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Abstract

Centroid-based models have been used in Text Categorizsitause, despite their computational simplicity,
they show a robust behavior and good performance. In thisrpap experimentally evaluate several centroid-
based models on single-label text categorization tasksalgdeanalyze document length normalization and two
different term weighting schemes. We show that: (1) Docuntkemgth normalization is not always the best
option in a classification task. (2) The traditiortitif term weighting approach remains very effective, even
when compared to more recent approaches. (3) Despite thth&iseveral ways to calculate the centroid of a
class in a dataset have been proposed, there is one thatsabutperforms the others. (4) A computationally
simple and fast centroid-based model can give resultsairalthe top-performing SVM model.

1 Introduction and Previous Work

The main goal ofext categorizatiorfTC) is to derive models for the categorization of naturablaage text [19].
The objective is to derive models that, given a set of trgirdncuments with known categories and a new doc-
ument, which is usually called thguery, will predict the query’s category. Here, we are interestethe case
where the query belongs to a single category, a problemccsiltgyle-label text categorizatiorin these models,
usually based on statistical analysis, a text documenpiesented as an n-dimensional vector of index terms or
keywords. Each index term corresponds to a word in the inéid and has a weight associated to it, which should
reflect how important this index term is, for that documerd/anfor the collection of documents. Usualtfidf
term weighting is used and documents are normalized sottbatléngth is one [19], [23].

In this paper we are interested in finding out how a relatigetyple centroid-based model behaves, when compared
with two well known traditional TC models and with a statetbé-art classifier based on Support Vector Machines.
We also analyze the effect that document length normatdizand term weighting have on the accuracy of the
obtained results.

1.1 Classification Models

In this section we briefly describe the TC models we compateignpaper.

Vector Model — In the Vector model [18, 16], documents are represented st af index terms which are
weighted according to their importance. Using these tedms,iments and queries are represented as vectors in an
n-dimensional space, whergs the total number of index terms. Based on these vectocsjdents can be ranked
by decreasing similarity with the query, which is computsedtze cosine of the angle formed by the vectors that
represent each of them. The category of the query is thendieted as the category of the most similar document
found.

k-Nearest Neighbors— The initial application of k-NN to TC was reported by Masamdl colleagues [5, 15]. The
idea is to determine the category of a given query based aratiegories of thé documents that are nearestto itin
the document space. For this study, we first computed eachtierd’s similarity with the query, by considering the
cosine between each document and the query, using the sprasastation as for the Vector model, as in [22, 23].
Then, we used a voting strategy to find the query’s class: estdeved document contributes a vote for its class,
weighted by its similarity to the query. The query’s possiblassifications will be ranked according to the votes
they got in the previous step, and the query will be classifigde class that had more votes.
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Support Vector Machines— The Support Vector Machines (SVM) model was introduced2sy pnd was first
applied to TC by [13], where documents are also representectbtors as for the Vector model. SVM is a
framework for efficiently training linear classifiers, inghi dimensional feature spaces. Based on the support
vectors (the examples with the minimum distance to the tptpae), SVM learn a separating hyperplane, that
provides the widest margins between two different typesoidnents. For sets of documents that are not linearly
separable, the SVM model usesnvolution functiongor kernels), that transform the initial feature space into
another one, where it finds an hyperplane that separatestacRly generating several classifiers, these ideas can
easily be generalized for datasets with more than two cdasisgocuments. SVM are acknowledged as one of the
top performing methods for TC [23, 1].

Centroid-based Models— Both the Vector model and k-NN represent each documentdrtrdining set indi-
vidually during the training phase and have to consider eaehof them every time a new document needs to be
classified. On the other hand, the SVM model finds a “desornipfior each class of documents that distinguishes
it from the others.

Like SVM, centroid-based models find a description for eaelsthat is shorter than the various documents
that compose it, but still reasonably accurate. In paricutentroid-based models find a representation for a
“prototype” document that summarizes all the known docuséor a given class, which is called the centroid of
the class. There are several ways to calculate this cerdroidg the training phase, and several proposals have
appeared in the literature. In centroid-based models,g¢htaid of a particular clasS; is represented by a vector
¢;, which is a combination of the document vect&’$elonging (or not) ta’;.

