
Artificial Intelligence Review 21: 25–56, 2004.
© 2004 Kluwer Academic Publishers. Printed in the Netherlands.

25

Reasoning with Numeric and Symbolic Time Information

MALEK MOUHOUB
Department of Computer Science, University of Regina, 3737 Wascana Parkway, Regina,
Saskatchewan, Canada S4S 0A2
(E-mail: mouhoubm@cs.uregina.ca)

Abstract. Representing and reasoning about time is fundamental in many applications of
Artificial Intelligence as well as of other disciplines in computer science, such as scheduling,
planning, computational linguistics, database design and molecular biology. The develop-
ment of a domain-independent temporal reasoning system is then practically important. An
important issue when designing such systems is the efficient handling of qualitative and metric
time information. We have developed a temporal model, TemPro, based on the Allen interval
algebra, to express and manage such information in terms of qualitative and quantitative
temporal constraints. TemPro translates an application involving temporal information into
a Constraint Satisfaction Problem (CSP). Constraint satisfaction techniques are then used to
manage the different time information by solving the CSP. In order for the system to deal with
real time applications or those applications where it is impossible or impractical to solve these
problems completely, we have studied different methods capable of trading search time for
solution quality when solving the temporal CSP. These methods are exact and approximation
algorithms based respectively on constraint satisfaction techniques and local search. Experi-
mental tests were performed on randomly generated temporal constraint problems as well as
on scheduling problems in order to compare and evaluate the performance of the different
methods we propose. The results demonstrate the efficiency of the MCRW approximation
method to deal with under constrained and middle constrained problems while Tabu Search
and SDRW are the methods of choice for over constrained problems.

Keywords: approximation algorithms, constraint satisfaction techniques, planning,
scheduling, temporal reasoning

1. Introduction

Time representation and reasoning is fundamental in many applications of
artificial intelligence as well as of other disciplines of computer science, such
as computational linguistics (Song and Cohen 1991; Hwang and Shubert
1994), database design (Orgun 1996), computational models for molecular
biology (Golumbic and Shamir 1993), scheduling (Pape and Smith 1987;
Baptiste and Pape 1995) and planning (Laborie and Ghallab 1995b). The
development of a domain-independent temporal reasoning system is thus
practically important. An important issue when designing such systems is
the efficient handling of qualitative and metric time information. Indeed, the

26 MALEK MOUHOUB

separation between the two aspects does not exist in the real world. In our
daily life activities, for example, we combine the two type of information to
describe different situations. In the case of scheduling problems, we can have
qualitative information such as the ordering between tasks and quantitative
information describing the temporal windows of the tasks i.e., earliest start
time, latest end time and the duration of each task.

In a previous work (Mouhoub et al. 1998), we have developed a temporal
model, TemPro, based on the interval algebra, to express such information
in terms of qualitative and quantitative temporal constraints. TemPro trans-
lates an application involving temporal information into a binary Constraint
Satisfaction Problem (CSP).1 We call it a Temporal Constraint Satisfaction
Problem (TCSP).2 Managing temporal information consists then of solving
the TCSP using a resolution method based on local consistency and back-
track search. Local consistency is enforced at both the symbolic and the
numeric levels using respectively path and arc consistency algorithms. Local
consistency is also used during the backtrack search to reduce the number of
consistency checks by detecting early later failures. In this paper we present
an updated version of the resolution method including an additional pre-
processing phase called numeric → symbolic conversion used to reduce
the size of the search space. We have also improved the arc consistency,
path consistency and backtrack search techniques by reducing the number
of consistency checks necessary by each algorithm.

In order to deal with real time applications where a solution should be
provided within a given deadline or those applications where it is impossible
or impractical to solve these problems completely, we have studied different
methods offering a trade off between search time and solution quality.
These methods are exact and approximation algorithms based respectively
on branch and bound techniques and local search. The idea behind the exact
methods is to seek to partially solve the problem by satisfying a maximal
number of constraints. We call this latter a maximal temporal constraint satis-
faction problem (MTCSP). Local consistency and backtrack search methods
we use to solve the TCSP can be adapted to cope with, and take advantage
of, the differences between partial and complete constraint satisfaction. The
method is based on branch and bound techniques and has the advantage to
provide a solution that is guaranteed to be optimal. However, as we will see
in the following, this method is impractical for large size problems and is
in general useful to verify the optimality and, therefore, the quality of the
solution returned by approximation methods. Approximation methods, on the
other hand, do not guarantee the optimality of the solution provided but are
obviously of interest when they provide near optimal solutions.

HANDLING NUMERIC AND SYMBOLIC TIME INFORMATION 27

In the following section, we will present through an example, the different
components of the model TemPro. The description of the different methods
we propose for solving TCSPs and MTCSPs are then presented respectively
in sections 3 and 4. Experiments evaluating and comparing the methods we
describe in this paper are reported in section 5. Concluding remarks and
possible perspectives of our work are presented in section 6.

2. Background and Basic Concepts

Consider the following typical temporal reasoning problem:

John, Mike and Lisa work for a company in Calgary. It takes John
20 minutes, Mike 25 minutes and Lisa 30 minutes to get to work.
Every day, John left home between 7:20 and 7:26. Mike arrives at work
between 7:55 and 8 and Lisa arrives at work between 7:50 and 8. We
also know that John and Mike meet on their way to work, that Mike
arrives to work before Lisa and that Lisa and John go to work at the
same time.

