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Abstract

Automatic language identification of speech is the process by which the language of a digitized speech utterance is
recognized by a computer. In this paper, we will describe the set of available cues for language identification of speech
and discuss the different approaches to building working systems. This overview includes a range of historical ap-
proaches, contemporary systems that have been evaluated on standard databases, and promising future approaches.
Comparative results are also reported. © 2001 Elsevier Science B.V. All rights reserved.

1. Introduction

Automatic language identification of speech is
the process by which the language of a digitized
speech utterance is recognized by a computer. It is
one of several processes in which information is
extracted automatically from a speech signal.
Language identification can also be performed on
other types of data (e.g. text), but this paper fo-
cuses narrowly on speech applications.

Language-ID (LID) applications fall into two
main categories: pre-processing for machine sys-
tems and pre-processing for human listeners.
Consider a hotel lobby or international airport of
the future that employs a multi-lingual voice-
controlled travel-information retrieval system. If
no mode of input other than speech is used, then
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the system must be capable of determining the
language of the speech commands either while it is
recognizing the commands or before it has recog-
nized the commands. Determining the language
during recognition would require many speech
recognizers (one for each language) running in
parallel. Because tens or even hundreds of input
languages would need to be supported, the cost of
the required real-time hardware might prove pro-
hibitive. Alternatively, an LID system could be run
in advance of the speech recognizer. In this case,
the LID system would quickly list the most likely
languages of the speech commands, after which
the few most appropriate language-dependent
speech-recognition models could be loaded and
run on the available hardware. A final LID de-
termination would be made only after speech rec-
ognition was complete.

An example of the second category of LID
applications is preprocessing for human listeners.
In this case, LID is used to route an incoming
telephone call to a human switchboard operator
fluent in the corresponding language. Such sce-
narios are already occurring today: for example,
AT&T offers a Language Line interpreter service
to, among others, police departments handling
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emergency calls. When a caller to Language Line
does not speak English, a human operator must
attempt to route the call to an appropriate inter-
preter. Much of the process is trial and error (for
example, recordings of greetings in various lan-
guages can be used) and can require connections to
several human interpreters before the appropriate
person is found. As reported by Muthusamy et al.
(1994a), when callers to Language Line do not
speak English, the delay in finding a suitable in-
terpreter can be of the order of minutes, which
could prove devastating in an emergency. Thus, an
LID system that could quickly determine the most
likely languages of the incoming speech might be
used to reduce the time required to find an ap-
propriate interpreter by one or two orders of
magnitude.

2. Language identification cues

Humans and machines can use a variety of cues
to distinguish one language from another. The
reader is referred to the linguistics literature (e.g.
Comrie, 1990; Crystal, 1987; Fromkin and Rod-
man, 1993) for in-depth discussions of how specific
languages differ from one another and to Mu-
thusamy et al. (1994b), who has measured how
well humans can perform LID. In summary, the
following characteristics differ from language to
language:

e Phonology. A ‘“phoneme” is an underlying
mental representation of a phonological unit in

a language. For example, the eight phonemes

that comprise the word “celebrate” are /s eh

1lixbreyt/. A “phone” is a realization of
an acoustic—phonetic unit or segment. It is the
actual sound produced when a speaker is think-
ing of speaking a phoneme. The phones that

comprise the word celebrate might be [s eh 1

ax bcl b r ey q]. Phone and phoneme sets dif-

fer from one language to another, even though
many languages share a common subset of
phones/phonemes. Phone and phoneme fre-

quencies of occurrence may also differ, i.e., a

phone may occur in two languages, but it may

be more frequent in one language than the
other. Phonotactics, i.e., the rules governing

the sequences of allowable phones and pho-
nemes, can also be different.

e Morphology. The word roots and lexicons are
usually different from language to language.
Each language has its own vocabulary, and its
own manner of forming words.

o Syntax. The sentence patterns are different
among languages. Even when two languages
share a word, e.g., the word “bin” in English
and German, the sets of words that may precede
and follow the word will be different.

e Prosody. Duration characteristics, pitch con-
tours, and stress patterns are different from
one language to another.

3. LID systems

Research in automatic language identification
from speech has a history extending back to the
1970s. A few representative LID systems are de-
scribed below. The reader will find references to
other LID systems in reviews by Muthusamy et al.
(1994a) and Zissman (1996).