Centroid computation using the Rocchio formutaln the Centroid-Rocchio model, the centroid of a class és th
sum of all the document vectors for the positive trainingnegkes for this class, minus the sum of all the vectors
for the negatlve training examples we|ghted by controapeaterss and-y:

=027 VX7 di

The appllcatlon of thls model to TC Was f|rst proposed by HjlHnd it has been used in other works where the role
of negative examples is deemphasized, by seftitiga higher value tham (usuallys = 16 andy = 4) [4, 11, 12].
Centroid as average- In the Centroid-Average model, each cl&$s which has|C;| documents, is represented
by the average of all the vectors for the positive trainingragles for this class [8, 20]:

=101 e, ®
Centr0|d as sum— In the Centroid-Sum model, each class is represented bgtanwehich is the sum of all the

vectors for the posmve training examples for this clags [3

=27 o di
diec;
Centr0|d as normalized sum- In the Centroid-NormalizedSum model, each class is reptes by a vector
which is the sum of all the vectors for the positive trainingmples for this class, normalized so that it has unitary

length [14]:
= _1
G =T e, -
During the classification phase, each test document (ogjiserepresented by its vectat;, and it is compared
with each of the centroids;,;. The document will be classified as belonging to the classhiose centroid it has
the greatest cosine similarity:
—
d; ¢
e
. _ ndilxigin o _ . .
With centroid-based models, there is a big reduction in tim& memory required during the classification phase,
because now they are proportional to the number of classésaith of the number of training documents. They
also have the advantage that it is easy to add more trainiogndents for a particular class and easily recalculate
its centroid (on-line methods, see [19, page 24]).

4

sim(d,,37) =

1.2 Document Representation and Length Normalization

Traditionally, documents are represented as a set of iredmstwhich are weighted according to their importance
for a particular document and for the general collection [g. The index terms usually correspond to the words
or tokens in the document (or query) and index term weighsbeacomputed in several ways. The most usual is
tfidf (term frequency/inverse document frequency) [17], whiatréases with the number of times that the term
occurs in the document and decreases with the number of tieésrm occurs in the collection.

A recent approach [14] proposes a more sophisticated wegghtethod, based on term frequencies within a
particular class and within the collection of training domnts. We will call this approach term distributiond)(

It has been generally assumed that normalizing documettdngeso that they have unit length is beneficial for TC
applications.
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2 Experimental Setup

In this section we present the experimental setup that wed fios this paper, namely the datasets that were used,
the implementation and parameters for each TC model and/éleagion measure that was used.

2.1 Datasets

To allow the comparison of our work with previously publishesults, we used two standard TC benchmarks in
our evaluation, downloaded from a publicly available web§6]. In this website there is also a description of
the datasets and of the pre-processing techniques thatapptied to each dataset, namely character clean-up,
removal of short words, removal of stopwords, and stemming.

20 Newsgroups— This dataset is a collection of approximately 20,000 neasg documents, partitioned (nearly)
evenly across 20 different newsgroups. For this datasaisee the file0ng-train-stemmed and20ng-test-stemmed
available from the website.

Reuters 21578— The documents in Reuters-21578 appeared on the Reutessvirtevin 1987 and were manually
classified by personnel from Reuters Ltd. Due to the facttthetclass distribution for these documents is very
skewed, two sub-collections are usually considered fdrdategorization tasks [7]. Because we are concerned
with single-label TC, we used andr52, which correspond to the documents with a single topic ardthsses
which still have at least one training and one test exampér aémoving documents with more than one topic.
For this dataset, we used the fil&strain-stemmed , r8-test-stemmed  , r52-train-stemmed and
r52-test-stemmed  , available from the website.

The name of each dataset indicates how many classes it hasoo, in order for our work to be comparable to
other published works in this area, we use the standardteairsplit for each dataset, as described in [6]. In order
to analyze the effect that the size of the training set habewglassification task, we split eatrhining dataset into

10 “slices”, each one containing 10% of the training sethutliie restriction that the initial “slice” contains at least
one document from each class.

2.2 Algorithm Implementation and Parameters

For the Vector model we used a Sourceforge project calledJ@0]. IGLU aims at being a software platform
suitable for testing Information Retrieval models. At timee of this writing, only the Vector model is implemented.
For k-NN we implemented a “voting strategy”, where the pblesiclasses of a document are voted on by the
documents that belong to that class. We used the cosinasiyifeturned by the Vector model, as the weight for
each vote, and considered only the 10 nearest documents.

For SVM we used LIBSVM [2]. LIBSVM is an integrated softwai@ fSupport Vector classification that supports
multi-class classification. In our experiments we usedeslirkernel.

For the centroid-based models, we calculated each ceng®idescribed in Section 1.1.

For thetd term weighting approach, we implemented it, according édbscription in [14], and used exponent
factorsa. = 0.5, 6 = —1, andy = —0.5.