The above story includes numeric and qualitative information (words
in boldface). There are three main events: John, Mike and Lisa are going
to work respectively. Some numeric constraints specify the duration of the
different events, e.g., 15 minutes is the duration of Mike’s event. Other
numeric constraints describe the temporal windows in which the different
events occur. And finally, symbolic constraints state the relative positions
between events e.g., John and Mike meet on their way to work.

Given these kind of information, our main goal is to represent and
reason about such knowledge and answer queries such as: “is the above
problem consistent?”, “what are the possible times at which Lisa arrived at
work?”, . . . , etc.

To reach this goal, we first translate the temporal problem into a constraint
satisfaction problem. Our model TemPro is used for this purpose. Resolution
techniques are then used to check for the consistency of the problem and to
look for possible solutions. In the following, we will present the different
objects of our model TemPro.

2.1. Time-line

Since our model TemPro translates the different numeric and symbolic
temporal information into a constraint satisfaction problem, we use a discrete
model of time. We define a temporal reference Tr (see Figure 1) as the
maximal set of discrete and adjacent temporal units ui . Each unit represents

28 MALEK MOUHOUB

Figure 1. The SOPO of a given event.

the smallest discrete portion of time that can be obtained over the temporal
reference.

2.2. Interval

An interval I is a finite set of adjacent units uk represented by a couple of
units (ui, uj), where ui and uj are respectively the begin and end times of I.

2.3. Events

In TemPro, temporal objects are called events. Events have a uniform reified
representation made up of a proposition and its temporal qualification: Evt =
OCCUR(p, I) defined by Allen (Allen 1983) and denoting the fact that the
proposition p occurred over the interval I. For the sake of notation simplicity,
an event is used in this paper to denote its temporal qualification. According to
our model, in our example we have three main events: J, L and M representing
the fact that John, Lisa and Mike are going to work respectively.

2.4. Qualitative constraints

Qualitative constraints specify the relative temporal position of an event with
respect to other events. The qualitative constraint between two events ev1

and ev2 can take the following forms: ev1 r1 r2 . . . rn ev2 where each of the
ri’s is one of the thirteen Allen primitives (Allen 1983): precedes, during,
overlaps, meets, starts, finishes noted respectively P , D, O, M, S and F ;
their converses P �, D�, O�, M�, S� and F�; and the equality relation E.
Table 1 presents the definition of the thirteen Allen primitives.

2.5. Quantitative constraints

Additional information about an event can be expressed, thus restricting its
temporal qualification to belong to a given SOPO, i.e., the Set Of Possible
Occurrences where the given event can take place. In our case, a SOPO is
restricted to be a finite set of intervals with constant duration. We represent a

HANDLING NUMERIC AND SYMBOLIC TIME INFORMATION 29

Table 1. Allen primitives.

Relation Symbol Inverse Meaning

X precedes Y P P� XXX YYY

X equals Y E E XXX

YYY

X meets Y M M� XXXYYY

X overlaps Y O O� XXXX

YYYY

X during y D D� XXX

YYYYYY

X starts Y S S� XXX

YYYYY

X finishes Y F F� XXX

YYYYY

SOPO by the fourfold [begintime, endtime, duration, step] where begintime
and endtime are respectively the earliest start time and the latest end time of
the corresponding event, duration is the duration of the event and step defines
the distance between the starting time of two adjacent intervals within the
SOPO. Thus, if ei is an event numerically constrained by the SOPO [infi ,
supi , di , si], then the set of possible occurrences of ei is defined as follows:

I = {occj | begin(occj) = infi + k ∗ si, end(occj) = begin(occj) + di,

end(occj) <= supi, k ∈ [0,
supi − infi − di

si

] ∩ ℵ}.
begin and end are functions on intervals that return the begin and the end
points of a given interval, respectively. Figure 1 illustrates the SOPO of a
given event.

2.6. TemPro based temporal constraint satisfaction

Using the concepts described before, TemPro transforms a temporal problem
involving numeric and symbolic information into a temporal constraint
satisfaction problem including:
− a set of variables {EV1, . . ., EVn}, each defined on a discrete domain

Di standing for the set of possible occurrences (SOPO) in which the
corresponding event can hold,

− and a set of binary constraints, each representing a qualitative disjunctive
relation between a pair of events and thus restricting the values that the
events can simultaneously take.

30 MALEK MOUHOUB

Figure 2. Numeric → symbolic conversion + local consistency phases.

Using TemPro, our example can be represented by the following temporal
constraint network (see initial problem of Figure 2).

A solution to a TCSP is an assignment of a value (numeric interval) from
its domain to every variable, in such a way that every constraint is satisfied.
We may want to find:
− just one solution, with no preference as to which one,
− all solutions,
− an optimal, or at least a good solution, given some objective function

defined in terms of some or all of the variables.
In the real world, a main challenge for temporal constraint problems

is the ability to run on-line, that is to give a solution quickly enough so
that the system can use it without missing the deadline of the first events.
The provided solution will have a quality (number of satisfied constraints)
depending on the time allocated for computation. We are dealing here
with a Maximal Temporal Constraint Satisfaction Problem (MTCSP) which
is an optimization problem consisting of looking for an assignment that
satisfy the maximal number of temporal constraints. Methods for solving an
MTCSP include exact algorithms based on branch-and-bound techniques and
approximation methods based on local search.