Fig. 1 shows the two phases of LID. During the
“training” phase, the typical system is presented
with examples of speech from a variety of lan-
guages. Each training speech utterance is con-
verted into a stream of feature vectors. These
feature vectors are computed from short windows
of the speech waveform (e.g. 20 ms) during which
the speech signal is assumed to be somewhat sta-
tionary. The feature vectors are recomputed reg-
ularly (e.g. every 10 ms) and contain spectral or
cepstral information about the speech signal (the
cepstrum is the inverse Fourier transform of the
log magnitude spectrum; it is used in many speech-
processing applications). The training algorithm
analyzes a sequence of such vectors and produces
one or more models for each language. These
models represent a set of language-dependent,
fundamental characteristics of the training speech
to be used during the next phase of the LID pro-
cess.

During the “recognition’ phase of LID, feature
vectors computed from a new utterance are com-
pared to each of the language-dependent models.
The likelihood that the new utterance was spoken
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Fig. 1. The two phases of language identification. During training, speech waveforms are analyzed and language-dependent models are
produced. During recognition, a new speech utterance is processed and compared to the models produced during training. The lan-

guage of the speech utterance is hypothesized.

in the same language as the speech used to train
each model is computed and the maximum-likeli-
hood model is found. The language of the speech
that was used to train the model yielding maxi-
mum likelihood is hypothesized as the language of
the utterance.

Systems vary primarily according to their
method for modeling languages. We will discuss a
series of different features that have been extracted
from speech, yielding increasing amounts of
knowledge at the cost of rendering the language
identifications system more and more complex.
During training, some systems require only the
digitized speech utterances and the corresponding
true identities of the languages being spoken be-
cause the language models are based simply on the
signal representation or on self-generated token
representation. More complicated LID systems
use phonemes to model speech and may require
either (1) a phonetic transcription (sequence of
symbols representing the spoken sounds), or (2) an
orthographic transcription (the text of the words
spoken) along with a phonemic transcription dic-
tionary (mapping of words to prototypical pro-
nunciation) for each training utterance. Producing
these transcriptions and dictionaries is an expen-

sive, time-consuming process that usually requires
a skilled linguist fluent in the language of interest.

3.1. Spectral-similarity approaches

In the earliest automatic LID systems, devel-
opers capitalized on the differences in spectral
content among languages, exploiting the fact that
speech spoken in different languages contains dif-
ferent phonemes and phones. To train these sys-
tems, a set of prototypical short-term spectra were
computed and extracted from training speech ut-
terances. During recognition, test speech spectra
were computed and compared to the training
prototypes. The language of the test speech was
hypothesized as the language having training
spectra that best matched the test spectra.

There were several variations on this spectral-
similarity theme. The training and testing spectra
could be used directly as feature vectors, or they
could be used instead to compute formant-based
or cepstral features vectors. The training exemp-
lars could be chosen either directly from the
training speech or could be synthesized through
the use of K-means clustering. The spectral-simi-
larity could be calculated by the Euclidean,
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Mahalanobis, or some other distance metric. Ex-
amples of spectral-similarity LID systems are
those proposed and developed by Cimarusti and
Ives (1982), Foil (1986), Goodman et al. (1989)
and Sugiyama (1991).

To compute the similarity between a test ut-
terance and a training model, most of the early
spectral-similarity systems calculated the distance
between each test utterance vector and each
training exemplar. The distance between each test
vector and its closest exemplar was accumulated as
an overall distance, and the language model hav-
ing lowest overall distance was found. In a gen-
eralization of this vector-quantization approach to
LID, Riek et al. (1991), Nakagawa et al. (1992)
and Zissman (1993) applied Gaussian mixture
classifiers to language identification. Here, each
feature vector is assumed to be drawn randomly
according to a probability density that is a
weighted sum of multi-variate Gaussian densities.
During training, a Gaussian mixture model for the
spectral or cepstral feature vectors is created for
each language. During recognition, the likelihood
of the test utterance feature vectors is computed
given each of the training models. The language of
the model having maximum likelihood is hypoth-
esized. The Gaussian mixture approach is “soft”
vector-quantization, where more than one exem-
plar created during training impacts the scoring of
each test vector.

