
Artificial Intelligence Review13: 365–391, 1999.
© 2000Kluwer Academic Publishers. Printed in the Netherlands.

365

Document Categorization and Query Generation on the World
Wide Web Using WebACE

DANIEL BOLEY, MARIA GINI, ROBERT GROSS, EUI-HONG (SAM)
HAN, KYLE HASTINGS, GEORGE KARYPIS, VIPIN KUMAR,
BAMSHAD MOBASHER and JEROME MOORE

Abstract. We present WebACE, an agent for exploring and categorizing documents on the
World Wide Web based on a user profile. The heart of the agent is an unsupervised categoriz-
ation of a set of documents, combined with a process for generating new queries that is used
to search for new related documents and for filtering the resulting documents to extract the
ones most closely related to the starting set. The document categories are not givena priori.
We present the overall architecture and describe two novel algorithms which provide signific-
ant improvement over Hierarchical Agglomeration Clustering and AutoClass algorithms and
form the basis for the query generation and search component of the agent. We report on the
results of our experiments comparing these new algorithms with more traditional clustering
algorithms and we show that our algorithms are fast and sacalable.

Keywords: clustering, divisive partitioning, graph partitioning, principal component analysis,
web documents

1. Introduction

After a short description of the architecture of WebACE in Section 3, we
describe the clustering algorithms in Section 4. In Section 5, we report on the
results obtained on a number of experiments using different methods to select
sets of features from the documents, and show that our partitioning-based
clustering methods perform better than traditional distance based cluster-
ing. We also analyze the complexity of the two clustering algorithms and
show they are scalable. In Section 6, we show how to use words obtained
from clusters of documents to generate queries for related documents on
the Web.

2. Related Work

The heterogeneity and the lack of structure that permeates much of the
information sources on the World Wide Web makes automated discovery,

366 DANIEL BOLEY ET AL.

organization, and management of Web-based information difficult. Tradi-
tional search and indexing tools of the Internet and the World Wide Web such
as Lycos, Alta Vista, WebCrawler, MetaCrawler, and others provide some
comfort to users, but they do not generally provide structural information nor
categorize, filter, or interpret documents. A recent study provides a compre-
hensive and statistically thorough comparative evaluation of the most popular
search tools (Leighton and Srivastava 1997).

In recent years these factors have prompted researchers to develop more
intelligent tools for information retrieval, such as intelligent Web agents. The
agent-based approach to Web mining involves the development of sophistic-
ated AI systems that can act autonomously or semi-autonomously on behalf
of a particular user, to discover and organize Web-based information. Gener-
ally, the agent-based Web mining systems can be placed into the following
categories:

Intelligent Search Agents.Several intelligent Web agents have been
developed that search for relevant information using characteristics of a
particular domain (and possibly a user profile) to organize and interpret
the discovered information. For example, agents such as FAQ-Finder
(Hammond et al. 1995), Information Manifold (Kirk et al. 1995), and
OCCAM (Kwok and Weld 1996) rely either on pre-specified and domain
specific information about particular types of documents, or on hard
coded models of the information sources to retrieve and interpret docu-
ments. Other agents, such as ShopBot (Doorenbos et al. 1996) and ILA
(Perkowitz and Etzioni 1995), attempt to interact with and learn the
structure of unfamiliar information sources. ShopBot retrieves product
information from a variety of vendor sites using only general informa-
tion about the product domain. ILA, on the other hand, learns models
of various information sources and translates these into its own internal
concept hierarchy.
Information Filtering/Categorization. A number of Web agents use
various information retrieval techniques (Frakes and Baeza-Yates 1992)
and characteristics of open hypertext Web documents to automatically
retrieve, filter, and categorize. For example, HyPursuit (Weiss et al.
1996) uses semantic information embedded in link structures as well as
document content to create cluster hierarchies of hypertext documents,
and structure an information space. BO (Bookmark Organizer) (Maarek
and Shaul 1996) combines hierarchical clustering techniques and user
interaction to organize a collection of Web documents based on concep-
tual information. Pattern recognition methods and word clustering using
the Hartigan’s K-means partitional clustering algorithm are used in
Wulfekuhler and Punch (1997) to discover salient HTML document

DOCUMENT CATEGORIZATION AND QUERY GENERATION 367

features (words) that can be used in finding similar HTML documents
on the Web.
Personalized Web Agents.Another category of Web agents includes
those that obtain or learn user preferences and discover Web information
sources that correspond to these preferences, and possibly those of other
individuals with similar interests (using collaborative filtering). A few
recent examples of such agents include WebWatcher (Armstrong et al.
1995), Syskill and Webert, and others. For example, Syskill and Webert
(Ackerman et al. 1997) utilizes a user profile and learns to rate Web
pages of interest using a Bayesian classifier. Balabanovic (Balabanovic
et al. 1995) uses a single well-defined profile to find similar Web docu-
ments. Candidate Web pages are located using best-first search. The
system needs to keep a large dictionary and is limited to a single
user.

WebACE incorporates aspects from all three categories. It is an intelligent
search agent which automatically generates a personalized user profile as well
as an automatic categorization of search results.

3. WebACE Architecture

WebACE’s architecture is shown in Figure 1. As the user browses the Web,
the profile creation module builds a custom profile by recording documents
of interest to the user. The number of times a user visits a document and the
total amount of time a user spends viewing a document are just a few methods
for determining user interest (Ackerman et al. 1997, 1995; Balabanovic
et al. 1995). Once WebACE has recorded a sufficient number of interest-
ing documents, each document is reduced to a document vector and the
document vectors are passed to the clustering modules. WebACE uses two
novel algorithms for clustering which can provide significant improvement in
both run-time performance and cluster quality over the HAC and AutoClass
algorithms. These are described in Section 4.

After WebACE has found document clusters, it can use the clusters to
generate queries and search for similar documents. WebACE submits the
queries to the search mechanism and gathers the documents returned by
the searches, which are in turn reduced to document vectors. These new
documents can be used in a variety of ways. One option is for WebACE to
cluster the new documents, filtering out the less relevant ones. Another is to
update the existing clusters by having WebACE insert the new documents
into the clusters. Yet another is to completely re-cluster both the new and
old documents. Finally, the user can decide to add any or all of the new

368 DANIEL BOLEY ET AL.

Figure 1. WebACE architecture.

documents to his profile. The query generation methods and the algorithms
for incrementally updating existing clusters are discussed in Section 6.
WebACE is modular so that either clustering method of Section 4 can be
plugged in.