HANDLING NUMERIC AND SYMBOLIC TIME INFORMATION 31

3. Solving TCSPs

Given a TemPro constraint-based network, one important task of reasoning
is to determine the consistency of the network, and therefore to find a solu-
tion of this network if the latter is consistent. Since we are dealing with a
constraint satisfaction problem, deciding consistency is in general NP-hard.3

Indeed, looking for a complete solution requires a backtracking algorithm of
complexity O((Max(

supi −infi−di

si
))N) where infi , supi , di and si are respec-

tively the earliest start time, latest end time, duration and step of a given event
ei and N is the number of events. In order to overcome this difficulty in prac-
tice, we propose a resolution method based on local consistency techniques.
Indeed, these algorithms transform the network of constraints into an equiva-
lent and simpler one by removing, from the domain of each variable, some
values that cannot belong to any global solution. A k-consistency algorithm
removes all inconsistencies involving all subsets of k variables belonging
to N . For k = 2 and k = 3, the solutions are called arc and path consistent
respectively. The k-consistency problem is polynomial in time, O(Nk), where
N is the number of variables. A k-consistency algorithm does not solve the
constraint satisfaction problem, but simplifies it. Due to the incompleteness
of constraint propagation, in the general case, search is necessary to solve
a CSP problem, even to check if a single solution exists. In (Mouhoub et
al. 1998) we have proposed a method based on local consistency and back-
track search to look for a possible solution of a CSP involving numeric and
symbolic temporal constraints. In this paper we present an improved version
of the method. In the updated version we have added a new pre-processing
phase that we call numeric → symbolic conversion. This phase reduces the
search space by removing some symbolic relations that are inconsistent with
the numeric constraints. We have also modified the way arc consistency, path
consistency and backtrack search work. More precisely the new resolution
method we propose is described by the following steps:

3.1. Numeric → symbolic conversion

From the numeric information of two given events, we can extract the
symbolic relation they share. The intersection of this relation with the
current qualitative relation between the two events will reduce the size
of the latter which simplifies the size of the original problem. The naive
algorithm that converts the information from numeric to symbolic requires
O(c(Max1≤i≤n(

supi−infi−di

si
))2) in time where c is the number of qualitative

constraints, n is the number of events, infi , supi , di and si are respectively the
earliest start time, latest end time, duration and step of the events. We have
defined a method that extracts most of the primitives within a relation between

32 MALEK MOUHOUB

each pair of events in constant time, thus reducing the complexity to O(c).
The method consists of using the information concerning the lower bound,
upper bound and duration of the event SOPO instead of its occurrences. The
pseudo-code of the method is presented in Figure 3.

3.2. Local consistency processing

In this phase arc and path consistency algorithms are performed respec-
tively at the numeric and symbolic levels in order to reduce the size of the
search space. Path consistency is first performed on disjunctive relations
to reduce their size by removing some inconsistent Allen primitives (those
which do not respect the path consistency). This will decrease considerably
the number of tests performed later by the arc consistency and the backtrack
search algorithms. More precisely, the path consistency algorithm (called also
transitive closure algorithm) works as follows:

Choose any three nodes I, J and K of the temporal network and checks
whether RIK = RIK ∩ (RIJ ⊗ RJK). If RIK is updated then this update
should be propagated to the rest of the network. The algorithm iterates
until no more such changes are possible.

RIK (respectively RIJ and RJK) is the binary relation between node I

and node K (respectively between nodes I and J ; and between nodes J and
K). ∩ is the intersection operator between two relations (the result of the
intersection between two relations is the common Allen primitives the two
relations share). ⊗ is the composition operator between two relations. Allen
(Allen 1983) has defined a 13 × 13 composition table between Allen primi-
tives (see Table 2). The path consistency algorithm assumes that the constraint
graph is complete. If the initial graph is not complete then it is transformed
to a complete one by adding arcs labeled with the universal relation I which
corresponds to the disjunction of the thirteen Allen primitives.

Our implementation of the path consistency algorithm (see Figure 4)
differs from the above transitive closure algorithm. Indeed, we have used the
following improvements:

− Since only the triangle of edges whose labels have changed in the
previous iteration need to be computed, we use, as reported by Mack-
worth (Mackworth 1977), Allen (Allen 1983) and Van Beek (van Beek
and Manchak 1996), a queue data structure for maintaining the triangles
that must be recomputed. The computation proceeds until the queue
is empty. This will considerably reduce the number of triangles to be
processed.

HANDLING NUMERIC AND SYMBOLIC TIME INFORMATION 33

Function NumSymb(list)
// list: contains all the constraints of the graph
// sopo: array containing the SOPOs of the events
// each entry of the array has 4 fields
// inf: earliest start time
// sup: latest end time
// duration: duration of the event
// step: discretization step
1. relation ← EPP�SS�FF�DD�OO�MM�

// set relation to the universal relation I (disjunction of the 13 primitives)
2. while (not_empty(list)) do
3. elt ← get_elt (list)

4. i ← elt.i, j ← elt.j

5. if (sopo[i].inf > sopo[j].sup) then
6. return relation ← P�

7. else
8. if (sopo[i].sup < sopo[j].inf) then
9. return relation ← P

10. if ((sopo[i].duration 	= sopo[j].duration)
OR ((sopo[j].sup - sopo[i].inf) < sopo[i].duration)
OR ((sopo[i].sup - sopo[j].inf) < sopo[i].duration))
{

11. relation ← relation − E

12. if (sopo[i].duration > sopo[j].duration) then
13. relation ← relation − {S, F, D}
14. else
15. if (sopo[i].duration < sopo[j].duration)
16. relation ← relation − {S�, D�,F�}

