

BR 0.8188 0.7548 0.6688 0.7071 0.9073 0.8266 0.5753 0.3032

CC 0.8159 0.7579 0.6817 0.7137 0.9167 0.8652 0.5762 0.2988

CLR 0.8600 0.7685 0.7018 0.7215 0.9630 0.8629 0.5782 0.3520

QWeightedML 0.8400 0.7003 0.6543 0.6795 0.9233 0.8617 0.4975 0.3105

TSVM 0.8598 0.7641 0.6970 0.7242 0.9342 0.8816 0.5780 0.3410

TSPCCM 0.8667 0.7715 0.6970 0.7323 0.9627 0.8947 0.5801 0.3546

TSCCM 0.8670 0.7717 0.6933 0.7268 0.9632 0.8880 0.5853 0.3550

Table 13
The testing time of 10 different multi-label classification approaches on eight datasets measured in seconds.

Algorithm dataset scene yeast enron emotions tmc2007 medical bibtex corel5k

ML-kNN 13.92 5.16 3.39 0.25 230 0.29 77 46

ML-C4.5 0.016 0.016 0.36 0.015 1.6 0.047 3.84 1.0

LP 7.00 4.34 7.62 0.21 1356 0.4 508 235

BR 24.12 25.01 65.17 1.02 950 4.2 1370 35

CC 25.05 25.12 65.67 1.06 988 5.3 1410 37

CLR 66.15 104.34 605 2.56 6106 84 83358 2020

QWeightedML 40.32 60.39 174 1.67 2534 25.2 4710 119

TSVM 34.27 54.65 146 1.34 1135 7.0 1564 67

TSPCCM 35.25 54.72 147 1.35 1143 7.5 1593 233

TSCCM 36.68 58.42 172 1.40 1737 8.8 1742 328

Gj. Madjarov et al. / Pattern Recognition 45 (2012) 1019–1034 1027
4.3. Datasets and experimental setup

In our experiments, eight different multi-label classification
problems were addressed by each of the mentioned multi-label
learning methods. The predictive performance in terms of the
metrics defined above and testing times were recorded for every
method for each classification problem. The problems considered
in the experiments include:
1.
 image classification: scene [24] and corel5k [25];

2.
 gene function classification: yeast [26];

3.
 text classification: enron [27], medical [14], bibtex [28] and

tmc2007 [29];

4.
 music classification: emotions [30];

The complete description of the datasets in terms of the number
of training (#tr:e:) and test (#t:e:) examples, the number of
features (#f :), the total number of labels (#l:) and label cardinality
(lc) are shown in Table 7.

The training and testing of the proposed methods were
performed using a custom developed application that uses the
MULAN library1 for the machine learning framework Weka [31].
We also implemented the ML-C4.5 and CC methods under the
same library. The other considered methods are already imple-
mented in MULAN.

The LIBSVM library [32], and in particular SVM with a radial
basis kernel, were used for solving the partial binary classification
problems for all datasets in all problem transformation methods.
The kernel parameter gamma and the penalty C for the datasets
were determined by 5-fold cross validation using only the train-
ing sets. The outputs of the SVM classifiers are converted to
probabilities using the LIBSVM implementation for extending
1 http://mulan.sourceforge.net/.
SVM with probability estimates [32]. In all classification problems
the classifiers were trained using all available training examples
and were evaluated by recognizing all test examples from the
corresponding dataset.

Table 8 shows the values of the threshold t for each dataset
separately, for which the presented results of the proposed
methods are obtained. The value of the threshold t for each
dataset for TSVM, TSCCM and TSPCCM was determined by 5-fold
cross validation on the training set. This was done in order to
achieve optimal performance (trade off) in terms of the four
evaluation metrics and the computational efficiency. The values
0.005 to 0.01 with step 0.001, 0.01 to 0.1 with step 0.01 and 0.1 to
1.0 with step 0.05 were considered for t.
4.4. Results

Tables 9–13 give the performance of each method on each of
the datasets measured in terms of the four performance metrics
and testing speed. The first column of the tables lists the method,
while the remaining columns show the performance of each
method for every dataset. Tables 9–12 show the predictive
performance in terms of Hamming Loss, One Error, Coverage
and Average Precision, irrespectively. The best results per dataset
in these tables are shown in boldface. The testing time of each
method on each of the datasets measured in seconds, are given in
Table 13. The testing times of the algorithm adaptation methods
(ML-kNN and ML-C4.5), binary relevance methods (BR and CC),
label power-set method (LP) and the pair-wise methods (CLR,
QWeightedML, TSVM, TSCCM and TSPCCM) are visually sepa-
rated. This is done in order to make an easier and better
comparison between the results obtained by the methods from
these four groups and the methods from each group separately
(such as the group of the pair-wise methods that attracts the most
attention).