Whereas the language identification systems
described above perform primarily static classifi-
cation, hidden Markov models (HMMs) (Rabiner,
1989), which have the ability to model sequential
characteristics of speech production, have also
been applied to LID. HMM-based language
identification was first proposed by House and
Neuburg (1977). Savic et al. (1991), Riek et al.
(1991), Nakagawa et al. (1992) and Zissman (1993)
all applied HMMs to spectral and cepstral feature
vectors. In these systems, HMM training was
performed on unlabeled training speech. Riek and
Zissman found that HMM systems trained in this
unsupervised manner did not perform as well as
some of the static classifiers that each had been
testing, though Nakagawa et al. (1994) eventually
obtained better performance for his HMM ap-
proach than his static approaches.

Li (1994) has proposed the use of novel features
for spectral-similarity LID. In his system, the syl-
lable nuclei (i.e. vowels) for each speech utterance
are located automatically. Next, feature vectors
containing spectral information are computed for
regions near the syllable nuclei. Each of these
vectors consists of spectral sub-vectors computed
on neighboring (but not necessarily adjacent)
frames of speech data. Rather than collecting and
modeling these vectors over all training speech, Li
keeps separate collections of feature vectors for
each training speaker. During testing, syllable
nuclei of the test utterance are located and feature
vector extraction is performed. Each speaker-de-
pendent set of training features vectors is com-
pared to the feature vectors of the test utterance,
and the most similar speaker-dependent set of
training vectors is found. The language of the
speech spoken by the speaker of that set of train-
ing vectors is hypothesized as the language of the
test utterance.

3.2. Prosody-based approaches

Features that carry prosodic information have
also been used as input to automatic language
identification systems. This has been motivated, in
part, by studies showing that humans can use
prosodic features for identifying the language of
speech utterances (Muthusamy et al., 1994b,
1999). For example, Itahashi et al. (1994, 1995)
have built systems that use features based on pitch
estimates alone. He argues that pitch estimation is
more robust in noisy environments than spectral
parameters.

Hazen (1993), however, showed that features
derived from prosodic information provided little
language discriminability when compared to a
phonetic system. A system that used both prosodic
and phonetic parameters performed about the
same as a system using phonetic parameters alone.

Finally, Thyme-Gobbel and Hutchins (1996)
has also looked at the utility of prosodic cues for
language identification. Parameters were designed
to capture pitch and amplitude contours on a syl-
lable-by-syllable basis. They were normalized to be
insensitive to overall amplitude, pitch and speaking
rate. Results show that prosodic parameters can be
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useful for discriminating one language from an-
other; however, the accuracy of any particular set
of features is highly language-pair specific.

3.3. Phone-recognition approaches

Given that different languages have different
phone inventories, many researchers have built
LID systems that hypothesize exactly which
phones are being spoken as a function of time and
determine the language based on the statistics of
that phone sequence. For example, Lamel built
two HMM-based phone recognizers: one in En-
glish and another in French (Lamel and Gauvain,
1993). These phone recognizers were then run over
test data spoken either in English or French. La-
mel found that the likelihood scores emanating
from language-dependent phone recognizers can
be used to discriminate between English and
French speech. Muthusamy ran a similar system
on English versus Japanese spontancous, tele-
phone-speech (Muthusamy et al., 1993).

The novelty of these phone-based systems was
the incorporation of more knowledge into the LID
system. Both Lamel and Muthusamy trained their
systems with multi-language phonetically labeled
corpora. Because the systems require phonetically
labeled training speech utterances in each lan-
guage, as compared to the spectral-similarity sys-
tems which do not require such labels, it can be
more difficult to incorporate new languages into
the language recognition process. This problem
will be addressed further in Section 3.4.

To make phone-recognition-based LID systems
easier to train, one can use a single-language
phone recognizer as a front end to a system that
uses phonotactic scores to perform LID. Phono-
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tactics are the language-dependent set of con-
straints specifying which phonemes are allowed to
follow other phonemes. For example, the German
word “‘spiel” which is pronounced /sh p iy 1/
and might be spelled in English as “shpeel” begins
with a consonant cluster /sh p/ that cannot occur
in English (except if one word ends in /sh/ and
the next begins with /p/, or in a compound word
like “flashpoint’’). This approach is reminiscent of
the work of D’Amore and Mah (1985, 1988),
Schmitt (1991) and Damashek (1995), who have
used n-gram analysis of text documents to perform
language and topic identification and clustering.
By “tokenizing” the speech message, i.e. convert-
ing the input waveform to a sequence of phone
symbols, the statistics of the resulting symbol se-
quences can be used to perform language identifi-
cation. Hazen and Zue (1993) and Zissman and
Singer (1994) each developed LID systems that use
one, single-language front end phone recognizer.
An important finding of these researchers was that
language ID could be performed successfully even
when the front end phone recognizer(s) was not
trained on speech spoken in the languages to be
recognized. For example, accurate Spanish versus
Japanese LID can be performed using only an
English phone recognizer. Zissman and Singer
(1994) and Yan and Barnard (1995) have extended
this work to systems containing multiple, single-
language front ends, where there need not be a
front end in each language to be identified. Fig. 2
shows an example of these types of systems.

