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Abstract

Generating meaningful and natural sounding prosody is a central challenge in text-to-speech synthesis (TTS). In tra-

ditional synthesis, the challenge consists of how to generate natural target prosodic contours and how to impose these

contours on recorded speech without causing audible distortions. In unit selection synthesis, the challenge is the sheer

size of the speech corpus that is needed to cover all combinations of phone sequences and prosodic contexts that can

occur in a given language. This paper describes new methods that are being explored, based on the principle of super-

positional prosody transplant.

Both methods are based on the following procedure. In a recorded, prosodically and phonemically labeled corpus,

the log pitch contours are additively decomposed into component curves according to a prosodic hierarchy, typically

phrase curves (corresponding to phrases), accent curves (corresponding to feet), and segmental perturbation (or resid-

uals) curves. During synthesis, the corpus is searched for multiple unit sequences: A unit sequence that covers the target

phoneme string, and one or more unit sequences that cover the prosodic labels at a given phonological level (e.g., the

foot or phrase) and are constrained by being matched to the phone match sequence in terms of the phonetic classes of

the phonemes (or in terms of higher level entities, such as the number of feet and their sizes measured in syllables). The

methods differ in terms of the level of detail of these constraints. A superpositional prosody transplant procedure gen-

erates a target pitch contour by extracting and recombining component curves from these sequences, and imposing this

contour on the sequence that matches the phone string using standard speech modification methods. This process min-

imizes prosodic modification artifacts, optimizes the naturalness of the target pitch contour, yet avoids the combinato-

rial explosion of standard unit selection synthesis.
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1. Introduction

Generating meaningful and natural sounding

prosody is a central challenge in text-to-speech

synthesis (TTS). Two broad classes of methods
ed.
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are currently used. In both methods, natural lan-

guage processing algorithms are used to generate

a multi-layered symbolic, linguistic representation

of the input text, or linguistic data structure. In

the traditional concatenative synthesis method, tar-
get contours are computed by rule from the lin-

guistic data structure, and these contours are

then imposed on stored speech units using signal

modification methods such as Linear Predictive

Coding (Olive and Liberman, 1985), PSOLA

(Charpentier and Moulines, 1989), sinusoidal

modeling (Macon, 1996), or MBROLA (Dutoit,

1997). The unit selection synthesis method uses nei-
ther target contours nor signal modification. In-

stead, a large, labeled speech corpus is searched

for a sequence of speech intervals whose labels

match the linguistic data structure. If a match

can be found, then the resulting speech is simply

a sequence of intervals of digitized natural

speech and can be indistinguishable from natural

speech.
This paper briefly discusses the problems inher-

ent in the two methods, and then proposes a new

approach that combines elements from both. This

approach is based on the idea of re-combining nat-

ural prosodic contours and phoneme sequences using

a superpositional framework; the latter refers to a

general class of models that have been proposed

by Öhman and Lindqvist (1966), Fujisaki (1988),
Thorsen (1980), van Santen and Möbius (1999),

and Morlec et al. (1996). Two instantiations of this

approach are proposed, the second of which builds

on earlier work described in (van Santen et al.,

2003; Raux and Black, 2003). The goal of this

paper is primarily theoretical, with emphasis on

(i) how this superpositional framework addresses

problems in traditional methods and on (ii) which
problems need to be addressed in order to build a

complete system based on this framework.
2. Limitations of current TTS methods

2.1. Traditional concatenative synthesis

In this method, the quality of the generated

speech prosody depends on two factors: the natu-

ralness of the target contours and the absence of
signal modification distortions. Although progress

has been made on both fronts, the current popular-

ity of unit selection synthesis illustrates that neither

problem is considered as having been fully solved.

One fundamental problem is that prosodic control
factors such as word stress and proximity to phrase

boundaries affect multiple acoustic dimensions,

including the fine temporal structure of the speech

signal, pitch, spectral balance, and spectral dynam-

ics. Both the task of computing target contours and

the task of imposing these contours on speech have

proven to be difficult.