http://mulan.sourceforge.net/

10 9 8 7 6 5 4 3 2 1

TSPCCM

TSCCM

TSVM

QWieghtedML

CLR

BR

CC

ML-kNN

ML-C4.5

LP

Critical Distance = 4.78974

Fig. 3. Average ranks diagram comparing the applied algorithms in terms of

One Error.

10 9 8 7 6 5 4 3 2 1

TSCCM

CLR

TSPCCM

CC

TSVM

BR

ML-kNN

QWeightedML

ML-C4.5

LP

Critical Distance = 4.78974

Fig. 4. Average ranks diagram comparing the applied algorithms in terms of

Coverage.

10 9 8 7 6 5 4 3 2 1

TSPCCM

TSCCM

CLR

TSVM

CC

BR

QWeightedML

ML-kNN

ML-C4.5

LP

Critical Distance = 4.78974

Fig. 5. Average ranks diagram comparing the applied algorithms in terms of

Average Precision.

Gj. Madjarov et al. / Pattern Recognition 45 (2012) 1019–10341028
The results in Tables 9–12 clearly show that among the 10
tested approaches, TSCCM and TSPCCM offer better predictive
performance than the other algorithms, in almost every evalua-
tion metric for all multi-label classification problems. TSPCCM is
significantly better (according to the non-parametric Wilcoxon
test for statistical significance) than CLR (with a significance level
po0:018) in terms of One Error and (po0:012) in terms of
testing time. TSCCM is also significantly better than CLR
(po0:012) in terms of One Error and testing time. The CLR
method shows better predictive performance than the proposed
methods in terms of Coverage for the datasets with large number
of labels (enron, bibtex and corel5k) and in terms of Average
Precision for the enron dataset. For the other datasets, for all
evaluation metrics, the proposed methods are statistically better.
Comparing to the other methods, TSVM, TSCCM and TSPCCM are
2–15% better than the CC method, 2–12% better than ML-kNN,
1.5–17% better than ML-C4.5 and about 5% better than QWeight-
edML. The classifier chain method shows better predictive per-
formance than the binary relevance and the label powerset
methods.

The results in Table 13 show that the proposed methods
(TSVM, TSCCM and TSPCCM) are 2–50 times faster (at prediction
time) than the calibrated label ranking algorithm with majority
voting for all datasets. Also, the proposed methods are 10–220%
faster than the QWeightedML method for all datasets, except for
the corel5k dataset where TSPCCM and TSCCM showed 2 and
2.5 times slower testing time, respectively. The testing time of the
BR method is actually the same as the time spent in the testing
process for the models located in the first layer of the proposed
methods. The testing time of the CC method is slightly longer than
the testing time of the BR method as a result of the increase in the
feature vector size in each binary relevance model (classifier) of
the classifier chain.

The results also show that the ML-C4.5 method is the fastest.
The testing time of the ML-kNN method is shorter than the testing
time of the problem transformation methods except for the LP
method that showed similar testing speed. The intent of including
algorithm adaptation methods, as ML-C4.5 and ML-kNN, in the
experiments was to show that the proposed methods, that belong
to the group of problem transformation methods, can achieve
comparable or even better predictive accuracy. However, their
performance and computational complexity depend strongly on
the type of the base classifier that is used for solving the partial
classification problems.

It is obvious that the introduced classifier chain in TSCCM and
TSPCCM improves the prediction performance of the TSA. These
classifier chain methods outperform the TSVM in all evaluation
metrics. In terms of computational complexity in the prediction
phase, TSCCM show higher complexity than the TSVM, while
TSPCCM show comparable testing times to the TSVM.
10 9 8 7 6 5 4 3 2 1

ML-C4.5

ML-kNN

BR

LP

CC

TSVM

TSPCCM

TSCCM

QWeightedML

CLR

Critical Distance = 4.78974

Fig. 6. Average ranks diagram comparing the applied algorithms in terms of

Testing Time.

