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Abstract. We propose a new feature normalization scheme based on eigen-
space, for achieving robust speech recognition.  In particular, we employ the 
Mean and Variance Normalization (MVN) in eigenspace using unique and in–
dependent eigenspaces to cepstra, delta and delta-delta cepstra respectively.  
We also normalize training data in eigenspace and get the model from the nor-
malized training data.  In addition, a feature space rotation procedure is intro-
duced to reduce the mismatch of training and test data distribution in noisy 
condition. As a result, we obtain a substantial recognition improvement over the 
basic eigenspace normalization. 

1   Proposed Scheme 

We separated the feature vector into three classes as cepstra, delta and delta-delta 
cepstra because each class has its own definition and characteristics. Then we imple-
mented a separated-eigenspace normalization (SEN) scheme. 

When cepstral features are distorted by noisy conditions, their distribution can be 
moved as well as rotated by some amount from their original distribution.[2]  When 
we rotate only the dominant eigenvector that has the largest variance or eigenvalue, 
the first eigenvectors of training and test features become the same and the mismatch 
between the training and test data distribution can be reduced.  Only the first   eigen-
vector   rotation   procedure is presented here simply as follows.  First, we need to 
obtain the eigenvalue and eigenvector of full training corpus. v~  denotes the first 
dominant eigenvector of the training distribution and v  denotes the first dominant 
eigenvector of one test utterance. Then the rotation angle  α  , between the two eigen-

vectors, is computed from their dot product,  ) ~ arccos( v v ⋅ = α   and 

   
    

 

 

− 
= 

) cos( ) sin( 

) sin( ) cos( 

α α 

α α 
R 

  
where R denotes a rotation matrix. Since the two eigen-

vectors are not orthogonal, the Gram-Schmidt is applied to v~  in order to obtain the 

orthonormal basis vector v̂  lying in the same plane of rotation, 
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Then we project the test features onto the plane spanned by v~  and v̂ .  The projection 



A New Feature Normalization Scheme      77 

matrix consists of  v~  and v̂ , thus )ˆ,~( vvJ = . Finally, a correction matrix TJJI −  

with the identity matrix I  has to be applied in order to restore the dimensions lost in 
the projection procedure.  Then the full rotation matrix Q  is derived as: 

TT JJIJRJQ −+= .  Finally, the rotated feature is obtained by: c
t
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t QXX =

�
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2   Experiments and Results 

Recognition Task: The feature normalization method has been tested with the 
Aurora2.0 database that contains English connected digits recorded in clean environ-
ments. Three sets of sentences under several conditions (e.g. SetA: subway, car noise, 
SetB: restaurant, street and train station noise, SetC: subway and street noise) were 
prepared by contaminating them with SNRs ranging from  -5dB to 20dB and clean 
condition.  A total of 1001 sentences are included in each noise condition. 
Experiments Procedure and Results: We followed the Aurora2.0 evaluation proce-
dure for   performance verification  along   with identical conditions suggested in the 
Aurora2.0 procedure. Note that we use a c0 coefficient instead of log-energy to in-
duce improved performance, because eigenspace is defined consistently when some 
of elements have large variance.  First we examine the baseline performance (clean 
condition training).  We then apply MVN [3] and the eigenspace MVN to only the 
test data and to both training and test data together.  Next, we experimented on sepa-
rated-eigenspace normalization (SEN).  The feature space rotation with SEN was 
examined also.  The experiment notations of Tables are as follows: 1) MVN : mean 
and variance normalization in cepstral domain,  2) EIG : mean and variance in eigen-
space.[1] (eigenspace normalization), 3) SEN : separated-eigenspace normalization, 
4) SEN_Ro_20 : separated-eigenspace normalization +feature space rotation.  The 
first eigenvector of the test is obtained from training noisy set’s 20dB data of each. 

From Table 1, we can see that SEN with feature rotation and training data nor-
malization is more effective than basic eigenspace normalization. 

We initially expected the best performance when each dominant eigenvector ob-
tained from each SNR was applied to the corresponding SNR test set.  However, it 
turns out that such method does not guarantee the improvement. At low SNR, the 
performance becomes slightly degraded.  We achieved the best performance when 
applying an eigenvector of 20dB set to all SNR data of same test set. 

Table 1. Average word accuracy for the proposed scheme of all data set in Aurora2.0(%)                  
( _T  denotes the normalization of training data ) 

 Baseline MVN EIG EIG_T SEN SEN_T SEN_Ro_20_T 

SetA 59.58 77.90 79.81 80.43 80.27 80.51 81.08 
SetB 57.18 79.49 81.21 82.87 81.77 82.49 - 
SetC 66.81 77.90 78.96 79.23 79.32 79.10 - 

 
At lower SNR, the data distribution in cepstral domain becomes more compressed. 

Consequently, their discriminative shapes (e.g. large variance) is diminished as the 
SNR becomes lower.  That’s the reason why 20dB statistics yielded the best perform-
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ance.  From a 20dB noisy training database, we estimated the characteristics of corre-
sponding noise and compensated for the feature reliably. Through the proposed 
methods, we obtained average word accuracy up to 81.08% on the setA of Aurora2.0.  
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