3.4. Using multilingual speech units

Instead of training language-dependent pho-
neme recognizers, one can build multi-lingual
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Fig. 2. A LID system that uses several phone recognizers in parallel.
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speech units. These are derived by either a mixture
of language-dependent and language-independent
phones or by deriving tokens automatically from
training data. Advantages of this approach include
data sharing and discriminant training between
phonemes across languages and easy bootstrap-
ping to unseen languages (Wheatly et al., 1994).

Research has also focused on the problem of
identifying and processing only those phones that
carry the most language discriminating informa-
tion (Berkling et al., 1994, 1995). These language-
dependent phones are called “mono-phonemes” or
“key-phones” in the literature. Kwan and Hirose
(1997) and Dalsgaard and Andersen (1992) use
both language-specific and language-independent
phones in their systems. The language-independent
phones, sometimes called “poly-phones”, can be
trained on data from more than one language
without loss of LID accuracy. Berkling and Bar-
nard (1995) and Koehler (1997, 1998) have also
tested systems that use a single multi-language
front end phone recognizer, i.e. a recognizer con-
taining a mixture of poly-phones and mono-
phones.

3.5. Word level approaches

Between phone-level systems described in the
previous sections and the large-vocabulary speech
recognition systems described in a subsequent
section are “word-level” approaches to LID.
These systems use more sophisticated sequence
modeling than the phonotactic models of the
phone-level systems, but do not employ full
speech-to-text systems.

Kadambe and Hieronymus (1995) proposed the
use of lexical modeling for language identification.
An incoming utterance is processed by parallel
language-dependent phone recognizers. Hypothe-
sized language-specific word occurrences are
identified from the resulting phone sequences.

Each language-dependent lexicon contains sev-
eral thousand entries. This is a bottom-up ap-
proach to the language ID problem, where phones
are recognized first, followed by words, and
eventually language. Thomas et al. (1998) has
shown that a language-dependent lexicon need not
be available in advance; rather, it can be learned

automatically from the training data. Ramesh and
Roe (1994), Matrouf et al. (1998), Lund and Gish
(1995, 1996) and Braun and Levkowitz (1998) have
all proposed similar systems.

3.6. Continuous speech recognition

By adding even more knowledge to the system,
researchers hope to obtain even better LID per-
formance. Mendoza et al. (1996), Schultz et al.
(1996, 1998) and Hieronymus and Kadambe
(1997) have shown that large-vocabulary contin-
uous-speech recognition systems can be used for
language ID. During training, one speech recog-
nizer per language is created. During testing, each
of these recognizers is run in parallel, and the one
yielding output with highest likelihood is selected
as the winning recognizer — the language used to
train that recognizer is the hypothesized language
of the utterance. Such systems hold the promise of
high-quality language identification, because they
use higher-level knowledge (words and word se-
quences) rather than lower-level knowledge
(phones and phone sequences) to make the LID
decision. Furthermore, one obtains a transcription
of the utterance as a byproduct of LID. On the
other hand, they require many hours of labeled
training data in each language to be recognized
and are the most computationally complex of the
algorithms proposed.