2.2. Unit selection synthesis

The limiting factor in this method is the avail-

ability in the speech corpus of units that match

any linguistic data structure that the system may

be called upon to synthesize. It is well-known

(e.g., van Santen, 1997; Moebius, 2001; Baaijen,

2000) that the number of distinct prosodic and
phonemic contexts that a given phone sequence

can occur in is extremely large in unrestricted do-

mains, and even in restricted domains such as

names and addresses. In fact, the probability is

near-certainty that a given input text will require

phone sequence/context combinations that the

speech corpus does not have. These problems are

ameliorated as a result of two factors. One is that
the frequency distribution of phone sequence/

context combinations is extremely uneven, so that

frequency-optimized speech corpora can have

much better coverage than corpora with randomly

selected text. Second, not all contextual distinc-

tions are associated with audible acoustic differ-

ences. Thus, the system may benefit from the

presence of phone sequence/context combinations
that are acoustically similar to combinations the

system is searching for but that are absent.

Nevertheless, unit selection synthesis faces three

profound problems. First, the sole avenue for

quality improvement lies either in ever-larger

speech corpora or in limiting the system to

restricted domains. Second, there is an increasing

interest in highly expressive speech. This poses
problems for unit selection synthesis because it

increases the combinatorics and it creates larger

pitch excursions that are more likely to cause
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prosodic discontinuities. Third, concept-to-speech

and human-machine dialogue applications make

mark-up language driven TTS increasingly more

important. Mark-up tags make similar demands

on the TTS engine as expressive speech.
3. Proposed methods

The proposed methods attempt to address three

issues: The naturalness of target contours, minimi-

zation of the amount of signal modification, and

minimization of the amount of recordings needed
to achieve coverage of a given domain.

The key idea is to use prosodic target contours

that are extracted from the speech corpus itself,

unlike traditional concatenative synthesis where

the target contours are synthetic. By thus de-

coupling the prosodic and the phonemic require-

ments of the units, we also avoid the combinatorial

problem in unit selection synthesis where these
requirements must be satisfied by one and the same

unit sequence. Thus, the methods are based onmul-

tiple unit sequences. The first of these sequences

consists of speech intervals whose phonemic labels

match the input sentence (‘‘phoneme unit se-

quence’’) and the remaining sequences each consist

of speech intervals whose prosodic labels match the

input sequence at the level of some phonological
entity such as a foot1 or a phrase (‘‘prosodic unit

sequences’’). The pitch contours from these

sequences are then combined additively into a

target pitch contour that is imposed on the first

sequence using standard signal modification

methods.

The key advantages of multiple unit sequence

concept are, compared to traditional synthesis,
that the pitch contours are natural instead of syn-

thetic, and, compared to unit selection synthesis,

that the combinatorics has been reduced from a

quadratic to a linear problem because we are no
1 We define a foot here in the classical Abercrombie sense

and not the Jassem Narrow Rhythm Unit sense, as an

accented syllable followed by zero or more unaccented

syllables without regard to word boundaries; see Bouzon and

Hirst (2004).
longer searching for a unit sequence that simulta-

neously satisfies the phonemic and prosodic

requirements.

The key, overall differences between the pro-

posed methods and the work by Raux and Black
(2003) are the following. First, instead of con-

structing the target pitch contour by concatenating

raw pitch contours, we use a superpositional ap-

proach: We construct the target pitch contour by

addition of component contours. These component

contours belong to various contour classes that,

as is standard in superpositional approaches

(Fujisaki, 1988; van Santen and Möbius, 1999) in
turn are tied to different levels in a phonological

hierarchy (segments, feet, phrases, etc.). These

component contours are extracted from multiple

prosodic unit sequences, again corresponding to

these different phonological levels. This process

has two advantages: It completely avoids pitch

contour discontinuities, and it enables naturalness

of pitch at multiple time scales.
Second, instead of generating segmental dura-

tions by a mechanism that does not make use of

the information available in these multiple unit

sequences (e.g., using traditional models for seg-

mental duration prediction such as CART, or

Sums-of-Products) we define duration contours

and transplant these from the prosodic unit se-

quences to the phoneme unit sequence. This has
the advantage of ensuring that the local temporal

segmental structure and the time course of the

pitch contours are tightly coordinated.