WebACE is implemented as a browser independent Java application.
Monitoring the user’s browsing behavior is accomplished via a proxy server.
The proxy server allows WebACE to inspect the browser’s HTTP requests
and the resulting responses. Upon execution, WebACE spawns a browser and
starts a thread to listen for HTTP requests from the browser. As the browser
makes requests, WebACE creates request threads to handle them. This allows
multi-threaded browsers the capability of having multiple requests pending
at one time. The lifespan of these request threads is short, i.e. the duration
of one HTTP request. Conversely, the browser listener thread persists for the
duration of the application.

4. Clustering Methods

Existing approaches to document clustering are generally based on either
probabilistic methods, or distance and similarity measures (see Frakes and
Baeza-Yates 1992). Distance-based methods such ask-means analysis, hier-
archical clustering (Jain and Dubes 1988) and nearest-neighbor clustering
(Lu and Fu 1978) use a selected set of words (features) appearing in differ-
ent documents as the dimensions. Each such feature vector, representing a
document, can be viewed as a point in this multi-dimensional space.

There are a number of problems with clustering in a multi-dimensional
space using traditional distance- or probability-based methods. First, it is

DOCUMENT CATEGORIZATION AND QUERY GENERATION 369

not trivial to define a distance measure in this space. Some words are more
frequent in a document than other words. Simple frequency of the occurrence
of words is not adequate, as some documents are larger than others. Further-
more, some words may occur frequently across documents. Techniques such
as TFIDF (Salton and McGill 1983) have been proposed precisely to deal
with some of these problems.

Secondly, the number of all the words in all the documents can be very
large. Distance-based schemes generally require the calculation of the mean
of document clusters. In ak-means algorithm, randomly generated initial
clusters of a very high dimensional dataset will have to calculate mean values
which do not differ significantly from one cluster to the next. Hence the
clustering based on these mean values does not always produce very good
clusters. Similarly, probabilistic methods such as Bayesian classification used
in AutoClass (Cheeseman and Stutz 1996), do not perform well when the
size of the feature space is much larger than the size of the sample set. This
type of data distribution seems to be characteristic of document categorization
applications on the Web, such as categorizing a bookmark file. Furthermore,
the underlying probability models usually assume independence of attributes
(features). In many domains, this assumption may be too restrictive.

It is possible to reduce the dimensionality by selecting only frequent words
from each document, or to use some other method to extract the salient
features of each document. However, the number of features collected using
these methods still tends to be very large, and due to the loss of some of the
relevant features, the quality of clusters tends not to be as good. Other, more
general methods, have also been proposed for dimensionality reduction which
attempt to transform the data space into a smaller space in which relationship
among data items is preserved. Then the traditional clustering algorithms can
be applied to this transformed data space. Principal Component Analysis
(PCA) (Jackson 1991), Multidimensional Scaling (MDS) (Jain and Dubes
1988) and Kohonen Self-Organizing Feature Maps (SOFM) (Kohonen 1988)
are some of the commonly used techniques for dimensionality reduction. In
addition, Latent Semantic Indexing (LSI) (Anderson 1954; Deerwester et al.
1990; Berry 1992; Berry et al. 1995) is a method frequently used in the
information retrieval domain that employs a dimensionality reduction tech-
nique similar to PCA. An inherent problem with dimensionality reduction
is that in the presence of noise in the data, it may result in the degradation
of the clustering results. This is partly due to the fact that by projecting
onto a smaller number of dimensions, the noise data may appear closer to
the clean data in the lower dimensional space. In many domains, it is not
always possible or practical to remove the noise as a preprocessing step. In

370 DANIEL BOLEY ET AL.

addition, performing dimensionality reduction prior to clustering often adds
a computationally prohibitive step.

Our proposed clustering algorithms which are described in this section are
designed to efficiently handle very high dimensional spaces, without the need
for dimensionality reduction. In contrast to traditional clustering methods,
our proposed methods are linearly scalable, an advantage which makes these
methods particularly suitable for use in Web retrieval and categorization
agents. For our evaluation, we used two sets of sample documents retrieved
from the Web to compare these algorithms to two well-known methods:
Bayesian classification as used by AutoClass (Cheeseman and Stutz 1996)
and hierarchical agglomeration clustering (HAC)based on the use of a
distance function (Duda and Hart 1973).

AutoClass is based on the probabilistic mixture modeling (Titterington
et al. 1985), and given a data set it finds maximum parameter values for a
specific probability distribution function of the clusters. The clustering results
provide the full description of each cluster in terms of probability distribution
of each attribute. The HAC method starts with trivial clusters, each containing
one document and iteratively combines smaller clusters that are sufficiently
“close” based on a distance metric. In HAC, the features in each document
vector are usually weighted using the TFIDF scaling (Salton and McGill
1983), which is an increasing function of the feature’s text frequency and
its inverse document frequency in the document space.

4.1 Association rule hypergraph partitioning algorithm

The ARHP method (Han et al. 1997a,b, 1998) is used for clustering
related items in transaction-based databases, such as supermarket bar code
data, using association rules and hypergraph partitioning. From a database
perspective, the transactions can be viewed as a relational table in which
each item represents an attribute and the domain of each attribute is either
the binary domain (indicating whether the item was bought in a particular
transaction) or a non-negative integer indicating the frequency of purchase
within a given transaction.

The ARHP method first finds set of items that occur frequently together in
transactions using association rule discovery methods (Agrawal et al. 1996).
These frequent item sets are then used to group items into hypergraph edges,
and a hypergraph partitioning algorithm (Karypis et al. 1997) is used to find
the item clusters. The similarity among items is captured implicitly by the
frequent item sets.

