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Abstract

Centroid-based models have been used in Text Categorization because, despite their computational simplicity,
they show a robust behavior and good performance. In this paper we experimentally evaluate several centroid-
based models on single-label text categorization tasks. Wealso analyze document length normalization and two
different term weighting schemes. We show that: (1) Document length normalization is not always the best
option in a classification task. (2) The traditionaltfidf term weighting approach remains very effective, even
when compared to more recent approaches. (3) Despite the fact that several ways to calculate the centroid of a
class in a dataset have been proposed, there is one that always outperforms the others. (4) A computationally
simple and fast centroid-based model can give results similar to the top-performing SVM model.

1 Introduction and Previous Work

The main goal oftext categorization(TC) is to derive models for the categorization of natural language text [19].
The objective is to derive models that, given a set of training documents with known categories and a new doc-
ument, which is usually called thequery, will predict the query’s category. Here, we are interestedin the case
where the query belongs to a single category, a problem called single-label text categorization. In these models,
usually based on statistical analysis, a text document is represented as an n-dimensional vector of index terms or
keywords. Each index term corresponds to a word in the initial text and has a weight associated to it, which should
reflect how important this index term is, for that document and/or for the collection of documents. Usually,tfidf
term weighting is used and documents are normalized so that their length is one [19], [23].
In this paper we are interested in finding out how a relativelysimple centroid-based model behaves, when compared
with two well known traditional TC models and with a state-of-the-art classifier based on Support Vector Machines.
We also analyze the effect that document length normalization and term weighting have on the accuracy of the
obtained results.

1.1 Classification Models

In this section we briefly describe the TC models we compare inthis paper.
Vector Model — In the Vector model [18, 16], documents are represented as aset of index terms which are
weighted according to their importance. Using these terms,documents and queries are represented as vectors in an
n-dimensional space, wheren is the total number of index terms. Based on these vectors, documents can be ranked
by decreasing similarity with the query, which is computed as the cosine of the angle formed by the vectors that
represent each of them. The category of the query is then determined as the category of the most similar document
found.
k-Nearest Neighbors— The initial application of k-NN to TC was reported by Masandand colleagues [5, 15]. The
idea is to determine the category of a given query based on thecategories of thek documents that are nearest to it in
the document space. For this study, we first computed each document’s similarity with the query, by considering the
cosine between each document and the query, using the same representation as for the Vector model, as in [22, 23].
Then, we used a voting strategy to find the query’s class: eachretrieved document contributes a vote for its class,
weighted by its similarity to the query. The query’s possible classifications will be ranked according to the votes
they got in the previous step, and the query will be classifiedin the class that had more votes.
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Support Vector Machines— The Support Vector Machines (SVM) model was introduced by [21] and was first
applied to TC by [13], where documents are also represented by vectors as for the Vector model. SVM is a
framework for efficiently training linear classifiers, in high dimensional feature spaces. Based on the support
vectors (the examples with the minimum distance to the hyperplane), SVM learn a separating hyperplane, that
provides the widest margins between two different types of documents. For sets of documents that are not linearly
separable, the SVM model usesconvolution functions(or kernels), that transform the initial feature space into
another one, where it finds an hyperplane that separates the data. By generating several classifiers, these ideas can
easily be generalized for datasets with more than two classes of documents. SVM are acknowledged as one of the
top performing methods for TC [23, 1].
Centroid-based Models— Both the Vector model and k-NN represent each document in the training set indi-
vidually during the training phase and have to consider eachone of them every time a new document needs to be
classified. On the other hand, the SVM model finds a “description” for each class of documents that distinguishes
it from the others.
Like SVM, centroid-based models find a description for each class that is shorter than the various documents
that compose it, but still reasonably accurate. In particular, centroid-based models find a representation for a
“prototype” document that summarizes all the known documents for a given class, which is called the centroid of
the class. There are several ways to calculate this centroidduring the training phase, and several proposals have
appeared in the literature. In centroid-based models, the centroid of a particular classCj is represented by a vector
−→cj , which is a combination of the document vectors

−→
di belonging (or not) toCj .