The two methods proposed, which will be called

the quadruples method and the superpositional unit

selection method, differ in terms of the require-

ments on the speech corpus. Specifically, the

corpus for the quadruples method must have a
specific structure while the corpus for the superpo-

sitional unit selection method is far less restricted.

3.1. Superpositional prosody transplant method I:

Quadruples method

The fundamental idea is to create a speech cor-

pus consisting of phone sequence phonemic/
prosodic context combinations that form a spe-

cially structured subset of the set of all such com-

binations, and then use a prosody transplantation
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method to generate the remaining combinations

from this subset.

3.1.1. Completeness of incidence matrices with

missing data

Following van Santen et al. (2003), we use the

notation u1,u2, . . . to denote phone sequences,

c1,c2, . . . to denote prosodic contexts, and (u1,c1),

(u1,c2) for their combinations. For example,

u1 = [wi:j] and c1 = (phrase initial,unstressed, . . .)
characterizes the sequence of phones and the cor-

responding prosodic/phonemic context for the ini-

tial part of the phrase ‘‘. . ., we use . . .’’.
Let S and C be the sets of phone sequences and

contexts in a given domain. If one has a recombi-

nation method for generating (uk,cm) from (ui,cj),

(uk,cj), and (ui,cm), then one can generate any

(up,cq) if the following is true. First construct the

binary #S · #C incidence matrix M, in which cell

(i, j) contains 1 whenever (ui,cj) is present in the

speech corpus, and 0 otherwise. Matrix M is said
to be complete if iterative application of the follow-

ing rule (known as the R-method; Dodge, 1981)

causes each cell in the matrix to contain 1:

If Mij ¼ 1; Mim ¼ 1; and Mkj ¼ 1

then Mkm ! 1.

In other words, if (i) a combination method is

available, (ii) the incidence matrix of a given cor-

pus is complete, and (iii) the sets S and C cover

all phone sequences and contexts in the target do-

main, then all combinations needed for the target

domain can be generated. An example of a com-

plete matrix is a matrix in which M1j = 1 for all j
and Mi1 = 1 for all i.

Because, as this example suggests, only

#S + #C � 1 cells need to be occupied for M to

be complete, the amount of recordings necessary

for coverage could be reduced by orders of magni-

tude compared to unit selection based synthesis.

To illustrate, if we let S be the set of diphones in

English and C a set of contexts known to affect
prosody (e.g., combinations of word stress, sen-

tence accent, within-phrase word location, etc.;

Klabbers and van Santen, 2003), having 2000

and 20 elements respectively, then the number of

recordings is reduced from 40,000 diphone tokens

to 2019, or by 95%.
3.1.2. Recombination method

Consider (u1,c1), (u2,c1), and (u1,c2). For exam-

ple let u1 = [wi], u2 = [jo], c2 = unstressed, and

c1 = stressed. The proposed recombination meth-

od measures the difference between (u1,c1) and
(u1,c2) and applies this difference to (u2,c1) in order

to obtain (u2,c2).

A central assumption in the proposed methods

is the same assumption that underlies traditional

synthesis, which is that the speech signal can be

decomposed into segmental and prosodic informa-

tion. For an example, consider Linear Predictive

Coding (LPC) based synthesis where segmental
information is contained in a vector (‘‘segmental

vector’’) comprising filter parameters and a voicing

flag, and the prosodic information is represented by

a vector comprising the fundamental frequency and

the duration of the frames (‘‘prosodic vector’’).

Many other examples of segmental/prosodic de-

composition exist, including representations in

which the segmental vector contains all informa-
tion about the raw speech wave and the prosodic

vector information is used to modify the segmental

vector at run time; the prosodic vector may contain

information not only about fundamental frequency

and loudness but also about the rate of spectral

change in order to mimic reduction phenomena

(e.g., Wouters and Macon, 2002a,b) or about spec-

tral balance (van Santen and Niu, 2002).

3.1.2.1. Alignment of phonemically equivalent phone

sequences. Two sequences u1 and u2 are phonemi-

cally equivalent if they contain the same number
of phones and if in both sequences the kth phone

has the same manner of production for all k. Thus,

the phone sequences in the words ‘‘medal’’ and

‘‘neighbor’’ are phonemically equivalent.