In the document retrieval domain, it is also possible to view a set of docu-
ments in a transactional form. In this case, each document corresponds to an
item and each possible feature corresponds to a transaction. The entries in the

DOCUMENT CATEGORIZATION AND QUERY GENERATION 371

Figure 2. A transactional view of a typical document-feature set.

table represent the frequency of occurrence of a specified feature (word) in
that document. A frequent item sets found using the association rule discov-
ery algorithm corresponds to a set of documents that have a sufficiently
large number of features (words) in common. These frequent item sets are
mapped into hyperedges in a hypergraph. A typical document-feature dataset,
represented as a transactional database, is depicted in Figure 2.

A hypergraph (Berge 1976)H = (V, E) consists of a set of vertices (V) and
a set of hyperedges (E). A hypergraph is an extension of a graph in the sense
that each hyperedge can connect more than two vertices. In our model, the set
of verticesV corresponds to the set of documents being clustered, and each
hyperedgee ∈ E corresponds to a set of related documents. A key problem
in modeling data items as a hypergraph is determining what related items can
be grouped as hyperedges and determining the weights of the hyperedge. In
this case, hyperedges represent the frequent item sets found by the association
rule discovery algorithm.

Association rules capture the relationships among items that are present
in a transaction (Agrawal et al. 1996). LetT be the set of transactions where
each transaction is a subset of the item-setI, andC be a subset ofI. We define
thesupport countof C with respect toT to be:

σ (C) = |{t|t ∈ T ,C ⊆ t}|.

Thusσ (C) is the number of transactions that containC. An association rule
is an expression of the formX

s,α⇒ Y, whereX⊆ I andY⊆ I. Thesupport sof
the ruleX

s,α⇒ Y is defined asσ (X ∪ Y)/‖T‖, and the confidenceα is defined
asσ (X ∪ Y)/σ (X). The task of discovering an association rule is to find all
rulesX

s,α⇒ Y, such thats is greater than a given minimum support threshold
andα is greater than a given minimum confidence threshold. The association
rule discovery is composed of two steps. The first step is to discover all the
frequent item-sets (candidate sets that have support greater than the minimum

372 DANIEL BOLEY ET AL.

support threshold specified). The second step is to generate association rules
from these frequent item-sets.

The frequent item sets computed by an association rule algorithm such as
Apriori are excellent candidates to find such related items. Note that these
algorithms only find frequent item sets that have support greater than a
specified threshold. The value of this threshold may have to be determined
in a domain specific manner. The frequent item sets capture the relation-
ships among items of size greater than or equal to 2. Note that distance
based relationships can only capture relationships among pairs of data points
whereas the frequent items sets can capture relationship among larger sets of
data points. This added modeling power is nicely captured in our hypergraph
model.

Assignment of weights to the resulting hyperedges is more tricky. One
obvious possibility is to use the support of each frequent item set as the weight
of the corresponding hyperedge. Another possibility is to make the weight as
a function of the confidence of the underlying association rules. For size two
hyperedges, both support and confidence provide similar information. In fact,
if two itemsA andB are present in equal number of transactions (i.e., if the
support of item set {A} and item set {B} are the same), then there is a direct
correspondence between the support and the confidence of the rules between
these two items (i.e., greater the support for {A, B}, more confidence for
rules “{A} ⇒ {B}” and “{A} ⇒ {B}”). However, support carries much less
meaning for hperedges of size greater than two, as, in general, the support of a
large hyperedge will be much smaller than the support of smaller hyperedges.
Another, more natural, possibility is to define weight as a function of the
support and confidence of the rules that are made of a group of items in a
frequent item set. Other options include correlation, distance or similarity
measure.

In our current implementation of the model, each frequent item-set is
represented by a hyperedgee ∈ E whose weight is equal to the average
confidence of the association rules, calledessentialrules, that have all the
items of the edge and has a singleton right hand side. We call themessential
rules, as they capture information unique to the given frequent item set. Any
rule that has only a subset of all the items in the rule is already included in
the rules of subset of this frequent item set. Furthermore, all the rules that
have more than 1 item on the right hand size are also covered by the subset of
the frequent item set. For example, if {A, B, C} is a frequent item-set, then
the hypergraph contains a hyperedge that connects A, B, and C. Consider a
rule {A} ⇒ {B, C}. Interpreted as an implication rule, this information is
captured by {A}⇒ {B} and {A} ⇒ {C}. Consider the following essential
rules (with confidences noted on the arrows) for the item set {A, B, C}: {A,

DOCUMENT CATEGORIZATION AND QUERY GENERATION 373

B}
0.4⇒ {C}, {A, C}

0.6⇒ {B}, and {B, C}
0.8⇒ {A}. Then we assign weight of

0.6 (0.4+0.6+0.8
3 = 0.6) to the hyperedge connecting A, B, and C.

The hypergraph representation can then be used to cluster relatively large
groups of related items by partitioning them into highly connected partitions.
One way of achieving this is to use a hypergraph partitioning algorithm that
partitions the hypergraph into two parts such that the weight of the hyperedges
that are cut by the partitioning is minimized. Note that by minimizing the
hyperedge-cut we essentially minimize the relations that are violated by split-
ting the items into two groups. Now each of these two parts can be further
bisected recursively, until each partition is highly connected. For this task we
use HMETIS (Karypis 1997), a multi-level hypergraph partitioning algorithm
which can partition very large hypergraphs (of size>100K nodes) in minutes
on personal computers.

Once the overall hypergraph has been partitioned intokparts, we eliminate
bad clusters using the following cluster fitness criterion. Lete be a set of
vertices representing a hyperedge andC be a set of vertices representing a
partition. The fitness function that measures the goodness of partitionC is
defined as follow:

fitness(C) = 6e⊆CWeight(e)

6|e∩C|>0Weight(e)

The fitness function measures the ratio of weights of edges that are within the
partition and weights of edges involving any vertex of this partition. Note that
this fitness criterion can be incorporated into the partitioning algorithm as a
stopping condition. With this stopping condition, only the partitions that do
not meet the fitness criterion are partitioned further.