}
17. else
18. if (sopo[i].duration = sopo[j].duration) then
19. relation ← relation − {D,D�, S, S�,F, F�}
20. if ((sopo[i].inf + sopo[i].duration) > (sopo[j].sup - sopo[j].duration)) then
21. relation ← relation − {M,P }
22. if ((sopo[i].sup - sopo[i].duration) < (sopo[j].inf + sopo[j].duration))
23. relation ← relation − {M�,P�}
24. if (sopo[i].inf > (sopo[j].sup - sopo[j].duration)) then
25. relation ← relation − {S, S�, O,D�}
26. if ((sopo[i].inf + sopo[i].duration) > sopo[j].sup) then
27. relation ← relation − {F, f, D}
28. if (sopo[i].sup < (sopo[j].inf + sopo[j].duration)) then
29. relation ← relation − {F, f }
30. if ((sopo[i].sup - sopo[i].duration) < (sopo[j].inf + sopo[j].duration)) then
31. relation ← relation − {O�}
32. if (sopo[i].inf < sopo[j].inf) then
33. relation ← relation − {D}
34. return relation

Figure 3. Numeric to symbolic conversion algorithm.

34 MALEK MOUHOUB

Table 2. Allen’s composition table.

E P P� D D� O O� M M� S S� F F�

E E P P� D D� O O� M m S s F F�

P P P I u P P u P u P P u P

P� p I P� v� P� v� P� v� P� v� P� P� P�

D D P P� D I u v� P P� D v� D u

D� D� v u� n D� z� y� z� y� z� D� y� D�

O O P u� y v x n P y� O z� y x

O� O� v P� z u� n x� z� P� z x� O� y�

M M P u� y P P y P a M M y P

M� M� v P� z P� z P� b P� z P� M� M�

S S P P� D v x z P M� S b D x

S� s v P� z D� z� O� z� m b s O� D�

F F P P� D u� y x� M P� D x� F a

F� F� P u� y D� O y� M y� O D� a F�

x = P ∨ O ∨ M

y = D ∨ O ∨ S

z = D ∨ O� ∨ F

a = E ∨ F ∨ F�

b = E ∨ S ∨ S�

u = P ∨ O ∨ M ∨ D ∨ S

v = P ∨ O ∨ M ∨ D� ∨ F�

n = E ∨ F ∨ D ∨ O ∨ S ∨ F� ∨ D� ∨ O� ∨ S�

− We changed as reported in (Bessière et al. 1996) the way composition
and intersection of relations are achieved during the path consistency
process (following the principle “one support is sufficient”).

After the path consistency phase, arc consistency is applied on each pair
of variables sharing a qualitative constraint to reduce the size of variable
domains by removing some inconsistent values (those which do not satisfy
the arc consistency). AC3.1 (Zhang and Yap 2001; Bessière and Régin 2001)
is the algorithm we have chosen to achieve the arc consistency. This is
justified by the interesting space and time complexity this algorithm offers
in addition to the simplicity of its implementation. Indeed AC-3.1 has the
best compromise between time and memory costs comparing to the other
arc consistency algorithms proposed in the literature. Our implementation of
AC-3.1 for TCSPs is presented in Figure 5.

HANDLING NUMERIC AND SYMBOLIC TIME INFORMATION 35

Function PC()
// INV ERSE: returns the inverse of a disjunctive relation
// Exp: INV ERSE(PF�OD�) = P�FO�D

1. PC ← f alse

2. L ← {(i, j)|1 ≤ i < j ≤ n}
3. while (L 	= ∅) do
4. select and delete an (x, y) from L

5. for k ← 1 to n, k 	= x and k 	= y do
6. t ← Cxk

⋂
Cxy ⊗ Cyk

7. if (t 	= Cxk) then
8. Cxk ← t

9. Ckx ← INV ERSE(t)

10. L ← L ∪ {(x, k)}
11. t ← Cky ∪ Ckx ⊗ Cxy

12. if (t 	= Cky) then
13. Cyk ← INV ERSE(t)

14. L ← L ∪ {(k, y)}
Figure 4. Path consistency algorithm.

Function AC3.1()
// sopo: is an array of SOPOs
// R: set of disjunctive relations of the TCSP

1. Q ← {(i, j) | (i, j) ∈ R}
2. AC ← true

3. While Q 	= Nil Do
4. Q ← Q − {(x, y)}
5. If REV ISE(x, y) then
6. if Dom(x) 	= ∅ then
7. Q ← Q {(k, x) | (k, x) ∈ R ∧ k 	= y}
8. else
9. return AC ← f alse

Function REVISE(x, y)

// compatible: checks if two intervals are compatible
// regarding the symbolic relation they share
1. REV ISE ← f alse

2. For each interval a ∈ sopo[x] Do
3. If ¬compatible(a, b) for each interval b ∈ sopo[y] Then
4. remove a from sopo[x]
5. REV ISE ← true

Figure 5. Arc consistency algorithm.