4. Evaluations

From 1993-1996, the National Institute of
Standards and Technology (NIST) of the US De-
partment of Commerce has sponsored formal
evaluation of language ID systems. At first, these
evaluations were conducted using the Oregon
Graduate Institute Multi-Language Telephone
Speech (OGI-TS) Corpus (Muthusamy et al,
1992). The OGI-TS corpus contains 90 speech
messages in each of the following 11 languages:
English, Farsi, French, German, Hindi, Japanese,
Korean, Mandarin, Spanish, Tamil and Vietnam-
ese. Each message is spoken by a unique speaker
and comprises responses to 10 prompts. For NIST
evaluations, the monologue speech evoked by the
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prompt “Speak about any topic of your choice” is
used for both training and testing. No speaker
speaks more than one message or more than one
language, and each speaker’s message was spoken
over a unique long-distance telephone channel.
Phonetically transcribed training data is available
for six of the OGI languages (English, German,
Hindi, Japanese, Mandarin and Spanish).
Performance of the best systems from the 1993,
1994 and 1995 NIST evaluations is shown in Fig. 3.
This performance represents each system’s first
pass over the evaluation data, which means that
no system-tuning to the evaluation data was pos-
sible. For utterances having duration of either 45 s
or 10 s, the best systems can discriminate between
two languages with 4% and 2% error, respectively.
This error rate is the average computed over all
language pairs with English, e.g. English versus
Farsi, English versus French, etc. When tested on
nine-language forced-choice classification, error
rates of 12% and 23% have been obtained on 45-s
and 10-s utterances, respectively. The syllabic-
feature system and the systems with multiple
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phone recognizers followed by phonotactic lan-
guage modeling have exhibited the best perfor-
mance over the years. Error rate has decreased
over time, which indicates that research has im-
proved system performance.

Starting in 1996, the NIST evaluations have
employed the Linguistic Data Consortium’s
CALLFRIEND corpus. CALLFRIEND com-
prises two-speaker, unprompted, conversational
speech messages between friends. Hundred North-
American long-distance telephone conversations
were recorded in each of twelve languages (the
same 11 languages as OGI-TS plus Arabic). No
speaker occurs in more than one conversation. In
the 1996 evaluation, the multiple phone recognizer
followed by language modeling systems again
performed best. The error rates on 30 s and 10 s
utterances were 5% and 13% for pairwise classifi-
cation. These same systems obtained 23% and 46%
error rates for 12-language classification. The
higher error rates on CALLFRIEND are due
to the informal conversational style of CALL-
FRIEND versus the more formal monologue style

SF
PR
i

45-SEC 10-SEC
N-WAY CLASSIFICATION

SE bR

SF/PR

Fig. 3. Error rates of the best LID systems at three NIST evaluations. Performance is shown on the left for average two-alternative,
forced-choice classification of the various OGI-TS languages with English. “N-way” classification refers to 10-alternative, forced-
choice performance in 1993, 11-alternative, forced-choice performance in 1994, and 9-alternative, forced-choice performance in 1995.
“SF” indicates syllabic feature system. “PR” indicates phone recognition followed by language modeling system.
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of OGI-TS. The 1996 evaluation also measured
each LID system’s ability to perform dialect ID on
two dialects from each of three languages (English,
Mandarin and Spanish). The best systems exhib-
ited 20-30% error rates on two-dialect, forced-
choice tests.

The CSR-based LID systems have not been
fully evaluated at NIST evaluations, because or-
thographically and phonetically labeled speech
corpora have not been available in each of the
requisite languages. As such corpora become
available in more languages, implementation and
evaluation of CSR-based LID systems will become
more feasible. Whether the performance they will
afford will be worth their computational com-
plexity remains to be seen.

5. Conclusions

Since the 1970s, language identification systems
have become more accurate and more complex.
Current systems can perform two-alternative
forced-choice identification on extemporaneous
monologue almost perfectly, and these same sys-
tems can perform 10-way identification with
roughly 10% error. Though error rates on con-
versational speech are somewhat higher, there is
every reason to believe that continued research
coupled with competitive evaluations will result in
improved system performance.

The improved performance of newer LID sys-
tems is due to their use of higher levels of linguistic
information. Systems which try to model phones,
phone frequencies and phonotactics naturally
perform better than those that model only lower-
level acoustic information. Presumably, systems
that model words and grammars will be shown to
have even better accuracy.

Improved performance, however, comes at a
cost. The higher levels of linguistic information
must be programmed or trained into the newer
LID systems. Whereas older systems required only
digitized speech samples in each language to be
recognized, more modern systems tend to require
either a phonetic or orthographic transcription of
at least some of the training utterances. State-of-
the-art large-vocabulary CSR systems are often

trained on many hours of transcribed speech.
While large corpora of speech are available in
many languages, they may not be available in all
languages required by a specific application. Thus,
the system developer must balance the need for
accuracy against the need for speedy deployment
and low-cost implementation.
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