Consider intervals of speech of the type

Tij ¼ ftjT ij;start 6 t 6 T ij;endg;
where the first subscript corresponds to phone

sequence ui and the second subscript to context
cj. When u1 and u2 are phonemically equivalent,

this allows defining a piecewise linear time warp

function, W21!11, that relates (u1,c1) and (u2,c1)

and maps T21 onto T11 by extending the corre-

spondence between the phone boundaries in the

two intervals.
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Note: Throughout, the notation Wij!km will be

used for a time warp that maps Tij onto Tkm. It will

be assumed that the time warps are strictly increas-

ing, so that W �1
ij!km exists and is equal to Wkm!ij.

3.1.2.2. Measurement of context effects on tim-

ing. Similarly, for (u1,c1) and (u1,c2), we can estab-

lish a time warp function W11!12 that maps T11

onto T12. This time warp characterizes the tempo-

ral effects of the contextual change from c1 to c2.

Because the same phone sequence is involved, this

time warp does not have to rely on the piecewise

linear extension of the correspondence between
the phone boundaries in the two intervals, but

instead can use dynamic time warping based on

a frame-to-frame distance measure between the

frames in the two speech intervals. It has been

shown (van Santen et al., 1992; van Santen,

1996) that certain contextual effect are far from

uniform within phone intervals, and that these

non-uniformities can be captured with dynamic
time warping. For example, phrase-final lengthen-

ing affects primarily the final part of the vowel.

An equivalent characterization of context ef-

fects on timing is in terms of the slope of the time

warp, or

Slope11!12ðtÞ ¼ W 11!12ðt þ 1Þ � W 11!12ðtÞ. ð1Þ

Slope11!12 measures the amount of stretching or

compression at time t as a result of the contextual

change from c1 to c2.

3.1.2.3. Measurement of context effects on funda-

mental frequency. The procedure followed is based

on superpositional modeling. According to this ap-

proach, F0 contours are viewed as resulting from
the additive (typically in the log frequency do-

main) combination of underlying curves having

different temporal scopes and tied to different pho-

nological entities. The best known of these, the

Fujisaki Model (Fujisaki, 1983, 1988), uses phrase

curves and accent curves. In other approaches

(e.g., the linear alignment model; van Santen and

Möbius, 1999) also segmental perturbation curves
are included, representing the systematic effects of

certain segmental classes on the pitch contour

(e.g., F0 is shifted upward in vowel regions during

the first 50–100 ms after the offset of an obstruent).
Denoting the F0 contour in (ui,cj) as F ½i;j�
0 , we

decompose F ½i;j�
0 into two underlying curves, a

phrase curve and a combined accent and segmental

perturbation curve:

F ½i;j�
0 ðtÞ ¼ C½i;j�

phrðtÞ þ C½i;j�
accþsegðtÞ. ð2Þ

The phrase curves occurring in the speech corpus

(i.e., for (i, j) = (1,1), (1,2), and (2,1)) are currently

estimated manually using a graphical speech dis-

play, while the phrase curves that are to be com-

puted (i.e., for (i, j) = (2,2)) are generated by rule

using the linear alignment model (van Santen

and Möbius, 1999). C½i;j�
accþseg is computed by sub-

tracting C½i;j�
phr from F ½i;j�

0 . Fig. 1 shows examples.

The method chosen for measuring the relation-

ship between C½1;1�
accþseg and C½1;2�

accþseg proceeds as fol-

lows. Letting mij denote the mean of the section

of the phrase curve corresponding to the time
interval spanned by (ui,cj), define the curve:

R11!12ðtÞ ¼
C½1;2�

accþseg½W 11!12ðtÞ� þ m12

C½1;1�
accþseg½t� þ m11

. ð3Þ

This curve describes the relationship between
C½1;1�

accþseg and C½1;2�
accþseg as a ratio curve; the values be-

tween which the ratios are computed are taken

from corresponding points in the segmental vector

stream. This ratio curve is not smooth, and is sub-

jected to smoothing using isotonic smoothing (van

Santen and Sproat, 1999) followed by Gaussian

smoothing (see Fig. 2).