10 9 8 7 6 5 4 3 2 1

TSPCCM

TSCCM

CLR

QWeightedML

TSVM

ML-kNN

LP

BR

CC

ML-C4.5

Critical Distance = 4.78974

Fig. 2. Average ranks diagram comparing the applied algorithms in terms of

Hamming Loss.

Gj. Madjarov et al. / Pattern Recognition 45 (2012) 1019–1034 1029
TSCCM and TSPCCM show similar predictive performance for
the eight multi-label classification problems. Statistically, TSPCCM
shows better results than TSCCM in all evaluation metrics, except
60

80

scene
TSVM TSCCM TSPCCM

20

40

te
st

in
g

tim
e

(s
)

TSCCM
HammingLoss One-error

0

threshold - t

threshold - t

0.5

1.0

0.5

1.0
AvgPrecision Coverage

0.00.0

C
ov

er
ag

e

1.00.90.80.70.60.50.40.30.20.10.0

1.00.90.80.70.60.50.40.30.20.10.0

Fig. 7. Predictive performance and testing times of TSVM, TSCCM and TSP

150

yeast
TSVM TSCCM TSPCCM

1.

50

100

te
st

in
g

tim
e

(s
)

0.

0.

0.

0.

0

threshold - t

threshold - t

0.

TSCCM
HammingLoss

101.0
AvgPrecision Coverage

One-error

0

5

0.0

0.5

C
ov

er
ag

e

1.00.90.80.70.60.50.40.30.20.10.0

1.00.90.80.70.60.50.40.30.20.10.0

Fig. 8. Predictive performance and testing times of TSVM, TSCCM and TSP
in Coverage where TSCCM is better but not significantly. In terms
of testing time, TSPCCM is significantly better than TSCCM with
significance level p¼0.0117. So, from the results obtained by the
0 8

1.0

0 8

1.0

TSVM
HammingLoss One-error
AvgPrecision Coverage

0.2

0.4

0.6

0.

0.2

0.4

0.6

.

C
ov

er
ag

e

0.00.0

TSPCCM
HammingLoss One-error

threshold - t

threshold - t

0.5

1.0

0.5

1.0 AvgPrecision Coverage

0.00.0

C
ov

er
ag

e

1.00.90.80.70.60.50.40.30.20.10.0

1.00.90.80.70.60.50.40.30.20.10.0

CCM as functions of the threshold t (0rtr1) for the scene dataset.

100

TSVM
HammingLoss One-error
AvgPrecision Coverage

2

4

6

8

2

4

6

8

C
ov

er
ag

e
C

ov
er

ag
e

threshold - t

threshold - t

00

TSPCCM
HammingLoss

101.0

One-error

AvgPrecision Coverage

0

5

0.0

0.5

1.00.90.80.70.60.50.40.30.20.10.0

1.00.90.80.70.60.50.40.30.20.10.0

CCM as functions of the threshold t (0rtr1) for the yeast dataset.

Gj. Madjarov et al. / Pattern Recognition 45 (2012) 1019–10341030
experiments and the analysis made above, we can conclude that
the TSPCCM slightly outperforms the TSCCM.

Table 8 also shows the values of the reduction parameter (rreal)
from Eq. (7) and the values of the parameter abrmf. It should be
noticed that for smaller values of the reduction parameter rreal the
600

800

enron
TSVM TSCCM TSPCCM

200

400

600

te
st

in
g

tim
e

(s
)

C
ov

er
ag

e

0

threshold - t

TSCCM

20

30

40

0

1.0

HammingLoss One-error
AvgPrecision Coverage

0

10

20

0.0

0.5

1.00.90.80.70.60.50.40.30.20.10.0

threshold - t
1.00.90.80.70.60.50.40.30.20.10.0

Fig. 9. Predictive performance and testing times of TSVM, TSCCM and TSP

4

emotions
TSVM TSCCM TSPCCM

1

2

3

0

TSCCM

3.0

4.0

0.6

0.8

HammingLoss
AvgPrecision Coverage

0.0

1.0

2.0

0.0

0.2

0.4

C
ov

er
ag

e

threshold - t

threshold - t

1.00.90.80.70.60.50.40.30.20.10.0

1.00.90.80.70.60.50.40.30.20.10.0

te
st

in
g

tim
e

(s
)

One-error

Fig. 10. Predictive performance and testing times of TSVM, TSCCM and TSPC
testing time of the proposed methods (TSVM, TSCCM and TSPCCM)
is close to the testing time of the binary relevance method (BR).