36 MALEK MOUHOUB

3.3. Backtrack search

After the local consistency phase is achieved, the backtrack search algorithm
is performed to look for a possible numeric solution. Arc consistency is also
used during this phase following the principle of the forward check strategy
(Haralick and Elliott 1980) in order to allow branches of the search tree that
will lead to failure to be pruned earlier than with simple backtrack. More
precisely the backtrack search algorithm works as follows:

Choose a node and instantiate the corresponding variable (that we call
current variable) to a value (numeric interval) belonging to its domain.
Discard from the variable domain the remaining values and run the
arc consistency algorithm between the current variable and the non
instantiated variables (called future variables). If the network is arc
consistent, fix a value on another variable and run again the arc consis-
tency algorithm until each value is fixed on the domain of every variable
of the network. We obtain a solution corresponding to the set of numeric
intervals fixed on the domain of each variable. If the network does not
succeed (is not arc consistent) at some point, choose another value of the
domain of the last selected variable. If there is no value to be considered.
Backtrack and choose another value from the domain of the previous
variable.

During the backtrack search, we use the following properties to select the
different variables and values:
− Choose the most constrained variable to assign next. This can be deter-

mined by the number and type of the different relations connected
to each variable. For example, the primitive relation E is more
constraining than S, S�, F and F� which are more constraining than
O,O�,D,D�,P and P �.

− Choose the least constraining value for each variable.
Figure 2 shows the application of the numeric → symbolic conversion and

local consistency phases to the temporal reasoning problem described in the
previous section. Note that for this particular example a numeric solution is
obtained without the need of a backtrack search phase (which is not the case
in general).

4. Solving MTCSPs

In this section we present 2 different ways for solving an MTCSP. The first
one is an exact algorithm based on the branch and bound technique. The
solution provided by this method is guaranteed to be optimal. The second

HANDLING NUMERIC AND SYMBOLIC TIME INFORMATION 37

way concerns approximation algorithms based on local search. The exact
algorithm is the procedure of choice if the problem is small enough that all
or most can be solved quickly through this approach. And as we will see
in section 5, this method can also be used to evaluate the goodness of the
results returned by the approximation methods. Approximation algorithms
are in general used for large size problems (Minton et al. 1992; Selman and
Kautz 1993) and, obviously, are of interest when they provide near optimal
solutions with a polynomial computational complexity.

4.1. Branch and bound method

The method we present here uses partial constraint satisfaction techniques
(Freuder and Wallace 1992; Wallace 1995), capable of solving temporal
constraint problems by giving a solution with a quality depending on the time
allocated for computation. It consists of using a branch and bound variant of
the backtrack search algorithm in order to satisfy the maximum number of
constraints. More precisely, we have transformed the propagation techniques
we have seen in the previous section, as follows:
1. In the pre-processing phase of the resolution method, instead of

performing arc consistency algorithms to remove some values that do not
belong to any solution, we use direct arc consistency algorithms (Dechter
and Peal 1988; Wallace 1995) to count the number of inconsistencies
counts associated with each value (number of domains that offer no
support for that value). Note that, with direct arc consistency algorithms,
checking is unidirectional so inconsistency counts are non-redundant. In
order to perform direct consistency checking, a variable ordering should
be first established. The ordering heuristic we use consists of sorting
variables by decreasing number of constraints shared with those already
instantiated. The DAC-3 algorithm (see Figure 6) is a modification of
the algorithm AC-3 to perform direct consistency checking in the case
of temporal constraints. Note that the checking is in backward direction,
i.e., each value is tested for support in domains of past variables. This
means that the inconsistencies counts associated to each variable value
correspond to the number of domains of past variables having no support
for the value.

2. In the search phase, a cost function corresponding to the number of
violated constraints is associated with each path of the search tree. The
branch and bound algorithm starts by setting a lower bound value on
the cost function. Search is then performed down on each path until all
variables are instantiated and in this case a new lower bound is found,
or when a partial assignment of values to variables is at least as great as
the actual lowest cost. More precisely, the branch and bound algorithm

38 MALEK MOUHOUB

Begin
Set the counters of variable values to 0.
For each event evi

For each interval a in the domain of evi

For each event evj before evi such that
evi and evj share a disjunctive relation rij
If there is no interval b in the domain of evj

such that a rij b

increment the counter of a

End

Figure 6. Algorithm DAC-3.

works in the same fashion as the backtrack search algorithm (used to look
for a complete solution) except that when the current variable is instanti-
ated to a chosen value (interval), it will not perform a local consistency
algorithm to check if there is an inconsistency (because of the chosen
value) but computes the estimated cost (minimum quality) of the solution
obtained with the chosen value. This estimation of the minimum quality
is computed using the inconsistency counts associated to each variable
value. If the estimation is greater than the lower bound we have found so
far, another value is chosen.

The pseudo-code of the branch and bound algorithm is presented in
Figure 7.

4.2. Approximation methods

We will use the following terms:
State: one possible assignment of all events i.e., set of couples (evi , occj),

where evi is an event and occj is a possible interval belonging to the
domain of evi ; the number of states is equal to the product of domains
sizes.

State or solution quality: the number of constraint violations of the state or
the solution.

Neighbor: the state which is obtained from the current state by changing one
event value.

Local-minimum: the state that is not a solution and the evaluation values of
all of its neighbors are larger than or equal to the evaluation value of this
state.

Strict local-minimum: the state that is not a solution and the quality of all
of its neighbors are larger than the evaluation value of this state.