3.1.2.4. Computing the segmental vector sequ-

ence. The segmental vector sequence in (u2,c1) con-

sists of the sequence f~s21ðtÞg, where t ranges over

the interval T21. We now use W21!11 and

Slope11!12 to create a time warp W21!22, which

is then applied to f~s21ðtÞg to create f~s22ðtÞg. Let

Slope21!22ðsÞ ¼ Slope11!12½W 21!11ðsÞ�; ð4Þ

then

W 21!22ðtÞ ¼
X
s6t

Slope21!22ðsÞ. ð5Þ

Finally, denoting for a given combination (ui,cj) at

(discrete) time t the segmental vector as~sijðtÞ:
~s22ðsÞ ¼~s21½W 22!21ðsÞ�. ð6Þ
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Fig. 1. C½i;j�
accþsegðtÞ, for i, j = 1,2. Vertical lines indicate vowel onset.
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In words, to generate (u2,c2) from (u2,c1), we

apply the same local stretch or compression factor

to the time points in (u2,c1) as are applied to the

corresponding (via W21!11) time points in (u1,c1)

to obtain (u1,c2).

3.1.2.5. Computing the prosodic vector sequence.The

generation of F ½2;2�
0 ðtÞ proceeds as follows. First,
a phrase curve, C½2;2�
phr , is computed by rule, via the

linear alignment model. Let t = W22!21(s), for

s 2 T22, and define

C½2;2�
accþsegðsÞ ¼ R11!12ðtÞ � ½C½2;1�

accþsegðtÞ þ m21� � m22.

ð7Þ
Finally, let F ½2;2�

0 ðsÞ ¼ C½2;2�
accþsegðsÞ þ C½2;2�

phr ðsÞ (Fig. 1,
upper right panel).
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This operation has three important properties.

First, it preserves the synchrony between local

segmental perturbations of the F0 contour and

the segmental frames, because these perturbations
are represented in C½2;1�

accþsegðtÞ and because the mul-

tiplication curve, R11!12(t), is smooth. There is

evidence that certain segmental perturbations

are independent of prosodic context, specifically

accent status and proximity to phrase boundaries

(van Santen and Möbius, 1999). An additional

benefit or preserving this synchrony is that it

has been shown that signal processing artifacts
can be predicted by comparing the original and

target pitch contours in terms of pitch values

and pitch derivatives (Klabbers and van Santen,

2003).

Second, the alignment of the F0 contour, for

example as measured by peak location relative to
syllable boundary locations, is known to vary as

a function of the manner of production of the seg-

ments associated with a pitch accent (van Santen

and Möbius, 1999), specifically with the segments

in the coda of the accented syllable. This fact, in
combination with the need for time warps between

different phone sequences, forms the primary

reason for focusing on phonemically equivalent

phone sequences.

Third, peak location has been shown to vary

non-uniformly with the durations of the segments

making up the accented (and post-accented) sylla-

bles (van Santen and Möbius, 1999). For example,
a change in the duration of the onset brings about

a much larger change in peak location than the

same change in the duration of the nucleus or

coda. The non-uniform time warping procedures

reflect this result.

3.2. Superpositional prosody transplant method II:

Superpositional unit selection method

This method differs from the quadruples method

in that, instead of obtaining a target contour by

applying the result of a differencing operation—

i.e., applying the difference between (u2,c1) and

(u2,c2) to (u1,c1) to obtain (u1,c2)—the method

does not require the presence of such quadruples

in the corpus. Instead, it involves searching for
multiple prosodic unit sequences, extracting pitch

component curves (or parameters characterizing

these curves) from these sequences, and additively

recombining them to form a target pitch contour;

a roughly analogous process is described for

duration.

3.2.1. Pre-processing of speech corpus

3.2.1.1. Prosodic labeling. Following Klabbers and

van Santen (2003), the corpus is labeled in terms of

a hierarchical scheme with as key phonological

entities, for example, the phoneme, syllable, word,

foot, phrase, sentence, and paragraph. Each of

these entities in turn is marked with tags such as

for stress and location within the next-larger

entity; in addition, entities are marked in terms
of their internal constituents. Thus, a foot may

be characterized as medium stress, phrase final,

sentence medial, consisting of 3 syllables.
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3.2.1.2. Additive decomposition of pitch contours.As

in the quadruples method, the pitch contours

are decomposed into component curves. The

curves are the segmental perturbation or residuals

curve, accent curve, and the phrase curve. In addi-
tion, parameters characterizing phrase curves are

extracted and used to compute patterns of phrase

curve parameters characterizing entities larger than

the phrase, such as the sentence and the paragraph.