To assess whether the overall differences in performance
across the 10 different approaches are statistically significant,
we employed the corrected Friedman test [22] and the post hoc
40

0.8

1.0

TSVM
HammingLoss One-error
AvgPrecision Coverage

10

20

30

0.2

0.4

0.6

C
ov

er
ag

e
C

ov
er

ag
e

threshold - t

00.0

TSPCCM
HammingLoss

20

30

40

0 5

1.0

HammingLoss One-error
AvgPrecision Coverage

0

10

20

0.0

0.5

threshold - t
1.00.90.80.70.60.50.40.30.20.10.0

1.00.90.80.70.60.50.40.30.20.10.0

CCM as functions of the threshold t (0rtr1) for the enron dataset.

4.00.8

TSVM
HammingLoss
AvgPrecision Coverage

1.0

2.0

3.0

0.2

0.4

0.6

0.00.0

TSPCCM

3.0

4.0

0.6

0.8

HammingLoss
AvgPrecision Coverage

0.0

1.0

2.0

0.0

0.2

0.4

C
ov

er
ag

e
C

ov
er

ag
e

threshold - t

threshold - t
1.00.90.80.70.60.50.40.30.20.10.0

1.00.90.80.70.60.50.40.30.20.10.0

One-error

One-error

CM as functions of the threshold t (0rtr1) for the emotions dataset.

Gj. Madjarov et al. / Pattern Recognition 45 (2012) 1019–1034 1031
Nemenyi test [23] as recommended by Demsar [21]. The Fried-
man test is a non-parametric test for multiple hypotheses testing.
It ranks the algorithms according to their performance for each
dataset separately, thus the best performing algorithm gets the
rank of 1, the second best the rank of 2, etc. In case of ties, it
assigns average ranks. Then, the Friedman test compares the
average ranks of the algorithms and calculates the Friedman
statistic w2

F , distributed according to the w2
F distribution with

k�1 degrees of freedom (k being the number of algorithms).
Iman and Davenport [33] show that the Friedman statistic is
undesirably conservative and derive a corrected F-statistic that is
distributed according to the F-distribution with k�1 and ðk�1Þ �
ðN�1Þ degrees of freedom (k being the number of algorithms and
N being the number of datasets).

If a statistically significant difference in the performance is
detected, than we can proceed with a post hoc test. The Nemenyi
test is used to compare all the classifiers to each other. In this
procedure, the performance of two classifiers is significantly
different if their average ranks differ more than some critical
distance. The critical distance depends on the number of algo-
rithms, the number of datasets and the critical value (for a given
significance level – p) that is based on the Studentized range
statistic and can be found in statistical textbooks.

We present the result from the Nemenyi post hoc test
with average rank diagrams as suggested by Demsar [21]. These
are given on Figs. 2–6. The ranks are depicted on the axis, in
such a manner that the best ranking algorithms are at the right-
most side of the diagram. The algorithms that do not differ
significantly (at the significance level of p¼0.05) are connected
with a line.

In the average ranks diagrams, two groups of algorithms are
clearly separated. The first contains the pair-wise methods CLR,
QWeightedML and our TSA methods (TSVM, TSCCM and TSPCCM).
The second contains the algorithm adaptation methods ML-C4.5
and ML-kNN, LP, BR and CC.
0

2000

4000

6000

8000

tmc2007

TSVM TSCCM TSPCCM

0

0

0

0

TSCCM

C
ov

er
ag

e
an

d
A

vg
. P

re
ci

si
on

One-error
AvgPrecision

0.0

1.0

2.0

3.0

0.00

0.05

0.10

0.15
Coverage
HammingLoss

threshold - t

threshold - t

1.00.90.80.70.60.50.40.30.20.10.0

1.00.90.80.70.60.50.40.30.20.10.0

te
st

in
g

tim
e

(s
)

Fig. 11. Predictive performance and testing times of TSVM, TSCCM and TSPC
The methods in the first group have better performance in
terms of all evaluation metrics. The methods in the second group
are faster at testing time. The CC variant of the BR method from
the second group has comparable performance to the methods
from the first group in terms of Coverage. The QWeightedML
method from the first group is only better than the methods in
the second group in terms of Hamming Loss and One Error, and
worse in terms of the other two metrics.

The separation between the two groups is clearest in terms of
the Average Precision and One Error metrics but less clear in
terms of Coverage. The statistical tests we use are conservative
and the differences in performance for methods within the same
group are not significant. However, the best method from the first
group is typically significantly better than (most of) the methods
from the second group (e.g., TSPCCM and TSCCM in terms of One
Error and Average Precision).