Each good partition is examined to filter our vertices that are not highly
connected to the rest of the vertices of the partition. The connectivity function
of vertexv in C is defined as follow:

connectivity(v, C) = |{e|e ⊆ C, v ∈ e}||{e|e ⊆ C}|
The connectivity measures the percentage of edges that each vertex is asso-
ciated with. High connectivity value suggests that the vertex has many edges
connecting good proportion of the vertices in the partition. The vertices with
connectivity measure greater than a given threshold value are considered
to belong to the partition, and the remaining vertices are dropped from the
partition.

In ARHP, filtering out of non-relevant documents can also be achieved
using the support criteria in the association rule discovery components of
the algorithm. Depending on the support threshold, documents that do not

374 DANIEL BOLEY ET AL.

meet support (i.e., documents that do not share large enough subsets of words
with other documents) will be pruned. This feature is particularly useful for
clustering large document sets which are returned by standard search engines
using keyword queries.

4.2 Principal Direction Divisive Partitioning

The method of Principal Direction Divisive Partitioning (PDDP) (Boley
1997) is based on the computation of the leading principal direction (also
known as principal component) for a collection of documents and then cutting
the collection of documents along a hyperplane resulting in two separate
clusters. The algorithm is then repeated on each separate cluster. The result
is a binary tree of clusters defined by associated principal directions and
hyperplanes. The PDDP method computes a root hyperplane, and then a child
hyperplane for each cluster formed from the root hyperplane, and so on. The
algorithm proceeds by splitting a leaf node into two children nodes using the
leaf’s associated hyperplane.

The leaf to be split next at each stage may be selected based on a variety of
strategies. The simplest approach is to split all the clusters at each level of the
binary tree before proceeding to any cluster at the next level. However, in our
experiments, this resulted in imbalance in the sizes of the clusters, including
some clusters with only 1 document. Another option is to use any appropriate
measure of cohesion. For simplicity of computation, the experiments shown
in this paper have been conducted using a modifiedscattervalue (Duda and
Hart 1973) defined below.

Each document is represented by a column of word counts and all the
columns are collected into aterm frequency matrix M, in a manner similar
to Latent Semantic Indexing (LSI) (Berry et al. 1995). Specifically, thei, j-th
entry,Mij , is the number of occurrences of wordwi in documentdj . To make
the results independent of document length, each column is scaled to have

unit length in the usual Euclidean norm:M̂ij = Mij /
√
6iM

2
ij , so that6iM̂2

ij =

1. An alternative scaling is the TFIDF scaling (Salton 1983), but this scaling
fills in all the zero entries inM. In our experiments, only up to 3% of the
entries were nonzero, and the PDDP algorithm depends on this sparsity for
its performance. Hence the TFIDF scaling substantially raises the cost of the
PDDP algorithm while not yielding any improvement of the cluster quality
(Boley 1997).

At each stage of the algorithm a cluster is split as follows. The centroid
vector for each cluster is the vector c whosei-th component isci = 6jM̂ij /k,
where the sum is taken over all documents in the cluster andk is the number
of documents in the cluster. The principal direction for each individual cluster

DOCUMENT CATEGORIZATION AND QUERY GENERATION 375

is the direction of maximum variance, defined to be the eigenvector corres-
ponding to the largest eigenvalue of the unscaled sample covariance matrix
(M̂ − ce)(M̂ − ce)′, wheree is a row vector of all ones and′ denotes the
matrix transpose. In our algorithm, it is obtained by computing the leading
left singular vector of (̂M − ce) using a “Lanczos”-type iterative method
(Boley 1997). In the “Lanczos”-type iterative method, the matrix (M̂ − ce)
is used only to form matrix vector products, which can be computed fast by
using

(M̂ − ce)v = M̂v− c(ev). (1)

In this way, the matrix (̂M− ce) need not be formed explicitly, thus preserving
sparsity. The resulting singular vector is the principal direction, and all the
documents are projected onto this vector. Those documents with positive
projections are allocated to the right child cluster, the remaining documents
are allocated to the left child cluster. With this notation, we can also give the
following precise definition of thescatterof a cluster:6ij (M̂ij − ci)2, where
the sum is taken over all documentsdj in the cluster and all the wordswi , and
ci is the i-th component of the cluster’s centroid vector. In other words, the
scatteris sum of squares of the distances from each document in the cluster
to the cluster mean. The process stops when all the scatter values for the
individual clusters fall below the scatter value of centroid vectors collected
together.

This process differs from that in Berry et al. (1995) in that (a) we first
scale the columns to have unit length to make the results independent of
the document length, (b) we translate the collection of document columns
so that their mean lie at the origin, (c) we compute only the single leading
singular value with its associated left and right singular vectors, (d) we repeat
the process on each cluster during the course of the algorithm. In LSI as
described in Berry et al. (1995), the SVD is applied once to the original
untranslated matrix of word counts, and the firstk singular values and asso-
ciated vectors are retrieved, for some choice ofk. This removes much of the
noise present in the data, and also yields a representation of the documents
of reduced dimensionality, reducing the cost and raising the precision of user
queries. The matrix produced by this LSI computation could be used as a
preprocessing step to the PDDP algorithm, but generally lacks any sparsity.
In addition, clusters of small variance may be lost in the noise dimensions
removed by the LSI technique. In PDDP, however, property (d) ensures that
such small clusters will eventually appear, though they could be divided by a
hyperplane early in the splitting process leading to multiple small clusters.

376 DANIEL BOLEY ET AL.

5. Experimental Evaluation

5.1 Comparative evaluation of clustering algorithms

To compare our clustering methods with the more traditional algorithms,
we selected 185 web pages in 10 broad categories: business capital (BC),
intellectual property (IP), electronic commerce (EC), information systems
(IS), affirmative action (AA), employee rights (ER), personnel management
(PM), industrial partnership (IPT), manufacturing systems integration (MSI),
and materials processing (MP).The pages in each category were obtained
by doing a keyword search using a standard search engine. These pages
were then downloaded, labeled, and archived. The labeling facilitates an
entropy calculation and subsequent references to any page were directed to
the archive. This ensures a stable data sample since some pages are fairly
dynamic in content.

The word lists from all documents were filtered with a stop-list and
“stemmed” using Porter’s suffix-stripping algorithm (Porter 1980) as imple-
mented by Frakes (1992). We derived 10 experiments (according to the
method used for feature selection) and clustered the documents using the four
algorithms described earlier. The objective of feature selection was to reduce
the dimensionality of the clustering problem while retaining the important
features of the documents. Table 1 shows the feature selection methods that
characterize various experiments.