For example, a sentence consisting of two phrases

is characterized by three time-frequency pairs for

each of the phrases, where the three time points

correspond to the start and end of the phrase and
the start of the syllable carrying the nuclear pitch

accent.

A major challenge in this step is the decomposi-

tion of pitch curves. A key reason why this is diffi-

cult is that, in contrast to the standard analysis

using the Fujisaki model, we do not want to make

assumptions about the shapes of these component

curves. Recently, an approach has been explored
in which wavelets are used to reveal the phrase

curve, with promising initial results (van Santen

and Mishra, 2004). It was found that this method

was able to reliably recover phrase curves from

pitch curves that were generated either by the Fuji-

saki model or from the linear alignment model. The

method performs a wavelet transform of the input

pitch curve, removes transform components via
level-dependent thresholding to remove components

corresponding to the accent and residuals curves,

and then performs the inverse wavelet transform

to produce an estimate of the phrase curve. While

these results are limited because the input curves

were synthetic rather than natural, and were

smooth rather than containing gaps due to non-

sonorant regions, these results are nevertheless
promising. Other work relevant for additive

decomposition is by Sakai (2004), who was able

to extract average component curves for various

prosodic contexts from a corpus without making

assumptions about their shapes. We are currently

working on methods that in addition to combining

these two approaches, will also make use of the spe-

cial privilege stemming from the fact that in speech
synthesis, one can assume that the speech corpus

has been labeled and segmented. Nevertheless, for

now, we use semi-manual methods.
3.2.1.3. Relative duration contours. For each pho-

neme class, intrinsic durations are computed across

the entire data base, using the multiplicative model

(van Santen, 1993). Formally, for a phonetic seg-

ment with identity p in a context characterized
by levels f1� � �fn on prosodic control factors

F1� � �Fn:

DURðp;f1; f2; . . . ; fnÞ� dDURðp;f1;f2; . . . ;fnÞ
¼ IðpÞ�S1ðf1Þ� �� ��SnðfnÞ.

ð8Þ

Here, I(p) is an estimate of the intrinsic duration,

and Sn(fn) is a parameter representing the impact

of factor level fn on factor Fn, normed such thatQ
fn2F n

SnðfnÞ ¼ 1. Thus defined, I(p) can be inter-

preted as an estimate of the true average of the

(log) durations if the data set was perfectly bal-

anced, i.e., if the data set contained all combina-
tions of the levels on the control factors equally

often (which is, of course, impossible).

Assuming the multiplicative model, these intrin-

sic durations are used to produce relative dura-

tions, by dividing actual durations by intrinsic

durations. That is,

DURrelðp;f1;f2; .. . ;fnÞ¼def DURðp;f1;f2; . . . ;fnÞ=IðpÞ.
ð9Þ

Under this model, the resulting relative durations

are equal to

DURrelðp; f1; f2; . . . ; fnÞ ¼ S1ðf1Þ � � � � � SnðfnÞ;
ð10Þ

and hence completely independent of phonemic

identity; they solely reflect prosodic factors.

We note that instead of the intrinsic duration

estimated via the multiplicative model we also

could have used the simple overall medians or

means, computed over all occurrences of a pho-
neme in a corpus. However, this has severe draw-

backs because of correlations between phoneme

identity and prosodic context (van Santen, 1992,

1993). For example, the /e/ sound (as in ‘‘bed’’)

can never be phrase-final in English because except

for loan words this vowel does not occur in open

syllables. As a result, the difference in average
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duration between /i:/ (as in ‘‘bead’’) and /e/ is much

larger than the difference in intrinsic duration; the

latter roughly corresponds to the duration differ-

ence between the two vowels in carefully matched

contexts.
Once these relative durations are obtained, the

relative duration contours (i.e., curves depicting rel-

ative duration as a function of the position of the

phonetic segments in an utterance) can be option-

ally smoothed. We note, however, that relative

durations are not necessarily smooth because con-

textual effects can be highly localized. For exam-

ple, we have found that the effects of strong
emphasis on intervocalic /n/ (as in ‘‘banner’’) are

zero, whereas the preceding vowel and consonant

are substantially lengthened.