The dependence of the predictive performance of the proposed
approaches on the different values of the threshold t (0rtr1)
are shown on Figs. 7–14 for each dataset separately. The same
figures also show the testing times of the methods (TSVM, TSCCM
and TSPCCM) as a function of the selected threshold t. It can be
seen, as t increases, computational efficiency also increases, but
performance decreases. One can thus make a trade-off between
predictive performance and testing speed by selecting appropri-
ate threshold.

Overall, Coverage varies mostly with t, followed by One Error
and Average Precision. Hamming Loss shows the least variance.
Testing times decrease significantly as t increases, but the rates of
decrease vary across the datasets. For the datasets with a smaller
number of labels, the decrease is not very sharp and for small
values of the threshold t (0.0 - 0.2) the predictive performance of
TSVM, TSCCM and TSPCCM changes only slightly, while the
testing time decreases significantly (often for more than 40%).
For the datasets with a large number of labels (medical—45,
enron—53, bibtex—159 and corel5k—374), testing times
0.0

1.0

2.0

3.0

.0

.1

.1

.2

C
ov

er
ag

e
an

d
A

vg
. P

re
ci

si
on

TSVM
HammingLoss
Coverage

TSPCCM

0.0

1.0

2.0

3.0

0.00

0.05

0.10

0.15

C
ov

er
ag

e
an

d
A

vg
. P

re
ci

si
on

One-error
AvgPrecision

One-error
AvgPrecision

Coverage
HammingLoss

threshold - t

threshold - t

1.00.90.80.70.60.50.40.30.20.10.0

1.00.90.80.70.60.50.40.30.20.10.0

CM as functions of the threshold t (0rtr1) for the tmc2007 dataset.

80000

100000

bibtex
TSVM TSCCM TSPCCM

800.8

TSVM
HammingLoss One-error
AvgPrecision Coverage

0

20000

40000

60000

20

40

60

0.2

0.4

0.6

0

TSCCM

00

TSPCCM

60

80

0.6

0.8

HammingLoss One-error
AvgPrecision

HammingLoss
AvgPrecisionCoverage

One-error
Coverage

40

60

80

0.6

0.8

0

20

40

0

0.2

0.4

0

20

40

0

0.2

0.4

C
ov

er
ag

e

C
ov

er
ag

e

C
ov

er
ag

e

threshold - t threshold - t

threshold - t
1.00.90.80.70.60.50.40.30.20.10.0

1.00.90.80.70.60.50.40.30.20.10.0 1.00.90.80.70.60.50.40.30.20.10.0

threshold - t
1.00.90.80.70.60.50.40.30.20.10.0

te
st

in
g

tim
e

(s
)

Fig. 13. Predictive performance and testing times of TSVM, TSCCM and TSPCCM as functions of the threshold t (0rtr1) for the bibtex dataset.

150

medical
TSVM TSCCM TSPCCM

10.01.0

TSVM
HammingLoss
AvgPrecision

50

100

5.00.5

C
ov

er
ag

e
C

ov
er

ag
e

C
ov

er
ag

e

0 0.00.0

TSCCM TSPCCM

10.01.0

One-error
AvgPrecision Coverage

One-error
Coverage

One-error
Coverage

10.01.0

HammingLoss
AvgPrecision

0.0

5.0

0.0

0.5

0.0

5.0

0.0

0.5

HammingLoss

threshold - t threshold - t

threshold - t threshold - t
1.00.90.80.70.60.50.40.30.20.10.0

1.00.90.80.70.60.50.40.30.20.10.0 1.00.90.80.70.60.50.40.30.20.10.0

1.00.90.80.70.60.50.40.30.20.10.0

te
st

in
g

tim
e

(s
)

Fig. 12. Predictive performance and testing times of TSVM, TSCCM and TSPCCM as functions of the threshold t (0r tr1) for the medical dataset.

Gj. Madjarov et al. / Pattern Recognition 45 (2012) 1019–10341032
decrease sharply between t¼0.0 and t¼0.1, so the reduction of
the testing time of the TSA over the CLR becomes even more
notable. The testing time of TSA is 10 times shorter than the
testing time of CLR for medical, four times for enron, fifty times
for bibtex and eight times shorter for corel5k datasets for the
corresponding chosen threshold shown in Table 8.
It should be noted that for t¼1, the predictive performance of
the BR method is better as compared to the predictive performance
of the proposed methods. This difference appears because the BR
method orders the labels according to the probability association of
each label from each model Mk, while the proposed methods order
the labels by the number of votes that can only be 0 or 1.