Validating clustering algorithms and comparing performance of different
algorithms is complex because it is difficult to find an objective measure of
quality of clusters. We decided to use entropy as a measure of goodness of the
clusters (with the caveat that the best entropy is obtained when each cluster
contains exactly one document). For each cluster of documents, the category
distribution of documents is calculated first. Then using this category distri-
bution, the entropy of each clusterj is calculated using the formulaEj =
−6CipCi log Pci wherepCi is the fraction of documents within the cluster
with the category labelCi, the sum is taken over all categories,C1, C2,
In our example,C1 = BC, C2 = IP, etc. When a cluster contains documents
from one category only, the entropy value is 0.0 for the cluster and when a
cluster contains documents from many different categories, then entropy of
the cluster is higher. The total entropy is calculated as the sum of entropies of
the clusters weighted by the size of each cluster:Etotal = 6jEjnj /n, where
nj is the number of documents in clusterj and n is the total number of
documents. We compare the results of the various experiments by comparing
their entropy across algorithms and across feature selection methods (Figure
6). Figure 3 shows the category distribution of documents in each cluster of
the best AutoClass result with the entropy value 2.05. Comparing this result

DOCUMENT CATEGORIZATION AND QUERY GENERATION 377

Table 1. Setup of experiments. The “D” experiments were constructed in similar fashion.
Their sizes can be found in Figure 9

Word Selection criteria Dataset Comments

set size

E1 All words 185×10536 We select all non-stop words (stemmed).

E2 All words with text frequency>1 188× 5106 We prune the words selected for E1 to exclude
those occurring only once.

E3 Top 20+ words 185×1763 We select the 20 most frequently occurring
words and include all words from the partition
that contributes the 20th word.

E4 Top 20+ with text frequency>1 185×1328 We prune the words selected for E3 to exclude
those occurring only once.

E5 Top 15+ with text frequency>1 185×1105

E6 Top 10+ with text frequency>1 185×805

E7 Top 5+ with text frequency>1 185×474

E8 Top 5+ plus emphasized words 185×2951 We select the top 5+ words augmented by any
word that was emphasized in the html docu-
ment, i.e., words appearing in〈TITLE〉, 〈H1〉,
〈H2〉, 〈H3〉, 〈I〉, 〈BIG〉, 〈STRONG〉, 〈B〉, or
〈EM〉 tags.

E9 Quantile filtering 185×946 Quantile filtering selects the most frequently
occurring words until the accumulated frequen-
cies exceed a threshold of 0.25, including all
words from the partition that contributes the
word that exceeds the threshold.

E10 Frequent item sets 185×499 We select words from the document word lists
that appear in a-priori word clusters. That is,
we use an object measure to identify important
groups of words.

to one of PDDP result with entropy value of 0.69 in Figure 4 and one of
ARHP result with entropy value of 0.79 in Figure 5, we can see the big
differences in the quality of the clusters obtained from these experiments.
Note that in most experiments, documents with each document label have
ended up in several clusters. An open question is how to re-agglomerate
clusters containing similar documents that were separated by the clustering
algorithm prematurely.

Our experiments suggest that clustering methods based on partitioning
seem to work best for this type of information retrieval applications, because
they are linearly scalable w.r.t. the cardinalities of the document and feature
spaces (in contrast to HAC and AutoClass which are quadratic). In partic-
ular, both the hypergraph partitioning method and the principal component

378 DANIEL BOLEY ET AL.

Figure 3. Class distribution of AutoClass clusters.

methods performed much better than the traditional methods regardless of
the feature selection criteria used.

There were also dramatic differences in run times of the four methods.
For example, when no feature selection criteria was used (dataset size of 185
× 10538), ARHP and PDDP took less than 2 minutes, whereas HAC took 1
hour and 40 minutes and AutoClass took 38 minutes.

Aside from overall performance and the quality of clusters, the experi-
ments point to a few other notable conclusions. As might be expected, in
general clustering algorithms yield better quality clusters when the full set of
feature is used (experimentE1). Of course, as the above discussion shows,
for large datasets the computational costs may be prohibitive, especially in
the case of HAC and AutoClass methods. It is therefore important to select a
smaller set of representative features to improve the performance of clustering
algorithms without loosing too much quality. Our experiments with various
feature selection methods represented inE1 throughE10, clearly show that
restricting the feature set to those only appearing in the frequent item sets
(discovered as part of the association rule algorithm), has succeeded in identi-
fying a small set of features that are relevant to the clustering task. In fact, in
the case of AutoClass and HAC, the experimentE10 produced results that
were better than those obtained by using the full set.

DOCUMENT CATEGORIZATION AND QUERY GENERATION 379

Figure 4. Class distrivution ofPDDPclusters.

Figure 5. Class distribution ofARHPclusters.

380 DANIEL BOLEY ET AL.

Figure 6. Entropy of different algorithms. Note that lower entropy indicates better cohesive-
ness of clusters.

It should be noted that the conclusions drawn in the above discussion
have been confirmed by another experiment using a totally independent set
of documents (Moore et al. 1997).

Dimensionality reduction using LSI/SVD
As noted above, feature selection methods, such as those used in our exper-
iments, are often used in order to reduce the dimensionality of clustering
problems in information retrieval domains. The objective of these methods is
to extract the most salient features of the document data set to be used as the
dimensions in the clustering algorithm. Another approach to dimentionality
reduction is that of Latent Semantic Indexing (LSI) (Berry et al. 1995), where
the SVD (Berry 1992) is applied once to the original untranslated matrix
of word counts, and the firstk singular values and associated vectors are
retrieved, for some choice ofk. This removes much of the noise present
in the data, and also yields a representation of the documents of reduced
dimensionality.

