
Fusing High- and Low-Lev
Speaker Recognit

Joseph P. Campbell, Douglas A. Rey

MIT Lincoln Labor
Lexington, Massachusetts 

{jpc, dar, rbd}@ll.

ABSTRACT
The area of automatic speaker recognition has been dominated
by systems using only short-term, low-level acoustic 
information, such as cepstral features. While these systems have
produced low error rates, they ignore higher levels of
information beyond low-level acoustics that convey speaker
information. Recently published works have demonstrated that
such high-level information can be used successfully in 
automatic speaker recognition systems by improving accuracy
and potentially increasing robustness. Wide ranging high-level-
feature-based approaches using pronunciation models, prosodic
dynamics, pitch gestures, phone streams, and conversational
interactions were explored and developed under the SuperSID 
project at the 2002 JHU CLSP Summer Workshop (WS2002):
http://www.clsp.jhu.edu/ws2002/groups/supersid/. In this paper, 
we show how these novel features and classifiers provide 
complementary information and can be fused together to drive 
down the equal error rate on the 2001 NIST Extended Data Task 
to 0.2%—a 71% relative reduction in error over the previous
state of the art. 

 This work is sponsored by the Department of Defense under Air Force Contract F19
No. 0121285. Opinions, interpretations, conclusions, and recommendations are those of
Government.
 The authors gratefully acknowledge the CLSP group at JHU for organizing and hosting

1. INTRODUCTION 
Humans rely on several different types or levels of information 
in the speech signal to recognize others from voice, alone. We
can roughly categorize these features into a hierarchy running 
from low-level information, such as the sound of a person’s
voice (related to physical traits of the vocal apparatus), to high-
level information, such as particular word usage or idiolect 
(related to learned habits and style). While all of these levels
appear to convey useful speaker information, automatic speaker 
recognition systems have relied almost exclusively on low-level 
information via short-term features related to the speech
spectrum.

A concerted research effort to advance these underutilized high-
level information sources was undertaken at the 2002 JHU 
Summer Workshop on Human Language Technology [1]. The
time was ripe for this undertaking based on early successful
evaluations [2, 3, 4, 5, 6], recent advances in tools to reliably
extract features for high-level characterization (e.g., phone and
speech recognizers), grand-scale applications providing vast 
amounts of speech from a speaker to learn speaking habits (e.g., 
audio mining), large development corpora, and plentiful 
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tational resources. Details of the various approaches 
aken in the project can be found in the companion papers 

to the SuperSID project [7, 8, 9, 10, 11] and on the 
ID website [12].

new features hold the promise of improving basic 
ition accuracy by adding complementary information and, 
ly, robustness to acoustic degradations from channel and 
effects, to which low-level features are highly susceptible.
conceiving of and extracting various high-level features,
eed to be combined to reinforce each other. This paper
es the fusion techniques developed at MIT Lincoln 
tory and the use of these techniques to fuse the scores of

mponent systems developed in the SuperSID project. The 
ng fusion system dramatically reduces the error rate. 

2. EXTENDED DATA TASK 
ocus of the SuperSID project was on text-independent 
r detection using the extended data task from the 2001
Speaker Recognition Evaluation [6]. This task was
ced to allow exploration and development of techniques 
an exploit significantly more training data than is 
nally used in NIST evaluations. Speaker models are 
 using 1, 2, 4, 8, and 16 complete conversation sides 
 a conversation side is nominally 2.5 minutes long) as
d to the normal 2 minutes of training speech used in other
evaluations. A complete conversation side was used for 
. The 2001 Extended Data Task used the entire
board-I conversational telephone speech corpus and was 
d for the project because of the availability of several 
board-I annotated resources providing features and 
res related to high-level speaker information, which are
d in [1].

pply a large number of target and nontarget trials and 
r models trained with up to 16 conversations of training 

(~40 minutes), the evaluation used a crossvalidation
sing of the entire corpus. The corpus was divided into 6
ns of ~80 speakers each. All trials within a partition 

ed models and test segments from within that partition, 
data from the other 5 partitions were available for 
ound model building, normalization, etc. The task consists 

00 speakers with ~4,100 target models (a speaker had
le models for different amounts of training data) and



~57,000 trials for the testing phase, containing matched and 
mismatched handset trials and some cross-sex trials. The 
crossvalidation experiments were driven by NIST’s speaker
model training lists and index files indicating which models were
to be scored against which conversation sides for each partition. 