Using the results from the multiplicative model

analysis, the relative duration contours in turn can

be decomposed into parameters tied to the differ-

ent levels in the phonological hierarchy.

3.2.2. Synthesis

3.2.2.1. Unit sequences. The input to the search sys-

tem is a fairly conventional hierarchical phonolog-

ical structure, containing target phonemes, target

syllables, target feet, target phrases, etc. The cor-

pus is searched for the following unit sequences:

Phoneme match sequence: Matches target pho-
neme sequence.

Foot match sequence: Matches the target foot

sequence, containing the same number of pho-

netic segments as the target phoneme sequence,

with the further constraint (the ‘‘phoneme-class

constraint’’) that these segments belong to the

same broad phonemic classes, defined as vowel

or diphthong, sonorant consonant, and other.
Phrase match sequence: Matches the target

phrase in terms of number and lengths (in sylla-

bles) of feet.

Sentence match sequence: Matches the target

sentence in terms of number and lengths (in

feet) of phrases.

Etc.

The search for these unit sequences jointly opti-

mizes multiple acoustic and symbolic costs,

including:
Concatenation cost: Measure of acoustic mis-

match between successive units.

Acoustic phonemic target cost: Measure of

acoustic distance to acoustic template of a pho-

netic class.
Foot/phoneme cost: Violations of the same-class

constraint.

Phrase/foot cost: Mismatches between the tar-

get and the phrase match sequence in terms of

the number and lengths of the feet.

Sentence/phrase cost: Mismatches between the

target and the phrase match sequence in terms

of the number and lengths of the feet.

3.2.2.2. Target pitch contour. The target pitch

contour is generated by superposition of

retrieved curves, with optional adjustment of their

shapes. Specifically, the following steps are

taken:

(1) Residuals curve: The residuals curve of Pho-

neme match sequence is timewarped syn-

chronously with the spectral contents of

this sequence, as dictated by the target dura-

tion contour.

(2) Accent curves: Accent curves are retrieved

from Foot match sequence, timewarped to

align phoneme sequences in corresponding
feet.

(3) Phrase curves: Phrase curves are retrieved

from Phrase match sequence, timewarp to

align feet. Shift or tilt phrase curves as spec-

ified by Sentence match sequence.

(4) Add residual curve, accent curves, and

phrase curves.

3.2.2.3. Target duration contour. The target dura-

tions contour is generated using the following

steps:

(1) Consider a foot in the Foot match sequence

consisting of phonemes q1, . . .,qm, and the

corresponding sequence of phonemes in the
Phoneme match sequence, p1, . . .,pm. Com-

pute the following preliminary target duration

contour:
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DURtargetðpiÞ¼ IðpiÞ�DURrelðqiÞ=DURrelðpiÞ.
ð11Þ
(2) Multiply the preliminary target contours

with estimated parameters that reflect the

contributions from factors at the phrase-

end sentence-match levels.
4. Conclusions

We believe that the proposed methods address

key weaknesses in current approaches, namely

the reliance on extraordinary amounts of data in

Unit Selection based Synthesis and the reliance

on artificial target contours and signal modifica-

tion methods in traditional concatenative synthe-
sis. They do so by taking advantage of two key

ideas: Recombination of natural spectral and pro-

sodic information, and using decomposition of

pitch curves (and duration curves) into re-combin-

able component curves.

We briefly contrast here the proposed approach

with the Superposition of Functional Contours

(SFC) model proposed by Bailly and his colleagues
(e.g., Raidt et al., 2004). There are two key differ-

ences. First, the SFC generates synthetic compo-

nent curves using neural nets instead of extracting

and recombining natural component curves. Sec-

ond, the SFC model handles a prosodic hierarchy

(foot, phrase, sentence, etc.) by positing a compo-

nent curve class for each of these levels, whereas

the proposed method extracts phrase curve para-

meters to model the contributions of these levels.