We compared AutoClass, HAC, and PDDP, after the application of LSI to
the complete dataset (E1). Specifically, we compared the entropies for each
method without using LSI, to three LSI datasets withk = 10,k = 50,k = 100.
It should be noted that, in the case of HAC, we used LSI on the dataset with
the TFIDF scaling in order to be able to compare the results to the original

DOCUMENT CATEGORIZATION AND QUERY GENERATION 381

Figure 7. Comparison of Entropies for theE1, With and Without LSI.

results (without the LSI). However, the TFIDF scaling may not necessarily be
the right choice, and a more systematic study with different scaling methods
is called for. A summary of our experimental results with LSI is depicted in
Figure 7.

This limited set of experiments suggests that LSI can indeed improve the
results in the case of AutoClass and HAC (at least for some values ofk),
though not enough to match the entropies in the cases of PDDP or ARHP
without dimensionality reduction. In the case of PDDP, LSI did not seem to
provide quality improvements to any substantial degree. Furthermore, in all
of these cases, the results seem highly dependent on the right choice ofk.
The correct choice fork may, in fact, vary from data set to data set, or (as the
experiments suggest), from algorithm to algorithm.

Also, both HAC and AutoClass ran dramatically faster on the data with
small number of dimensions than on the original data. For the small data
set (E1) used for these experiments, the time to run SVD was relatively
small. Hence, the overall runtime including SVD computation and clustering
improved. However, for a large matrix, the runtime for computing SVD could
be quite substantial and may make it impractical to perform dimensionality
reduction before clustering.

The precise cost of the SVD computation for both LSI and PDDP depends
on many variables, including the number of eigenvalues sought and their
distribution, and hence is much beyond the scope of this paper. The underly-
ing Lanczos iteration needed to obtain thek� 1 eigenvalues in LSI is more or
less the same as that used to obtain the single eigenvalue in PDDP, except that
in the latter there is no need to deflate eigenvalues as they converge to prevent

382 DANIEL BOLEY ET AL.

them from re-appearing. However, at leastk, and often at least 2k, iterations
are needed in the LSI case (Berry 1992). On the other hand, obtaining the
single leading eigenvector can be accomplished in relatively few iterations,
typically around 15 to 20, and never more than 25 in our application. We
also note that though the SVD computation in PDDP must be repeated, it is
applied to the entire matrix only once.

Finally, we note that we have not run ARHP on the LSI datasets, as ARHP
would have required the computation of frequent item sets (documents) based
on a very small number of (k) transactions. Frequent item sets discovered
using a small number of transactions are not likely to be useful, because they
are not statistically significant. Hence, the hypergraph constructed from these
frequent item sets does not capture the original relationships present among
the documents.

5.2 Scalability of clustering algorithms

The scalability of our clustering methods is essential if they are to be practical
for large numbers of documents. In this section we give some experimental
evidence that our methods are indeed scalable.

We have applied our clustering methods to a large data set denoted “D1”
consisting of 2,340 documents using a dictionary of 21,839 words. We then
constructed three other data sets labeled D3, D9, D10 using reduced diction-
aries using the same strategies as E3, E9, E10, respectively, in Table 1. The
number of words in the resulting reduced dictionaries is reported in Figure 9.

Scalability of PDDP
Figure 8 and 9 illustrate the performance of the PDDP algorithm on these
datasets. Figure 8 shows that the entropies for D1 and D10 are lower than
those for D3 and D9, when the number of clusters agrees. This is consistent
with the results shown in Figure 6.

The PDDP algorithm is based on an efficient method for computing the
principal direction. The method for computing the principal direction is itself
based on the Lanczos method (Golub and Van Loan 1996) in which the major
cost arises from matrix-vector products involving the term frequency matrix.
The total cost is the cost of each matrix-vector product times the total number
of products. The number of products has never exceeded 25 in any of the
experiments we have tried. The term frequency matrix is a very sparse matrix:
in the D1 data set only about 0.68% of the entries are nonzero. The cost of
a matrix-vector product involving a very sparse matrix depends not on the
dimensions of the matrix, but rather on the number of nonzero entries. Using
the notation of the previous section, we seek the leading singular vector of the
dense matrix (̂M − ce), but matrix-vector products involving this matrix can

DOCUMENT CATEGORIZATION AND QUERY GENERATION 383

Figure 8. Entropies from the PDDP algorithm with various number of clusters.

be computed as shown in equation (1) without forming this matrix explicitly.
This is all that is required for the Lanczos method. Hence the total cost of the
PDDP algorithm is governed by the number of nonzero entries in the term
frequency matrix. This is illustrated in Figure 9. Notice that even though the
data set D10 has many fewer words than the other data sets, its cost is more
than for D3 or D9 becauase D10’s term frequency matrix is 10 times more
dense than D1’s matrix: about 6.9% of its entries are nonzero.

Scalability of ARHP
The problem of finding association rules that meet a minimum support
criterion has been shown to be linearly scalable with respect to the number
of transactions (Agrawal et al. 1996). It has also been shown in Agrawal et
al. (1996) that association rule algorithms are scalable with respect to the
number of items assuming the average size of transactions is fixed. Highly
efficient algorithms such as Apriori are able to quickly find association rules
in very large databases provided the support is high enough.

The complexity of HMETIS for ak-way partitioning isO((V + E) whereV
is the number of vertices andE is the number of edges. The number of vertices
in an association-rule hypergraph is the same as the number of documents to
be clustered. The number of hyperedges is the same as the number of frequent

384 DANIEL BOLEY ET AL.

Figure 9. Times for the PDDP algorithm on an SGI versus number of nonzeros in term
frequency matrix, for both E and D series with 16 clusters. The D experiments had 2,340 docu-
ments and the indicated number of words, and were constructed just like the corresponding E
experiments in Table 1.

item-sets with support greater than the specified minimum support. Note that
the number of frequent item sets (i.e., hyperedges) does not increase as the
number of words increases. Hence, our clustering method is linearly scalable
with respect to the number of words in the documents.

Figure 10 shows the entropies from the ARHP algorithm. This result is
also consistent with Figure 6 where the entropies for D1 and D10 are lower
than for D3 and D9. Each data set produces different size hypergraph. Table
2 shows the size of hypergraph for several experiments from E and D series.
Figure 11 shows the CPU time for partitioning these hypergraphs. The run
time for partitioning these hypergraphs supports the complexity analysis that
says the run time is proportional to the size of the hypergraph (V + E).