Scores from each partition are pooled and a detection error 
tradeoff (DET) curve is plotted to show system results at all
operating points. The equal error rate (EER), where the false 
acceptance rate equals the missed detection rate, is used as a 
summary performance measure for comparing systems. Each 
approach formed a likelihood ratio detector by creating a speaker 
model using training data and a single speaker-independent 
background model using data from the held-out splits. For some
systems, a set of individual background speaker models from the 
held-out set was used as cohort models. During recognition, a 
test utterance is scored against the speaker and background
model(s) and the ratio (or difference in the log domain) is 
reported as the detection score for DET plotting and for fusing. 

3. HIGH-LEVEL APPROACHES
In this section, we survey some approaches to exploit high-level
speaker information. The nine numbered systems were selected
for fusion. The reader should consult the referenced papers for
more details on the systems developed at the Workshop. 

3.1 Acoustic Features
1. Acoustic Baseline (GMM-UBM cepstral features) [13]:
Although this project purposely avoided using standard acoustic
frame-level signal processing features such as cepstra, we wanted 
to establish a baseline of standard approaches on the extended 
data set. The acoustic system was a standard GMM-UBM system
using short-term cepstral-based features with a 2048 mixture 
UBM built using data from the Switchboard-II corpus. This 
system produces an EER ranging from 3.3% for 1-conversation
training to 0.7% for 8-conversation training. 

3.2 Prosodic Features
2. Pitch and Energy Distributions [11]: As a baseline, a simple
GMM classifier using a feature vector consisting of per-frame
log pitch, log energy, and their first derivatives was developed
which produced an EER of 16.3% for 8-conversation training. 

3. Pitch and Energy Track Dynamics [11]: The aim was to learn 
pitch and energy gestures by modeling the joint slope dynamics
of pitch and energy contours. A sequence of symbols describing 
the pitch and energy slope states (rising, falling), segment
duration, and phoneme or word context is used to train an n-gram 
classifier. Using only slope and duration produced an EER of 
14.1% for 8-conversation training, which dropped to 9.2% when 
fused with the absolute pitch and energy distributions, indicating
it is capturing new information about the pitch and energy
features. Although not purely a prosodic system, adding 
phoneme context to duration and contour dynamics produces an 
EER of 5.2%. (Also, examining pitch dynamics by dynamic time
warp matching of word-dependent pitch tracks using 15 words or 
short phrases produced an EER of 13.3%.) 

4. Prosodic Statistics [10]: Using the various measurements from
the SRI prosody database, 19 statistics from duration and pitch
related features, such as mean and variance of pause durations 
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values per word, were extracted from each conversation 
Using these feature vectors in a k-nearest neighbor 
ier on 8-conversation training produced an EER of 15.2%
e 11 duration-related statistics, 14.8% for the 8 pitch-
 statistics and 8.1% for all 19 features combined.

hone Features
ne N-grams [14]: In this approach, the time sequence of

s coming from a bank of open-loop phone recognizers is
to capture some information about speaker-dependent
ciations. Multiple phone streams are scored independently
sed at the score level. Using the 5 PPRLM phone streams 
e bag-of-n-grams classifier, an EER of 4.8% was obtained 
onversation training. 

ne Binary Trees [8]: This approach also aims to model the
equence of phone tokens, but a binary tree model is used 
 of an n-gram model. With a binary tree, it is possible to
ge context without exponential memory expansion and the 
re lends itself to some adaptation and recursive smoothing

ques important for sparse data sets. Using a 3-token history
alent to 4-grams) and adaptation from a speaker-
ndent tree, an EER of 3.3% is obtained for 8-conversation 
g. The main improvement with this approach is robustness 
ited training conditions. For example, it obtains an EER of 

or 1-conversation training compared to 33% for the n-gram 
ier.

ss-stream Phone Modeling [7]: While the above phone 
ches attempt to model phone sequences in the temporal
sion, this approach examines capturing cross-stream
ation from the multiple phone streams. The phone streams

st aligned and then co-occurrence of the different language 
s are modeled via n-grams. This produces an EER of 4.0% 
onversation training. Cross-stream and temporal systems
 fused together to produce an EER of 3.6%. In general,
chnique can be expanded using graphical models to 

aneously capture both cross-stream and temporal sequence 
ation.