The different algorithms that we will consider in the following are based
on a common idea known under the notion of local search. In local search,

HANDLING NUMERIC AND SYMBOLIC TIME INFORMATION 39

Begin
// countix : inconsistency count for value x of event i

cost_f unction = 0, lower_bound = MAX_V ALUE

while lower_bound > 0 do
if all values have been tried for first event chosen then

exit
else

choose future event evj as the current variable
for each interval intvx in the domain of evj do

if cost_f unction + countjx +∑
k is a future event 	=j min(countky) < lower_bound

if all events are now instantiated then
lower_bound = cost_function,
save solution

else if consistency_check(evj , intvx ,

cost_f unction,
∑

k is a future event 	=j min(countky)) then
add intv_x to partial solution
set distance to value returned by consistency_check

exit and go to while loop
// all intervals have been tested for the chosen event
return evj to the list of future events and backtrack to previous event

End

Function consistency_check(current_event,

current_interval,

cost_f unction,

sum_min_count)

add_to_cost = 0
for each past event evti that shares a relation with current_event

if interval assigned to evti is inconsistent with current_interval then
increment add_to_cost

if (cost_f unction + add_to_cost + sum_min_count) ≥ lower_bound then
return false

return (cost_f unction + add_to_cost)

Figure 7. Pseudo-code of the branch and bound algorithm.

an initial configuration (assignment of events) is generated randomly and the
algorithm moves from the current configuration to a neighborhood configu-
rations until a complete solution (TCSP problems) or a good one (MTCSP
problems) has been found or the resources available are exhausted.

4.2.1. Min-Conflict-Random-Walk method (MCRW)
After an initial configuration is randomly generated, the Min-conflicts method
chooses randomly any conflicting event, i.e., the event that is involved in any
unsatisfied constraint, and then picks a value which minimizes the number
of violated constraints (break ties randomly). If no such value exists, it picks

40 MALEK MOUHOUB

procedure MCRW(Max_Moves,p)
s <- random valuation of events;
nb_moves <- 0;
while eval(s) > 0 & nb_moves < Max_Moves do

if probability p verified then
choose randomly an event evt in conflict;
choose randomly an interval intv for evt;

else
choose randomly an event evt in conflict;
choose an interval intv that minimizes

the number of conflicts for evt;
endif
if intv # current value of evt then

assign intv to evt;
nb_moves <- nb_moves+1;

endif
endwhile
return s

end MCRW
Figure 8. Pseudo-code of the MCRW method.

randomly one value that does not increase the number of violated constraints
(the current value of the event is picked only if all the other values increase
the number of violated constraints). The problem of this method is that it is
not able to leave local-minimum. In addition, if the algorithm achieves a strict
local-minimum it does not perform any move at all and, consequently, it does
not terminate. Thus, noise strategies should be introduced. Among them, the
random-walk strategy that works as follows: for a given conflicting event, the
random-walk strategy picks randomly a value with probability p, and apply
the Min Conflict heuristic with probability 1 – p. In the worst case, the time
cost required in each move corresponds to the time needed to determine the
value that minimizes the number of violated constraints. This time is of order
O(NMax1≤i≤N(

supi−infi−di

si
)) where N is the number of variables and supi ,

infi , si and di are respectively the latest end time, earliest start time, duration
and step of the different events. Figure 8 presents the pseudo-code of the
MCRW method for solving TCSPs.

4.2.2. Steepest-Descent-Random-Walk (SDRW)
In the Steepest-Descent method, instead of selecting the event in conflict
randomly, this algorithm explores the whole neighborhood of the current
configuration and selects the best neighbor (neighbor with the best quality).

HANDLING NUMERIC AND SYMBOLIC TIME INFORMATION 41

procedure SDRW(Max_Moves,p)
s <- random valuation of variables;
nb_moves <- 0;
while eval(s) > 0 & nb_moves < Max_Moves do

if probability p verified then
choose randomly a variable evt in conflict;
choose randomly a value intv for evt;

else
choose a move <evt,intv> with the best performance

endif
if intv # current value of evt then

assign intv to evt;
nb_moves <- nb_moves+1;

endif
endwhile
return s

end SDRW

Figure 9. Pseudo-code of the SDRW method.

This algorithm can be randomized by using the random-walk strategy in the
same manner as for Min-Conflicts to avoid getting stuck at “local optima”.
The time cost required in each iteration corresponds to the time needed to
find the best neighbor and is of order O(N2Max1≤i≤N(

supi−infi−di

si
)) in the

worst case. The pseudo-code of the SDRW method is presented in Figure 9.

4.2.3. Tabu Search (TS)
The pseudo-code of Tabu search method is illustrated in Figure 10. This
method is based on the notion of Tabu list used to maintain a selective history,
composed of previously encountered configurations in order to prevent Tabu
from being trapped in short term cycling and allows the search process to go
beyond local optima. In each iteration of the algorithm, a couple < event,
intv > that does not belong to the Tabu list and corresponding to the best
performance is selected and considered as an assignment of the current
configuration. < event, intv > will then replace the oldest move in the Tabu
list. The time cost required in each iteration is the same as for SDRW, i.e.,
O(N2Max1≤i≤N(

supi−infi−di

si
)) in the worst case.