Centroid computation using the Rocchio formula— In the Centroid-Rocchio model, the centroid of a class is the
sum of all the document vectors for the positive training examples for this class, minus the sum of all the vectors
for the negative training examples, weighted by control parametersβ andγ:

−→cj = β ·
∑

−→
di∈Cj

−→
di − γ ·

∑
−→
di /∈Cj

−→
di

The application of this model to TC was first proposed by Hull [9] and it has been used in other works where the role
of negative examples is deemphasized, by settingβ to a higher value thanγ (usuallyβ = 16 andγ = 4) [4, 11, 12].
Centroid as average— In the Centroid-Average model, each classCj , which has|Cj | documents, is represented
by the average of all the vectors for the positive training examples for this class [8, 20]:

−→cj = 1
|Cj |

·
∑

−→
di∈Cj

−→
di

Centroid as sum— In the Centroid-Sum model, each class is represented by a vector which is the sum of all the
vectors for the positive training examples for this class [3]:

−→cj =
∑

−→
di∈Cj

−→
di

Centroid as normalized sum— In the Centroid-NormalizedSum model, each class is represented by a vector
which is the sum of all the vectors for the positive training examples for this class, normalized so that it has unitary
length [14]:

−→cj = 1

‖−→cj ‖
·
∑

−→
di∈Cj

−→
di

During the classification phase, each test document (or query) is represented by its vector,
−→
di , and it is compared

with each of the centroids,−→cj . The document will be classified as belonging to the class to whose centroid it has
the greatest cosine similarity:

sim(
−→
di ,

−→cj ) =
−→
di ·

−→cj

||
−→
di ||×||−→cj ||

With centroid-based models, there is a big reduction in timeand memory required during the classification phase,
because now they are proportional to the number of classes instead of the number of training documents. They
also have the advantage that it is easy to add more training documents for a particular class and easily recalculate
its centroid (on-line methods, see [19, page 24]).

1.2 Document Representation and Length Normalization

Traditionally, documents are represented as a set of index terms which are weighted according to their importance
for a particular document and for the general collection [18, 16]. The index terms usually correspond to the words
or tokens in the document (or query) and index term weights can be computed in several ways. The most usual is
tfidf (term frequency/inverse document frequency) [17], which increases with the number of times that the term
occurs in the document and decreases with the number of timesthe term occurs in the collection.
A recent approach [14] proposes a more sophisticated weighting method, based on term frequencies within a
particular class and within the collection of training documents. We will call this approach term distributions (td).
It has been generally assumed that normalizing document vectors so that they have unit length is beneficial for TC
applications.
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2 Experimental Setup

In this section we present the experimental setup that was used for this paper, namely the datasets that were used,
the implementation and parameters for each TC model and the evaluation measure that was used.

2.1 Datasets

To allow the comparison of our work with previously published results, we used two standard TC benchmarks in
our evaluation, downloaded from a publicly available website [6]. In this website there is also a description of
the datasets and of the pre-processing techniques that wereapplied to each dataset, namely character clean-up,
removal of short words, removal of stopwords, and stemming.
20 Newsgroups— This dataset is a collection of approximately 20,000 newsgroup documents, partitioned (nearly)
evenly across 20 different newsgroups. For this dataset, weused the files20ng-train-stemmed and20ng-test-stemmed ,
available from the website.
Reuters 21578— The documents in Reuters-21578 appeared on the Reuters newswire in 1987 and were manually
classified by personnel from Reuters Ltd. Due to the fact thatthe class distribution for these documents is very
skewed, two sub-collections are usually considered for text categorization tasks [7]. Because we are concerned
with single-label TC, we usedr8 andr52, which correspond to the documents with a single topic and the classes
which still have at least one training and one test example after removing documents with more than one topic.
For this dataset, we used the filesr8-train-stemmed , r8-test-stemmed , r52-train-stemmed and
r52-test-stemmed , available from the website.
The name of each dataset indicates how many classes it has. Moreover, in order for our work to be comparable to
other published works in this area, we use the standard train/test split for each dataset, as described in [6]. In order
to analyze the effect that the size of the training set has on the classification task, we split eachtraining dataset into
10 “slices”, each one containing 10% of the training set, with the restriction that the initial “slice” contains at least
one document from each class.