6. Search for and Categorization of Similar Documents

One of the main tasks of the agent is to search the Web for documents that
are related to the clusters of documents. The key question here is how to find
a representative set of words that can be used in a Web search. With a single

DOCUMENT CATEGORIZATION AND QUERY GENERATION 385

Figure 10. Entropies from the ARHP algorithm with various number of clusters.

document, the words appearing in the document become a representative set.
However, this set of words cannot be used directly in a search because it
excessively restricts the set of documents to be searched. The logical choice
for relaxing the search criteria is to select words that are very frequent in the
document.

The characteristic words of a cluster of documents are the ones that
have high document frequency and high average text frequency. Document
frequency of a word refers to the frequency of the word across documents.
Text frequency of a word refers to word frequency within a document. We
define the TF word list as the list ofk words that have the highest average text
frequency and the DF word list as the list ofk words that have the highest
document frequency.

For each cluster, the word lists TF and DF are constructed.TF ∩ DF
represents the characteristic set of words for the cluster, as it has the words
that are frequent across the document and have high average frequency. The
query can be formed as

(c1 ∧ c2 . . . ∧ cm) ∧ (t1 ∨ t2 . . . ∨ tn)
whereci ∈ TF∩ DF andti ∈ TF− DF.

We formed queries from the business capital cluster discussed in Section
5. We found the characteristic words of the cluster (TF∩ DF) and issued the
following query to Yahoo web search engine:

386 DANIEL BOLEY ET AL.

Table 2. Size of hypergraphs for several experiments from E and D series

Experiments Number of edges Number of vertices

E1 12091 185

E3 6572 185

E9 4875 185

E10 15203 185

D1 95882 2068

D3 81677 2065

D9 128822 2028

D10 89173 2147

+capit∗ +busi∗ +financ∗ +provid∗ +fund∗ +develop∗ +compani∗
+financi∗ +manag∗

The search returned 2280 business related documents. We then added the
most frequent words that were not in the previous list (TF− DF) to form the
following query:

+capit∗ +busi∗ +financ∗ +provid∗ +fund∗ +develop∗ +compani∗
+financi∗ +manag∗ loan∗ invest∗ program∗ credit∗ industri∗ tax∗
increas∗ cost∗ technologi∗ sba∗ project∗

Alta Vista search using this query returned only 372 business related docu-
ments which seemed highly related to the existing documents in the cluster.
First page returned by the query is shown in Figure 12.

The documents returned as the result of queries can be handled in several
ways as shown in Figure 1. ARHP could be used to filter out non-relevant
documents among the set of documents returned by the query as discussed
in Section 4.1. The degree of filtering can be increased either by setting
higher support criteria for association rules discovery or by having a tighter
connectivity constraint in the partition.

Resulting documents can be incrementally added to the existing clusters
using ARHP or PDDP depending on the method used for clustering. With
ARHP, for each new document, existing hyperedges are extended to include
the new document and their weights are calculated. For each cluster, the
connectivity of this new document to the cluster is measured by adding the
weights of all the extended hyperedges within the cluster. The new document
is placed into the cluster with the highest connectivity. The connectivity ratio
between the chosen cluster and the remaining clusters indicates whether the

DOCUMENT CATEGORIZATION AND QUERY GENERATION 387

Figure 11. Hypergraph partitioning time for both E and D series. The number of partitions
was about 16.

new document strongly belongs to the chosen cluster. If the connectivity of
the document is below some threshold for all clusters, then the document can
be considered as not belonging to any of the clusters.

With PDDP, the binary tree can also be used to filter new incoming docu-
ments by placing the document on one or the other side of the root hyperplane,
then placing it on one or the other side of the next appropriate hyperplane,
letting it percolate down the tree until it reaches a leaf node. This identifies the
cluster in the original tree most closely related to the new incoming document.
If the combined scatter value for that cluster with the new document is above a
given threshold, then the new document is only loosely related to that cluster,
which can then be split in two.

7. Conclusion

In this paper we have proposed an agent to explore the Web, categorizing
the results and then using those automatically generated categories to further
explore the Web. We have presented sample performance results for the
categorization (clustering) component, and given some examples showing
how those categories are used to return to the Web for further exploration.

388 DANIEL BOLEY ET AL.

Figure 12. Search results from Yahoo.

For the categorization component, our experiments have shown that the
ARHP algorithm and the PDDP algorithm are capable of extracting higher
quality clusters while operating much faster compared to more classical
algorithms such as HAC or AutoClass. This is consistent with our previous
results (Moore et al. 1997). The ARHP algorithm is also capable of filtering

DOCUMENT CATEGORIZATION AND QUERY GENERATION 389

out documents by setting a support threshold. Our experiments show that the
PDDP and ARHP algorithms are fast and scale with the number of words in
the documents.

To search for similar documents keyword queries are formed by extend-
ing the characteristic word sets for each cluster. Our experiments show that
this method is capable of producing small sets of relevant documents using
standard search engines.

In the future, we will explore the performance of the entire agent as an
integrated and fully automated system, comparing the relative merits of the
various algorithms for clustering, query generation, and document filtering,
when used as the key components for this agent. In particular, we will conduct
further experimental evaluation of our query generation mechanism and clas-
sification of new documents into existing clusters. Another area for future
work involves the development of a method for evaluating quality of clusters
which is not based ona priori class labels.

References

Ackerman L. M. et al. (1997). Learning Probabilistic User Profiles.AI Magazine18(2): 47–56.
Agrawal, R., Mannila, H., Srikant, R., Toivonen, H. & Verkamo, A. I. (1996). Fast Discovery

of Association Rules. In Fayyad, U.M. Piatetsky-Shapiro, G., Smyth, P. & Uthurusamy, R.
(eds.)Advances in Knowledge Discovery and Data Mining, 307–328. AAAI/MIT Press.

Anderson, T. W. (1954). On Estimation of Parameters in Latent Structure Analysis.Psycho-
metrika19: 1–10.

Armstrong, R. Freitag, D., Joachims, T. & Mitchell, T. (1995). WebWatcher: A Learning
Apprentice for the World Wide Web. InProc. AAAI Spring Symposium on Information
Gathering from Heterogeneous, Distributed Environments. AAAI Press.