4000

corel5k
TSVM TSCCM TSPCCM

4001.5

TSVM
HammingLoss

One-error

One-error
AvgPrecision

HammingLoss
AvgPrecision

HammingLoss
AvgPrecision

Coverage

0

1000

2000

3000

te
st

in
g

tim
e

(s
)

100

200

300

0.5

1

C
ov

er
ag

e
C

ov
er

ag
e

C
ov

er
ag

e

0

TSCCM

00

TSPCCM

200

300

400

1

1.5

200

300

400

1

1.5
Coverage

One-error
Coverage

0

100

200

0

0.5

0

100

200

0

0.5

threshold - t threshold - t

threshold - tthreshold - t

1.00.90.80.70.60.50.40.30.20.10.0 1.00.90.80.70.60.50.40.30.20.10.0

1.00.90.80.70.60.50.40.30.20.10.01.00.90.80.70.60.50.40.30.20.10.0

Fig. 14. Predictive performance and testing times of TSVM, TSCCM and TSPCCM as functions of the threshold t (0r tr1) for the corel5k dataset.

Gj. Madjarov et al. / Pattern Recognition 45 (2012) 1019–1034 1033
5. Conclusions

A two stage architecture (TSA) for efficient pair-wise multi-
label learning and its three implementations (TSVM, TSCCM and
TSPCCM) were presented. The architecture is organized in two
layers with binary relevance models in the first layer and pair-
wise models in the second layer. Introducing a threshold that
dynamically affects the number of pair-wise classifiers consulted
in the prediction phase, a significant reduction in the computa-
tional complexity was achieved while keeping comparable per-
formance. Utilizing a classifier chain the performance was even
improved in the TSCCM and TSPCCM implementations. The
proposed architecture offers a possibility of fine grain control of
the trade-off between the speed and the predictive performance
(of the classifier) by varying the threshold.

The performance of the proposed methods are compared with
two algorithm adaptation methods (Multi-Label k-NN and Multi-
Label C4.5) and five problem transformation methods (Binary
Relevance, Classifier Chain, Calibrated Label Ranking method with
majority voting, the Quick Weighted method for pair-wise multi-
label learning and the Label Powerset method) on eight different
real-world datasets (enron, yeast, scene, emotions, tmc2007, med-
ical, bibtex and corel5k). The TSCCM and the TSPCCM outperform
the calibrated label ranking algorithm in terms of predictive
performance and also show significantly better predictive perfor-
mance than the other compared methods. In terms of testing speed
the proposed methods (TSVM, TSCCM and TSPCCM) were 2–50
times faster than the calibrated label ranking algorithm and up to
2.2 times faster than the QWeightedML method. As compared to
the binary relevance method (BR), TSVM, TSCCM and TSPCCM
show better predictive performance, while the testing times were
always larger than the testing time of the BR method, because of
the testing time of the models of the second layer of the
architecture. The testing times of TSVM, TSCCM and TSPCCM
approach the testing time of the BR method as the value of the
reduction parameter rreal decreases. In comparison to the algorithm
adaptation methods (ML-kNN and ML-C4.5), the proposed
methods show better predictive performance, while their compu-
tational complexity is higher. Statistically TSPCCM shows better
predictive results than TSCCM in all evaluation metrics except in
Coverage. Also, its testing time is shorter than the TSCCM.

Let us conclude with some ideas for further work. The original
implementations of the two stage architecture involve one global
threshold that is determined by cross validation. In our future
work, we plan to investigate a new threshold calibration method
that establishes a strong connection between the label cardinality
of the training data and the predictions for the testing data in the
first layer of the architecture. By introducing the label cardinality
in this calibration threshold method, we believe that independent
thresholds can be introduced for each binary relevance model,
leading to improvements in the predictive performance and the
computational complexity of the architecture.
Acknowledgments

The authors would like to thank Dragi Kocev, Department of
Knowledge Technologies, Jožef Stefan Institute, Ljubljana for his
valuable comments and suggestions.
References

[1] K. Brinker, J. Fürnkranz, E. Hullermeie, A unified model for multilabel
classification and ranking, in: Proceedings of the 17th European Conference
on Artificial Intelligence, Riva Del Garda, Italy, 2006, pp. 489–493.