2.2 Algorithm Implementation and Parameters

For the Vector model we used a Sourceforge project called IGLU [10]. IGLU aims at being a software platform
suitable for testing Information Retrieval models. At the time of this writing, only the Vector model is implemented.
For k-NN we implemented a “voting strategy”, where the possible classes of a document are voted on by the
documents that belong to that class. We used the cosine similarity, returned by the Vector model, as the weight for
each vote, and considered only the 10 nearest documents.
For SVM we used LIBSVM [2]. LIBSVM is an integrated software for Support Vector classification that supports
multi-class classification. In our experiments we used a linear kernel.
For the centroid-based models, we calculated each centroid, as described in Section 1.1.
For thetd term weighting approach, we implemented it, according to the description in [14], and used exponent
factorsα = 0.5, β = −1, andγ = −0.5.

2.3 Evaluation Criteria

Evaluating the performance of computational systems is often done in terms of the resources (time and space) they
need to operate, assuming that they perform the task that they are supposed to. In TC it is not enough to return
a ranked list of categories in a reasonable amount of time, because the categories should also be the “right” ones.
Measures based on Precision and Recall, like F1 or PRBP have been widely used to compare the performance of
TC models [19]. However, to evaluate single-label TC tasks,these measures are not adequate. So, Accuracy, the
percentage of correctly classified documents, is used to evaluate this kind of tasks.

Accuracy =
#Correctly classified queries

#Total queries

3 Results

In this section we present the results obtained using the centroid-based models, and compare them with the re-
sults obtained with other classification models. We also discuss the effect that term weighting, document length
normalization and classification model have on the accuracyof TC.
Except where stated otherwise, we use the standard train/test split for each dataset and not n-fold cross validation,
in order for our work to be comparable to other published works in this area.
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3.1 Effect of Term Weighting and Length Normalization

Figures 1 through 5 vary term weighting (tfidf or td) and document length normalization using the Vector, k-NN,
and each of the centroid-based models.1 For these models, we only considered normalizing or not the training docu-
ments, because, once similarity is determined as a cosine, the length of the query is irrelevant for it. We do not show
the results for the Centroid-Sum model, because they are always worse than the ones for Centroid-NormalizedSum.
We will not discuss the Centroid-Sum model any further.
In Figures 1, 3 and 4 we can see that usingtfidf term weighting and normalizing the length of the training doc-
uments always yields the best results with the Vector, Centroid-Rocchio and Centroid-Average models, for any
proportion of the training set that is used.
In Figure 2 we can see that, for the k-NN model, normalizing training documents’ length is better forr52 and
20ng, but it has little effect forr8, being slightly better not to normalize the training documents. In any case, it is
better to usetfidf thantd weighting.
Figure 5 shows that document length normalization has a smaller influence on the Centroid-NormalizedSum model,
which is probably due to the fact that each centroid is normalized in the end. Forr8 and20ng, it is even better
not to normalize the training documents. Regarding term weighting, td is better forr8 and20ng and almost as
good astfidf for r52. This is to be expected, becausetd term weighting was proposed as an improvement for the
Centroid-NormalizedSum model (see [14] for more details).
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Figure 1: Accuracy for the three datasets varying document representation and normalization using the Vector
model, as a function of the percentage of the training set that is used.

For the SVM model, it is not enough to consider training document normalization, because query length also
influences the results. For this model, Figures 6 and 7 show the effect of normalizing training documents and
queries, usingtfidf or td term weighting, respectively. We can see that, for this model, it is always better to
normalize both training and query documents. Surprisingly, for 20ng, not normalizing either of them shows even
better performance, when smaller portions of the training set are used. By comparing both figures, we can see that,
for all datasets, usingtfidf term weighting provides the best results with the SVM model.
By looking at Figures 1 through 7, we can also observe that, when usingtd term weighting, performance sometimes
decreases when the used fraction of the training data increases, for datasetsr8 andr52. This is probably due to
the fact that these collections are very skewed and so term distributions, which depend on the classes, are bad
predictors. This doesn’t happen with20ng because this collection is more balanced than the other two.

3.2 Effect of the Classification Model

Figure 8 allows us to compare performance across different models for these datasets, as a function of the percent-
age of the training set that is used. Each line corresponds tothe best normalization/weighting combination for the
respective model.
If we compare the lines for Centroid-NormalizedSumto the lines of Vector or k-NN, we can see that Centroid-NormalizedSum
is a lot better than the other two, in every dataset. If we compare the different centroid-based models, we can see

1All the figures in this section and the next show Accuracy for each of the three datasets as a function of the percentage of the training set
that is used for training.
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Figure 2: Accuracy for the three datasets varying document representation and normalization using the k-NN
model, as a function of the percentage of the training set that is used.
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Figure 3: Accuracy for the three datasets varying document representation and normalization using the
Centroid-Rocchio model, as a function of the percentage of the training set that is used.