Figure 11 illustrates the application of MCRW to the example presented
in section 2. The algorithm starts by randomly generating an initial configu-
ration (potential solution). One of the events in conflict is then chosen
randomly (L corresponding to Lisa’s event) and a value (interval) minimizing
the number of conflicts is assigned to the chosen event. The algorithm is now

42 MALEK MOUHOUB

procedure Tabu-Search(Max_Iter)
s <- random valuation of variables;
nb_iter <- 0;
initialize randomly the tabu list of size tl_size;
while eval(s)>0 & nb_iter<Max_Iter do
choose a move <evt,intv> with the best performance
among the non-tabu moves;
remove the oldest move from the tabu list;
introduce <evt,intv> in the tabu list,

where intv is the current values of evt;
assign intv to evt;
nb_iter <- nb_iter+1;

endwhile
return s

end tabu-search

Figure 10. Pseudo-code of the tabu search method.

trapped in a local optima. Indeed, there is only one conflicting constraint and
none of the alternate values for the three events can improve this situation.
As we stated before, the only way to escape the local optima is to choose an
interval randomly (even if it increases the number of conflicting variables) for
a selected event. In our case, L is selected and an interval is chosen randomly
for this event. This leads to a situation with two conflicting constraints. This is
worse than the previous state but allows us to escape the local optima. Events
and values are then selected until a complete solution (with no conflicting
constraints) is obtained.

5. Experimentation

In this section, we present comparative tests concerning the different exact
and approximation methods we have seen in the previous sections. Subsec-
tion 5.4 is dedicated to tests performed on general consistent and inconsistent
TCSPs randomly generated while subsection 5.5 concerns job|machine
scheduling problems.

5.1. Comparison criteria

We use two criteria to compare the different exact and approximation
methods. The first one is the quality of the solution, i.e., the minimum number
of violated constraints of the solution provided by the method. The second

HANDLING NUMERIC AND SYMBOLIC TIME INFORMATION 43

Figure 11. Solving a TCSP using MCRW.

44 MALEK MOUHOUB

criterion is the computing effort needed by an algorithm to find its best solu-
tion. This last criterion is measured by the number of moves and the running
time in seconds required by each algorithm. The experiments are performed
on a SUN SPARC Ultra 5 station. All the procedures are coded in C|C++.

5.2. Parameter tuning for MCRW, SDRW and Tabu search

The performance of the approximation algorithms we use is greatly influ-
enced by the following parameters: the size of the Tabu list, tl_size, in the case
of Tabu search; and the random walk probability, p, in the case of MCRW
and SDRW. Preliminary tests determined the following ranges of parameter
values:
− 10 ≤ tl_size ≤ 20
− 0.05 ≤ p ≤ 0.20

Different discrete values between these ranges were further tested and the
best values were identified for each approximation method as follows.
− For MCRW, p = 5.
− For SDRW, p = 5.
− For Tabu Search, tl_size = 10.

5.3. TCSP instances

The tests presented in this subsection are performed on consistent and
inconsistent problems generated as follows.

5.3.1. Generation of consistent TCSPs
Consistent TCSPs are those containing at least one numeric solution. Thus,
to generate a consistent TCSP we first start by generating a numeric solution
(a set of numeric intervals) and then we randomly add other numeric and
symbolic information to it. More precisely, the random generation process is
as follows.
1. Generation of the numeric solution: Randomly pick n (n is the number

of variables of the problem to generate) pairs (x, y) of integers such that
x < y and x, y ∈ [0, . . ., Horizon] (Horizon is the parameter before which
all events must be processed). This set of n pairs forms the initial solution
where each pair corresponds to a time interval.

2. Generation of numeric constraints: For each interval (x, y) randomly
pick an interval contained within [0 . . . Horizon] and containing the
interval (x, y). This newly generated interval defines the SOPO of the
corresponding variable.

3. Generation of symbolic constraints: Compute the basic relations that
can hold between each interval pair of the initial solution. Add to each

HANDLING NUMERIC AND SYMBOLIC TIME INFORMATION 45

relation a random number in the interval [0, Nr] (1 ≤ Nr ≤ 13) of chosen
basic Allen relations.

5.3.2. Generation of inconsistent TCSPs
A TCSP is inconsistent if it does not contain a solution that satisfies all the
temporal constraints. Randomly generated large size TCSPs are more likely
to be inconsistent (this is why for generating consistent TCSPs we start by
generating a solution and then add some “noise” to it). Thus the easiest way
we found to generate inconsistent TCSPs is simply to generate the TCSP and
check with the CSP based method that the TCSP is inconsistent (which is
the case in general). Indeed, with the CSP based method, the inconsistency is
detected very quickly (in general at the preprocessing level). Also our goal is
to have a generation method that is not biased by any parameter.

More precisely, to randomly generate an inconsistent TCSP we generate
a list of symbolic and numeric constraints (disjunctive relations and SOPOs)
and check that a solution cannot be found. Each inconsistent problem of size
n (n is the number of variables) is generated using the following steps:
1. Generation of numeric constraints: Randomly pick n pairs of ordered

values (x, y) such that x, y ∈ [0, . . ., Horizon]. x and y are respectively
considered the earliest start time and the latest end time of a given event.
For each pair of value (x, y), randomly pick a number d ∈ [1 . . . y – x]. d
is considered the duration of the event.

2. Generation of symbolic constraints: Randomly generate c constraints
between the n events where c ∈ [1 . . . n(n−1)

2] (c = n(n−1)

2 in the case of
a complete graph of constraints). Each constraint is a disjunction of a
random number nb (nb ∈ [1 . . . 13]) of relations chosen randomly from
the set of the 13 Allen primitives.

3. Consistency check of the generated problem: Perform the CSP based
method on the generated problem. If the problem is consistent goto 1 and
generate another problem.

The generated problems (consistent or inconsistent) can be characterized
by their tightness, which can be measured, as shown in (Sabin and Freuder
1994) using the following definition:

The tightness of a CSP problem is the fraction of all possible pairs of
values from the domain of two variables that are not allowed by the
constraint.