nunciation Modeling [9]: The aim here is to learn speaker-
ent pronunciations by comparing constrained word-level

atic speech recognition (ASR) phoneme streams with 
oop phone streams. The phonemes from the SRI ASR 
transcripts are aligned on a per-frame level with the

 open-loop phones. Conditional probabilities for each
oop phone, given an ASR phoneme, are computed per 
r and for a background model. This technique produces an 
g 2.3% EER for 8-conversation training. 

exical Features
rd N-grams [15]: Although not an active focus in the 
t, an n-gram idiolect system was implemented and used to
ne the effects of using errorful word transcripts at various
rror rates (WER). The automatic transcripts were selected
vide a range of WERs and do not reflect fundamental 
nces in the suppliers’ technologies. The 8-conversation 
g EERs using the different transcripts are as follows:
l 9%, Dragon 11% (20% WER), SRI 12% (30% WER), 

BN 16% (50% WER). The approach is relatively robust, 
t 50% WER using BBN’s real-time system.



4. FUSION 
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Given the pallet of new features and approaches outlined above,
we next set out to examine fusion of the different levels of 
information to see if they are indeed providing complementary
information to improve speaker recognition accuracy.

4.1 Fusion System Design 
Many classifiers for fusing speaker recognition systems were
explored at Lincoln Laboratory prior to the JHU Workshop.
These systems included GMM-UBM, text-constrained GMM-
UBM, word n-gram, phone n-gram, part-of-speech n-gram, and
conversational-pattern n-gram methods spanning EERs from 1%
to 30% [16]. The LNKnet pattern classification software [17]
was used to design and compare multilayer perceptron, radial 
basis function, Gaussian, Gaussian mixture, k-nearest neighbor, 
binary tree, and support vector machine classifiers. The Lincoln
fusion approach was adopted and adapted for use at the
Workshop because of the related and similarly accurate Lincoln
and Workshop systems to be fused. 
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Various fusion systems were developed in two stages using the
NIST SRE’01 Switchboard-I corpus. NIST partitioned the data 
into 6 splits so that no speaker occurs in more than one split to
allow crossvalidation jackknifing. In stage 1, splits 1, 2, and 3 
are combined for training and splits 4, 5, and 6 are combined for
testing. This resulted in low statistical significance because of
too few errors; additional testing was needed. In stage 2, 6-fold 
crossvalidation using the SRE’01 splits with a leave-one-out 
technique was used. The perceptron and the GMM were the two 
best classifiers found with respect to minimizing the total number 
of errors over the training set. The perceptron has no hidden 
layer and is similar to a linear discriminant with a sigmoidal
output squashing function. 
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the beFinally, the fuser can be fine tuned by adjusting its configuration, 

normalization, and prior probabilities settings. For example,
separate classifiers can be created and used for each training 
condition and split. Also, LNKnet can minimize the errors for a 
given operating point, e.g., EER, by adjusting the priors [16].
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4.2 Decision Region Comparison
Fusions using a perceptron or a GMM were found to have lower 
error rates than the component systems and other fusions 
(multilayer perceptron, radial basis function, Gaussian, k-nearest 
neighbor, binary tree, and support vector machine). Figure 1
shows a comparison of the decision regions created by the GMM
and perceptron fusion classifiers. Four components were fused in 
this comparison: baseline GMM-UBM, text-constrained GMM-
UBM, word n-gram, and the phone n-gram systems. Two-
dimensional slices are shown for 2604 test patterns using
8 training conversations per speaker model in each of the
systems being fused. The error rates are extremely low (~0.6%),
with the perceptron committing 15 errors and the GMM 18
errors. This insignificant difference did not cause us to favor one
classifier over the other. We chose the perceptron fuser because
its simpler decision regions in sparse data areas, as shown in 
Figure 1, appear to be more reasonable and, thus, it is likely to be
more robust. 
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ure 1. Decision region comparison of GMM vs. Perceptron.

erceptron Fusions
e Workshop, we chose a single-layer perceptron to fuse the 
 from the various systems. This perceptron has a layer
ting of inputs for each system (and a bias term), no hidden 
and an output layer using sigmoids on the target and 
get nodes. A separate perceptron was trained for each of
x splits using the five held-out splits. The priors were 
d in LNKnet to minimize detection cost [6, 16].
sed the nine best performing individual systems covering 
ic, prosodic, phone, and lexical approaches. The systems
heir EERs are given in Table 1. Each system used
ersations to train each speaker’s model. These models
cored against messages according to the NIST control file 
rmine EERs and provide inputs to the fusion system. The

 cepstra (1) and Pronunciation modeling (8) systems gave 
st and next best individual EERs, respectively.

ble 1. The nine component systems to be fused. EERs are
m the 8-conversation training condition. 