that Centroid-NormalizedSum always performs better than the others. The only model that is consistently better
than Centroid-NormalizedSum is SVM, which already is knownas a top-performing model. This leads us to con-
clude that, overall, Centroid-NormalizedSum is a very interesting model, when one takes into consideration the
efficiency vs accuracy trade-off.
If we look at the accuracy reports forr8 andr52 across the different models, normalization, and weightingschemes,
we can confirm what was already stated in [7], thatr52 is a harder collection thanr8, because every TC model
behaves worse forr52. If we further compare with the accuracy achieved for20ng, we can see that20ng is even
harder than the other two.
If we look at term weighting and normalization across the different figures, we can see thattd only improves
performance for the Centroid-NormalizedSum model. This can be due to the exponent factors that were used. We
plan to do further testing with other factors. For this modelonly, it is also better not to normalize document length.

3.3 Comparison of Execution Times for the Models

Besides the quality of the results that a TC model yields, another important aspect to consider when evaluating TC
models is the time and memory they require to execute.
Figure 9 shows a comparison of the time that each model2 takes to execute, in both the training and the classification

2Because execution times for every centroid-based model arevery similar, we only show times for the Centroid-NormalizedSum model.
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Figure 4: Accuracy for the three datasets varying document representation and normalization using the
Centroid-Average model, as a function of the percentage of the training set that is used.
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Figure 5: Accuracy for the three datasets varying document representation and normalization using the
Centroid-NormalizedSum model, as a function of the percentage of the training set that is used.

phases, for each dataset, usingtfidf. The X axis represents the time spent during the training phase, while the Y
axis represents the time spent during the classification phase, both in seconds, on a logarithmic scale. These times
are the average obtained over five runs for each model and eachdataset.
By looking at the X axis of Figure 9, we can compare the time that each model takes for training. As expected,
Vector and k-NN are the fastest (and spend almost the same time), because they simply read the training documents
and save the term/document matrix for future use. The other models need to build this matrix and then determine
a new model of the data. The simplest transformation is done by the Centroid-NormalizedSum model, because it
only calculates the centroid for each class.
To compare the time that each model takes for classification,we can look at the Y axis of Figure 9. In this case, we
can see that the fastest model for every dataset is the Centroid-NormalizedSum model. This should be expected,
because the operation that is required for each test document is a cosine similarity with each class’ centroid. The
second fastest is SVM. The slowest are Vector and k-NN, because they have to compare each test document to each
training document, making test time proportional to the number of documents in the training set. Using an inverted
index structure would speed up these methods, but they wouldstill be considerably slower than the centroid-based
methods.
Overall, the centroid-based model provides a significant reduction in time and memory required during the clas-
sification phase, because these requirements are proportional to the number of classes instead of the number of
documents.
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Figure 6: Accuracy for the three datasets varying normalization of the train and test documents using the SVM
model andtfidf term weighting, as a function of the percentage of the training set that is used.
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Figure 7: Accuracy for the three datasets varying normalization of the train and test documents using the SVM
model andtd term weighting, as a function of the percentage of the training set that is used.

4 Conclusions and Future Work

We have shown that document length normalization is not always the best option in a classification task and that
the traditionaltfidf term weighting approach remains very effective, even when compared totd, a more recent and
computer-intensive term weighting approach.
Regarding centroid-based models, we have shown that Centroid-NormalizedSum always outperforms other centroid-
based approaches. Compared to the Vector and k-NN models, Centroid-NormalizedSum significantly improves
accuracy for three standard datasets.
Finally, we have shown that Centroid-NormalizedSum, a computationally simple and fast model can obtain accu-
racy results similar to the more sophisticated and computational expensive state-of-the-art SVM model.
Overall, the Centroid-NormalizedSum model presents a goodtrade-off between time spent during the training and
classification phases and the quality of the results obtained. This model also has the advantage of being amenable
to changes in the training set, unlike the SVM model.
In the future, we will consider more sophisticated models for determining the class centroid. We also plan to study
how this model behaves when we consider more than one vector to characterize each class. Another interesting
aspect to study is how this model behaves when new documents are incrementally added to the training set.
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Figure 8: Accuracy for the three datasets varying the TC model, as a function of the percentage of the training set
that is used.
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