Balabanovic, M., Shoham, G. & Yun, Y. (1995). An Adaptive Agent for Automated Web
Browsing.Journal of Visual Communication and Image Representation6(4).

Berge, L. C. (1976).Graphs and Hypergraphs. American Elsevier.
Berry, M. W. (1992). Large-Scale Sparse Singular Value Computations.International Journal

of Supercomputer Applications6(1): 13–49.
Berry, M. W., Dumais, S. T. & O’Brien, G. W. (1995). Using Linear Algebra for Intelligent

Information Retrieval.SIAM Review37: 573–595.
Boley, D. L. (1997).Principal Direction Divisive Partitioning. Technical Report TR-97-056,

Department of Computer Science, University of Minnesota, Minneapolis.
Cheeseman, L. & Stutz, J. (1996). Bayesian Classification (Autoclass): Theory and Results.

In Fayyad, U. M., Piatesky-Shapiro, G., Smyth, P. & Uthurusamy, R. (eds.)Advances in
Knowledge Discovery and Data Mining, 153–180. AAAI/MIT Press.

Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K. & Harshman, R. (1990).
Indexing by Latent Semantic Analysis.J. Amer. Soc. Inform. Sci.41: 41.

Doorenbos, R. B., Etzioni, O. & Weld, D. S. (1996).A Scalable Comparison Shopping Agent
for the World Wide Web. Technical Report 96-01-03, University of Washington, Dept. of
Computer Science and Engineering.

390 DANIEL BOLEY ET AL.

Duda, R. O. & Hart, P. E. (1973).Pattern Classification and Scene Analysis. John Wiley &
Sons.

Frakes, W. B. (1992). Stemming Algorithms. In Frakes, W. B. & Baeza-Yates, R. (eds.)
Information Retrieval Data Structures and Algorithms, 131–160. Prentice Hall.

Frakes, W. B. & Baeza-Yates, R. (1992).Information Retrieval Data Structures and
Algorithms. Prentice Hall: Englewood Cliffs, NJ.

Golub, G. H. & Van Loan, C. F. (1996).Matrix Computations, 3rd edn. Johns Hopkins Univ.
Press.

Hammond, K., Burke, R., Martin C. & Lytinen, S. (1995). FAQ-Finder: A Case-Based
Approach to Knowledge Navigation. InWorking Notes of the AAAI Spring Symposium:
Information Gathering from Heterogeneous, Distributed Environments. AAAI Press.

Han, E. H., Karypis, G., Kumar, V. & Mobasher, B. (1997a). Clustering Based on Association
Rule Hypergraphs (Position Paper). InWorkshop on Research Issues on Data Mining and
Knowledge Discovery, 9–13. Tucson, Arizona.

Han, E. H., Karypis, G., Kumar, V. & Mobasher, B. (1997b).Clustering in a High-Dimen-
sional Space Using Hypergraph Models. Technical Report TR-97-063, Department of
Computer Science, University of Minnesota, Minneapolis.

Han, E. H., Karypis, G., Kumar, V. & Mobasher, B. (1998). Hypergraph Based Clustering in
High-Dimensional Data Sets: A Summary of Results.Bulletin of the Technical Committee
on Data Engineering21(1).

Jackson, J. E. (1991).A User’s Guide to Principal Components. John Wiley & Sons.
Jain A. K. & Dubes, R. C. (1988).Algorithms for Clustering Data. Prentice Hall.
Karypis, G., Aggarwal, R., Kumar V. & Shekhar, S. (1997). Multilevel Hypergraph Parti-

tioning: Application in VLSI Domain. InProceedings ACM/IEEE Design Automation
Conference.

Kirk, T., Levy, A. Y., Sagiv, Y. & Srivastava, D. (1995). The Information Manifold. InWork-
ing Notes of the AAAI Spring Symposium: Information Gathering from Heterogeneous,
Distributed Environments. AAAI Press.

Kohonen, T. (1988).Self-Organization and Association Memory. Springer-Verlag.
Kwok, C. & Weld, D. (1996). Planning to Gather Information. InProc. 14th National

Conference on AI.
Leighton, V. H. & Srivastava, J. (1997).Precision Among WWW Search Services (Search

Engines): Alta Vista, Excite, Hotbot, Infoseek, Lycos. http://www,winona,msus.edu/is-f/
library-f/webind2/webind2.htm.

Lu, S. Y. & Fu, K. S. (1978). A Sentence-to-Sentence Clustering Procedure for Pattern
Analysis.IEEE Transactions on Systems, Man and Cybernetics8: 381–389.

Maarek, Y. S. & Shaul, I. Z. Ben (1996). Automatically Organizing Bookmarks per Content.
In Proc. of 5th International World Wide Web Conference.

Moore, J., Han, E., Boley, D., Gini, M., Gross, R., Hastings, K., Karypis, G., Kumar, V. &
Mobasher, B. (1997). Web Page Categorization and Feature Selection Using Association
Rule and Principal Component Clustering. In7th Workshop on Information Technologies
and Systems.

Perkowitz, M. & Etzioni, O. (1995). Category Translation: Learning to Understand Inform-
ation on the Internet. InProc. 15th International Joint Conference on AI, pp. 930–936.
Montreal, Canada.

Porter, M. F. An Algorithm for Suffix Stripping.Program14(3): 130–137.
Salton, G. & McGill, M. J. (1983).Introduction to Modern Information Retrieval. McGraw-

Hill.

DOCUMENT CATEGORIZATION AND QUERY GENERATION 391

Titterington, D. M., Smith, A. F. M. & Makov, U. E. (1985).Statistical Analysis of Finite
Mixture Distributions. John Wiley & Sons.

Weiss, R., Velez, B., Sheldon, M. A., Nemprempre, C., Szilagyi, P., Duda, A. & Gifford, D.
K. (1996). Hypursuit: A Hierarchical Network Search Engine that Exploits Content-Link
Hypertext Clustering. InSeventh ACM Conference on Hypertext.

Wulfekuhler, M. R. & Punch, W. F. (1997). Finding Salient Features for Personal Web Page
Categories. InProc of 6th International World Wide Web Conference.