2.3 Evaluation Criteria

Evaluating the performance of computational systems enafbne in terms of the resources (time and space) they
need to operate, assuming that they perform the task thaitieesupposed to. In TC it is not enough to return

a ranked list of categories in a reasonable amount of tineguse the categories should also be the “right” ones.
Measures based on Precision and Recall, like F1 or PRBP lesrewidely used to compare the performance of
TC models [19]. However, to evaluate single-label TC tasiksse measures are not adequate. So, Accuracy, the

percentage of correctly classified documents, is used foaeethis kind of tasks.
#Correctly classified queries
#Total queries

Accuracy =

3 Results

In this section we present the results obtained using theraidrbased models, and compare them with the re-
sults obtained with other classification models. We alsoudis the effect that term weighting, document length
normalization and classification model have on the accur&gdy.

Except where stated otherwise, we use the standard tstigfitit for each dataset and not n-fold cross validation,
in order for our work to be comparable to other published wankthis area.
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3.1 Effect of Term Weighting and Length Normalization

Figures 1 through 5 vary term weightingidf or td) and document length normalization using the Vector, k-NN,
and each of the centroid-based modefor these models, we only considered normalizing or nottieihg docu-
ments, because, once similarity is determined as a cobmergth of the query is irrelevant for it. We do not show
the results for the Centroid-Sum model, because they asgyalworse than the ones for Centroid-NormalizedSum.
We will not discuss the Centroid-Sum model any further.
In Figures 1, 3 and 4 we can see that udiidf term weighting and normalizing the length of the training-do
uments always yields the best results with the Vector, @&hRocchio and Centroid-Average models, for any
proportion of the training set that is used.
In Figure 2 we can see that, for the k-NN model, normalizimining documents’ length is better fds2 and
20ng, but it has little effect for8, being slightly better not to normalize the training documtse In any case, it is

better to usdfidf thantd weighting.

Figure 5 shows that documentlength normalization has deniafluence on the Centroid-NormalizedSum model,
which is probably due to the fact that each centroid is noadlin the end. For8 and20ng, it is even better
not to normalize the training documents. Regarding terngitéig, td is better forr8 and20ng and almost as
good adfidf for r52. This is to be expected, becaudgerm weighting was proposed as an improvement for the
Centroid-NormalizedSum model (see [14] for more detalils).
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Figure 1: Accuracy for the three datasets varying documagmreisentation and normalization using the Vector
model, as a function of the percentage of the training seishesed.

For the SVM model, it is not enough to consider training doeatmormalization, because query length also
influences the results. For this model, Figures 6 and 7 shevettect of normalizing training documents and
queries, usingfidf or td term weighting, respectively. We can see that, for this mhatlés always better to
normalize both training and query documents. Surprisirfgly20ng, not normalizing either of them shows even
better performance, when smaller portions of the traingtgse used. By comparing both figures, we can see that,
for all datasets, usintjidf term weighting provides the best results with the SVM model.
By looking at Figures 1 through 7, we can also observe thagnwisingd term weighting, performance sometimes
decreases when the used fraction of the training data isesefor dataset8 andr52. This is probably due to
the fact that these collections are very skewed and so testrilditions, which depend on the classes, are bad
predictors. This doesn’t happen wiZing because this collection is more balanced than the other two.

3.2 Effect of the Classification Model

Figure 8 allows us to compare performance across differenets for these datasets, as a function of the percent-
age of the training set that is used. Each line corresponitietbest normalization/weighting combination for the

respective model.

If we compare the lines for Centroid-NormalizedSum to thediof Vector or k-NN, we can see that Centroid-NormalizedSu

is a lot better than the other two, in every dataset. If we camaphe different centroid-based models, we can see

1All the figures in this section and the next show Accuracy fasteof the three datasets as a function of the percentage triiihing set

that is used for training.
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Figure 2: Accuracy for the three datasets varying documemtessentation and normalization using the k-NN
model, as a function of the percentage of the training se¢tishesed.
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Figure 3: Accuracy for the three datasets varying documeptesentation and normalization
Centroid-Rocchio model, as a function of the percentaghefraining set that is used.

using the

that Centroid-NormalizedSum always performs better thanothers. The only model that is consistently better
than Centroid-NormalizedSum is SVM, which already is kn@sra top-performing model. This leads us to con-
clude that, overall, Centroid-NormalizedSum is a veryr@sting model, when one takes into consideration the
efficiency vs accuracy trade-off.

If we look at the accuracy reports ft8 andr52 across the different models, normalization, and weighgoiemes,
we can confirm what was already stated in [7], tt&# is a harder collection thar8, because every TC model
behaves worse fab2. If we further compare with the accuracy achievedZ0ng, we can see th&t0ng is even
harder than the other two.