[2] G. Tsoumakas, I. Katakis, Multi label classification: an overview, International
Journal of Data Warehousing and Mining 3 (3) (2007).

[3] M.L. Zhang, Z.H. Zhou, ML-kNN: a lazy learning approach to multi-label
learning, Pattern Recognition 40 (7) (2007) 2038–2048.

[4] A. Wieczorkowska, P. Synak, Z. Ras, Multi-label classification of emotions in
music, Intelligent Information Processing and Web Mining (2006) 307–315.

[5] E. Spyromitros, G. Tsoumakas, I. Vlahavas, An empirical study of lazy multi-
label classification algorithms, Artificial Intelligence: Theories, Models and
Applications (2008) 401–406.

[6] K. Crammer, Y. Singer, A family of additive online algorithms for category
ranking, Journal of Machine Learning Research 3 (2003) 1025–1058.

Gj. Madjarov et al. / Pattern Recognition 45 (2012) 1019–10341034
[7] M.L. Zhang, Z.H. Zhou, Multi-label neural networks with applications to
functional genomics and text categorization, IEEE Transactions on Knowledge
and Data Engineering 18 (10) (2006) 1338–1351.

[8] R.E. Schapire, Y. Singer, Boostexter: a boosting-based system for text
categorization, Machine Learning 39 (2/3) (2000) 135–168.

[9] F. de Comite, R. Gilleron, M. Tommasi, Learning multi-label alternating
decision trees from texts and data, in: Proceedings of the Third International
Conference on Machine Learning and Data Mining in Pattern Recognition,
Leipzig, Germany, 2003, pp. 35–49.

[10] F. Thabtah, P. Cowling, Y. Peng, Mmac: a new multi-class, multi-label
associative classification approach, in: Proceedings of the Fourth IEEE Inter-
national Conference on Data Mining, 2004, pp. 217–224.

[11] J. Fürnkranz, Round robin classification, Journal of Machine Learning
Research 2 (5) (2002) 721–747.

[12] T.F. Wu, C.J. Lin, R.C. Weng, Probability estimates for multiclass classification by
pairwise coupling, Journal of Machine Learning Research 5 (8) (2004) 975–1005.

[13] A. Clare, R.D. King, Knowledge discovery in multi-label phenotype data, in:
Proceedings of the Fifth European Conference on Principles of Data Mining
and Knowledge Discovery, Freiburg, Germany, 2001, pp. 42–53.

[14] J. Read, B. Pfahringer, G. Holmes, E. Frank, Classifier chains for multi-label
classification, in: Proceedings of the 20th European Conference on Machine
Learning, 2009, pp. 254–269.

[15] G. Tsoumakas, I.P. Vlahavas, Random k-labelsets: an ensemble method for
multilabel classification, in: Proceedings of the 18th European Conference on
Machine Learning, 2007, pp. 406–417.

[16] J. Read, B. Pfahringer, G. Holmes, Multi-label classification using ensembles of
pruned sets, in: Proceedings of the Eighth IEEE International Conference on
Data Mining, 2008, pp. 995–1000.

[17] J. Read, A Pruned problem transformation method for multi-label classifica-
tion, in: Proceedings of the New Zealand Computer Science Research Student
Conference, 2008, pp. 143–150.

[18] S.H. Park, J. Fürnkranz, Efficient pairwise classification, in: Proceedings of
18th European Conference on Machine Learning, Warsaw, Poland, 2007,
pp. 658–665.

[19] E.L. Mencı́a, S.H. Park, J. Fürnkranz, Efficient voting prediction for pairwise
multi-label classification, Neurocomputing 73 (2010) 1164–1176.
[20] J. Fürnkranz, E. Hullermeier, E.L. Mencı́a, K. Brinker, Multi-label classification
via calibrated label ranking, Machine Learning 73 (2) (2008) 133–153.

[21] J. Demsar, Statistical comparisons of classifiers over multiple data sets,
Journal of Machine Learning Research 7 (2006) 1–30.

[22] M. Friedman, A comparison of alternative tests of significance for the
problem of mrankings, Annals of Mathematical Statistics 11 (1940) 86–92.

[23] P.B. Nemenyi, Distribution-free multiple comparisons, Ph.D. Thesis, Princeton
University, 1963.