It is an open empirical question whether, as in the

SFC model, the additivity assumption can be used

to model the contributions of all levels of a pro-

sodic hierarchy, or whether, as in the proposed

approach, some of these contributions must be

modeled non-additively.

In order to create a full-scale implementation of
the method, several problems still need to be

addressed. First, determination of the contexts C

(see Section 3.1.1) in a given domain. It has been

shown by Klabbers and van Santen (2002, 2003,

2004) that ‘‘foot based tagging’’ provides a concise

characterization of the joint factors of word stress,
sentence accent, and within-phase location. How-

ever, this tagging scheme leaves out other prosodic

factors such as contrastive stress and sentence

mode, and certainly emotional factors, and thus

needs to be extended.
Second, extending the method to prosodic fea-

tures other than timing and pitch, such as spectral

tilt and energy. van Santen and Niu (2002) gener-

ated synthetic spectral balance trajectories, using

the same methods as used in the Bell Labs system

for generating synthetic target duration (van San-

ten, 1994). Methods need to be generated for

transplanting spectral balance trajectories.
Third, as remarked earlier, although significant

progress has been made (van Santen and Mishra,

2004), non-supervised determination of the phrase

curves is still an unsolved problem.
Acknowledgements

We thank Xiaochuan Niu, Johan Wouters, and

Paul Hosom for insightful comments. We owe sev-

eral of the key ideas to Mike Macon, who died in

2002, and to whom this paper is dedicated. This

material is based on work supported by the

National Science Foundation under Grants No.

0205731 (‘‘ITR: Prosody Generation for Child

Oriented Speech Synthesis’’), jointly with Alan
Black and Richard Sproat; 0313383 (‘‘ITR: Objec-

tive Methods for Predicting and Optimizing Syn-

thetic Speech Quality’’); and 0082718 (‘‘ITR:

Modeling Degree of Articulation for Speech

Synthesis’’).
References

Baaijen, D.R., 2000. Word Frequency Distributions. Kluwer,

Dordrecht, The Netherlands.

Bouzon, C., Hirst, D., 2004. Isochrony and prosodic structure

in British English. In: Proc. Speech Prosody 2004, Nara,

Japan.

Charpentier, F., Moulines, E., 1989. Pitch-synchronous wave-

form processing techniques for text-to-speech synthesis

using diphones. In: Proc. of Eurospeech-1989, Paris. pp.

13–19.

Dodge, Y., 1981. Analysis of Experiments with Missing Data.

Wiley, New York.



J. van Santen et al. / Speech Communication 46 (2005) 365–375 375
Dutoit, Th., 1997. An Introduction to Text-to-Speech Synthesis.

Kluwer, Dordrecht, The Netherlands.

Fujisaki, H., 1983. Dynamic characteristics of voice funda-

mental frequency in speech and singing. In: MacNeilage,

P.F. (Ed.), The Production of Speech. Springer, New York,

pp. 39–55.

Fujisaki, H., 1988. A note on the physiological and

physical basis for the phrase and accent components

in the voice fundamental frequency contour. In: Fujimura,

O. (Ed.), Vocal Physiology: Voice Production, Mecha-

nisms and Functions. Raven, New York, pp. 347–

355.

Klabbers, E., van Santen, J., 2002. Prosodic factors for

predicting local pitch shape. In: Workshop on Speech

Synthesis, Santa Monica, CA, IEEE.

Klabbers, E., van Santen, J.P.H., 2003. Control and prediction

of the impact of pitch modification on synthetic speech

quality. In: Proc. of Eurospeech-2003, Geneva, Switzerland,

September.

Klabbers, E., van Santen, J., 2004. Clustering of foot-based

pitch contours in expressive speech. In: Proc. of the 5th

ISCA Speech Synthesis Workshop (SSW5), Pittsburgh,

June.

Macon, M.W., 1996. Speech synthesis based on sinusoidal

modeling. Ph.D. Thesis, Georgia Tech., October.

Moebius, B., 2001. Rare events and closed domains: two

delicate concepts in speech synthesis. In: 4th ISCA Tutorial

and Research Workshop on Speech Synthesis, Pilochry,

Scotland, ESCA.

Morlec, Y., Bailly, G., Aubergé, V., 1996. Generating intona-
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