If we look at term weighting and normalization across thdedént figures, we can see thalt only improves
performance for the Centroid-NormalizedSum model. Thistwadue to the exponent factors that were used. We
plan to do further testing with other factors. For this manidl, it is also better not to normalize document length.

3.3 Comparison of Execution Times for the Models

Besides the quality of the results that a TC model yieldstteramportant aspect to consider when evaluating TC
models is the time and memory they require to execute.
Figure 9 shows a comparison of the time that each nfddkeés to execute, in both the training and the classification

2Because execution times for every centroid-based modeteayesimilar, we only show times for the Centroid-Normatigaim model.



Accuracy

Accuracy

INESC-ID Technical Report 7/2006, June 2006

‘ r52-bentroiH-Averége 20ng‘-Centr0‘id-Aver‘age
ffidf-notNormTrain —s— ffidf-notNormTrain —s—
tfidf-NormTrain ---+--— tidf-NormTrain -—+-—
081L td-notNormTrain----x-- 081 td-notNormTrain----x--
td-NormTrain - td-NormTrain -
> 08¢ J— >
o J— pemmeem 0
o peen T . g
3 g 3
(S e Q
< <
04+
18-Centroid-Average
02} tfidF-notNormTrain —s— |{
tfidf-NormTrain ---o-— B
td-notNormTrain ----x-- X
td-NormTrain -
0 1 1 1 T T T T T 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1
10 20 30 40 5 60 70 8 90 100 10 20 30 40 5 60 70 8 90 100 10 20 30 40 5 60 70 8 90 100

Figure 4: Accuracy for the three datasets varying documeptesentation and normalization

Centroid-Average model, as a function of the percentageefraiining set that is used.
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Figure 5: Accuracy for the three datasets varying documeptesentation and normalization using the
Centroid-NormalizedSum model, as a function of the peagmbf the training set that is used.

phases, for each dataset, ustfidf. The X axis represents the time spent during the training@hahile the Y
axis represents the time spent during the classificatioegtmth in seconds, on a logarithmic scale. These times
are the average obtained over five runs for each model andiedaset.

By looking at the X axis of Figure 9, we can compare the time dzah model takes for training. As expected,
Vector and k-NN are the fastest (and spend almost the sareg timcause they simply read the training documents
and save the term/document matrix for future use. The otlogiets need to build this matrix and then determine
a new model of the data. The simplest transformation is dgrtbdo Centroid-NormalizedSum model, because it
only calculates the centroid for each class.

To compare the time that each model takes for classificatiergan look at the Y axis of Figure 9. In this case, we
can see that the fastest model for every dataset is the @diNoymalizedSum model. This should be expected,
because the operation that is required for each test dodus@mosine similarity with each class’ centroid. The
second fastest is SVM. The slowest are Vector and k-NN, sectiney have to compare each test document to each
training document, making test time proportional to the banof documents in the training set. Using an inverted
index structure would speed up these methods, but they vatilllde considerably slower than the centroid-based
methods.

Overall, the centroid-based model provides a significathicgon in time and memory required during the clas-
sification phase, because these requirements are praopirtinthe number of classes instead of the number of
documents.
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Figure 6: Accuracy for the three datasets varying normtdinsof the train and test documents using the SVM
model andfidf term weighting, as a function of the percentage of the tngjisiet that is used.
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Figure 7: Accuracy for the three datasets varying normtdineof the train and test documents using the SVM
model andd term weighting, as a function of the percentage of the tngiisiet that is used.

4 Conclusions and Future Work

We have shown that document length normalization is notysvitae best option in a classification task and that
the traditionalfidf term weighting approach remains very effective, even wienpared tdd, a more recent and
computer-intensive term weighting approach.

Regarding centroid-based models, we have shown that GeésNirmalizedSum always outperforms other centroid-
based approaches. Compared to the Vector and k-NN modei&;o@eNormalizedSum significantly improves
accuracy for three standard datasets.

Finally, we have shown that Centroid-NormalizedSum, a astaponally simple and fast model can obtain accu-
racy results similar to the more sophisticated and comjoumialtexpensive state-of-the-art SVM model.

Overall, the Centroid-NormalizedSum model presents a g@akk-off between time spent during the training and
classification phases and the quality of the results obdaifibis model also has the advantage of being amenable
to changes in the training set, unlike the SVM model.

In the future, we will consider more sophisticated modeltsifetermining the class centroid. We also plan to study
how this model behaves when we consider more than one vectdraracterize each class. Another interesting
aspect to study is how this model behaves when new documenitscaementally added to the training set.
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