[24] M. Boutell, J. Luo, X. Shen, C. Brown, Learning multi-label scene classification,
Pattern Recognition 9 (37) (2004) 1757–1771.

[25] P. Duygulu, K. Barnard, N. de Freitas, D. Forsyth, Object recognition as
machine translation: learning a lexicon for a fixed image vocabulary, in:
Proceedings of the Seventh European Conference on Computer Vision, 2002,
pp. 97–112.

[26] A. Elisseeff, J. Weston, A kernel method for multi-labelled classification,
Advances in Neural Information Processing Systems 14 (2002) 681–687.

[27] B. Klimt, Y. Yang, The enron corpus: a new dataset for email classification
research, in: Proceedings of the 15th European Conference on Machine
Learning, Springer, Pisa, Italy, 2004, pp. 217–226.

[28] I. Katakis, G. Tsoumakas, I. Vlahavas, Multilabel text classification for
automated tag suggestion, in: Proceedings of the ECML/PKDD 2008 Discovery
Challenge, Antwerp, Belgium, 2008.

[29] A. Srivastava, B. Zane-Ulman, Discovering recurring anomalies in text reports
regarding complex space systems, in: Proceedings of the IEEE Aerospace
Conference, Morgan Kaufmann, 2005, pp. 55–63.

[30] K. Trohidis, G. Tsoumakas, G. Kalliris, I. Vlahavas, Multilabel classification of
music into emotions, in: Proceedings of International Conference on Music
Information Retrieval, Philadelphia, PA, USA, 2008, pp. 320–330.

[31] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, I.H. Witten, The
weka data mining software: an update, Software available at: /http://www.
cs.waikato.ac.nz/ml/weka/S, SIGKDD Explorations 11(1).

[32] C.-C. Chang, C.-J. Lin, LIBSVM: a library for support vector machines, ACM
Transactions on Intelligent Systems and Technology 2 (2011) 27:1–27:27.
Software available at: /http://www.csie.ntu.edu.tw/�cjlin/libsvmS.

[33] R.L. Iman, J.M. Davenport, Approximations of the critical region of the
Friedman statistic, Communications in Statistics 1 (1980) 571–595.
Gjorgji Madjarov received his bachelor and master degrees in Computer Science, Automation and Electrical Engineering in 2007 and 2009, respectively, from the Faculty of
Electrical Engineering and Information Technology, University ‘‘Ss. Cyril and Methodius’’ in Skopje, R. of Macedonia. Now he is working on his PhD Thesis in the area of
multi-label and hierarchical classification. At present he is a Teaching and Research Assistant at the Faculty of Computer Science and Engineering in Skopje and a Visiting
Researcher at the Jožef Stefan Institute, Slovenia. His fields of interest include artificial intelligence, supervised learning, unsupervised learning, computer vision and
pattern recognition.
Dejan Gjorgjevikj received his BSc, in Electrical Engineering, and his MSc and PhD in Computer Science and Engineering from the Faculty of Electrical Engineering,
University ‘‘Ss. Cyril and Methodius’’—Skopje, in 1992, 1997 and 2004, respectively. He is currently a Professor at the Faculty of Computer Science and Engineering,
University ‘‘Ss. Cyril and Methodius’’ in Skopje, Macedonia. His research interests include artificial intelligence, machine learning, computer vision, pattern recognition and
software engineering. He is a member of IEEE and ACM.
Sašo Džeroski received his PhD degree in Computer Science from the University of Ljubljana in 1995. He is currently a Scientific Councilor at the Department of Knowledge
Technologies, Jožef Stefan Institute, and the Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins, both in Ljubljana, Slovenia. He is also an
Associate Professor at the Jožef Stefan International Postgraduate School, also in Ljubljana. His research interests include data mining and machine learning and their
applications in environmental sciences (ecology) and life sciences (biomedicine). He is an ECCAI fellow, member of the executive board of SLAIS, member of ACM SIGKDD
and IEEE.

http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm

	Two stage architecture for multi-label learning
	Introduction
	Related work
	Algorithm adaptation methods
	Problem transformation methods

	Two stage architecture (TSA) and its implementations
	Two stage architecture (TSA)
	Two stage voting method--TSVM
	Two stage classifier chain method--TSCCM
	Two stage pruned classifier chain method--TSPCCM
	Computational complexity

	Experiments
	Evaluation metrics
	Experimental questions
	Datasets and experimental setup
	Results

	Conclusions
	Acknowledgments
	References