System EER
ustic baseline (GMM-UBM cepstral features) 0.7
h and energy distributions 16.3
h and energy slopes + durations + phoneme context 5.2
sodic statistics 8.1
ne n-grams (5 PPRLM phone sets) 4.8
ne binary trees (5 PPRLM phone sets) 3.3
ne cross-stream + temporal (5 PPRLM phone sets) 3.6
nunciation modeling (SRI prons + 5 PPRLM phone sets) 2.3
rd n-grams/idiolect (Dragon transcripts) 11.0

ure 2, we show a DET plot with three curves from the
experiment. The top two, with EER=0.7%, are for the 
cepstra system, alone, and from fusing all but the GMM 
 system (Fuse 8). The fusion of all 9 systems produces the
 curve with EER=0.2%—a 71% relative reduction. In this 
ersation training condition, 272 speaker models were 
 and scored against 3,813 target and 6,564 impostor

ges. Binomial and bootstrap tests show at least 95%
ence that the fusion system exceeds the baseline, clearly
g that the new features and classifiers are supplying

ementary information to the baseline acoustic system.
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Figure 2. DET plot showing three curves. Using only GMM-
cepstra (EER=0.7%), fusing 8 systems without GMM-cepstra
(EER=0.7%), and fusing all 9 systems (EER=0.2%).
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We also conducted experiments examining fusing subsets of the 
systems. Table 2 shows the best subset of m systems to fuse from 
among all 9 systems. Fusions of m=1 to 5 systems are shown, 
beyond which accuracy plateaus at 0.22% EER. For all m, the 
GMM-cepstra acoustic baseline system (1) is selected and, thus,
is most powerful with respect to this fusion. The next most
powerful feature is seen to be pitch gesture with phoneme 
context (3)—when fused with system 1, it yields the lowest 
2-way fusion EER of 0.3%. It is intuitively appealing to see that
a system covering both prosodic and phonemic information is the 
best one to fuse with conventional acoustics. Selecting system 3 
tends to knock out phone-based systems that are individually
more accurate, but lacking prosodic information. One of the two 
best 3-way fusions shown in the table adds idiolect to the best 
2-way fusion system—another intuitively appealing result. 

The au
classif
The S
gratefu
Andre
Radu M

[1] D. R
D. Klus
SuperSI
Recogn

Table 2. Best m-way system perceptron fusions for 8 training
conversations (  denotes a tie – choose either system).

Systems m=1 m=2 m=3 m=4 m=5
1. Acoustic baseline 
2. Pitch and energy distributions
3. Pitch and energy slopes + 
durations + phoneme context 
4. Prosodic statistics 
5. Phone n-grams
6. Phone binary trees
7. Phone x-stream + temporal
8. Pronunciation modeling
9. Word n-grams/idiolect
EER (%) 0.7 0.3 0.27 0.24 0.22
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We investigated fusion subsets excluding the baseline acoustic 
system to focus on high-level features. The best two non-GMM-
cepstra systems to fuse, with an EER of 1.2%, are the 
pronunciation (8) and pitch-energy slopes (3) [12]. The best three 
non-GMM-cepstra system combinations gave an EER of 0.9%.
There were three combinations that produced this EER: Systems
(8, 4, 3), (8, 4, 9) and (8, 3, 9). In each case, the pronunciation
system (8) is chosen with addition of two out of these three
systems: pitch-energy slope (3), prosodic statistics (4), and word 
n-gram (9) [12]. The sampling of different levels of information 
in these combinations is again intuitively appealing. 
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5. CONCLUSIONS, FUTURE, AND 
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ve shown here and in companion papers that the SuperSID 
t succeeded in exploiting high-level information to
e speaker recognition accuracy. Accuracy is improved by

 complementary features and the information they cover is
ely appealing. Even at extremely low error rates, there is 
gnificant benefit in combining complementary types of
ation. The accuracy of the baseline acoustic GMM-cepstra
 was matched by fusing 8 high-level SuperSID systems

er. Fusing all 9 systems together yielded a new record for 
cy on this task with astonishingly low error rates.

rror analysis is expanding to understand which errors
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res to know when different types of features and systems
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d training. 
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