The tightness depends in our case on the parameters Horizon, Nr and the
density of the problem.

46 MALEK MOUHOUB

Table 3. Comparative results for consistent problems.

Tightness MCRW SDRW Tabu Search BB

of the problem qual time # moves qual time # moves qual time # moves time

0.0002 0 0.12 5 0 2.67 80 0 0.17 4 0.10

0.0004 0 0.28 18 0 4.95 136 1 185 10000 12.7

0.001 0 0.46 28 0 8.24 193 0 0.6 16 217

0.002 0 0.95 68 0 11.22 212 2 294 10000 1615

0.0037 0 1.74 145 0 126 712 1 270 10000 1250

0.006 0 4 255 0 33 336 3 286 10000 1540

0.03 0 86 3713 33 33802 10000 12 349 10000 2730

0.044 0 73 1633 4 9595 10000 25 355 10000 3240

0.045 0 72 1633 4 9614 10000 16 376 10000 4536

0.058 0 15 433 74 12333 10000 12 364 10000 7765

0.1 0 12 332 0 34 225 0 112 211 22455

0.14 0 8.47 304 0 39 243 0 112 193 37600

0.35 0 181 2009 0 66 210 68 714 10000 87680

0.44 0 137 1291 220 8346 10000 63 646 10000 127000

0.55 0 315 2505 0 66 210 0 262 190 250000

0.67 372 13945 100000 0 130 297 0 422 224 480000

5.4. Experiments on randomly generated temporal problems

5.4.1. Results
Table 3 presents tests performed on randomly generated consistent problems
of size 200 each, characterized as shown in the table. It gives a summary of
the best results of MCRW, SDRW, Tabu Search and Branch and Bound for
the chosen instances in terms of quality of the solutions. In the case of the
approximation methods, the results correspond to the average time, number
of moves and quality of the solution provided by each method. To obtain these
results, the algorithms were run 100 times on each instance, each run being
given a maximum of 100,000 moves in the case of MCRW and 10,000 moves
in the case of SDRW and Tabu search. The parameter of each algorithm
(the size of the Tabu list tl_size and the random-walk probability p) is fixed
according to the best value found during the parametric study. Note that, as
mentioned before in section 3, the cost in time of a move in the case of Tabu
Search and SDRW is equal to N times the cost of a move in the case of the
MCRW method, where N is the number of variables (events).

HANDLING NUMERIC AND SYMBOLIC TIME INFORMATION 47

Table 4. Comparative results for non consistent problems.

Tightness MCRW SDRW Tabu Search BB

of the problem qual time # moves qual time # moves qual time # moves time

0.0002 8 0.44 32 8 4.5 107 8 0.28 6 1.12

0.001 10 0.7 53 10 10.26 199 10 242 3298 1.6

0.002 2 0.68 43 2 7.77 183 2 194 5812 21

0.0037 14 1237 45630 14 14.62 238 14 230 6543 2250

0.006 20 5.83 425 20 33 336 22 377 10000 1320

0.03 21 190 5406 32 3663 10000 85 341 10000 1220

0.044 43 853 25 46 4827 10000 45 255 10000 17400

0.1 41 10 318 41 106 233 91 257 10000 19880

0.14 208 10.14 279 208 37 215 230 434 10000 42300

0.35 141 259 3015 141 439 554 141 201 415 85600

0.44 531 105 271 531 82 216 531 48 195 122000

0.67 858 156 315 858 98 206 858 58 224 234000

From the data of Table 3, we can make the following observations
regarding the approximation methods. For under-constrained and middle-
constrained problems, the MCRW method always provides the best results.
It almost always finds a complete solution within a reasonable amount of
time which is not the case of the other two methods. It is also faster than the
other two methods to find solutions of the same quality. However for over-
constrained problems (see last row of Table 3) SDRW and Tabu Search have
better performance. We can explain this by the fact that, for under constrained
problems the initial configuration is in general of good quality. A complete
solution can be obtained in this case by only changing the values of some
conflicting variables (case of MCRW) instead of looking for the best neighbor
which is much more expensive.

Table 4 presents tests performed on randomly generated inconsistent prob-
lems of size 200 each. For each instance, the exact method based on branch
and bound is first performed in order to get the optimal solution (solution with
the minimum number of violated constraints). The three algorithms are then
run 100 times on each instance, each run being given a maximum of 100,000
moves in the case of MCRW and 10,000 moves in the case of SDRW and
Tabu search.

From Table 4 we can make the same observations as for Table 3 i.e., the
MCRW method is the algorithm of choice if we have to deal with under-
constrained or middle-constrained problems. The effort made by SDRW

48 MALEK MOUHOUB

Figure 12. Averaged anytime curve. 100-variable problems, tightness = 0.10.

and Tabu search methods to look for the best neighbor helps only in the
case of over constrained problems. When the quality value is in boldface,
this means that it is the optimal one i.e., the approximation method has
succeeded to get the optimal solution. As we can see on Table 4, comparing
to Tabu Search and SDRW, MCRW succeeds in each case to get the optimal
solution.

As we can easily see from Tables 3 and 4, the branch and bound method
is slower than the approximation methods especially for middle-constrained
and over-constrained problems. This is due to the branching factor during
the backtrack search. Indeed, although using the cost function the branch
and bound method avoids exploring many branches entirely, some back-
track (with exponential cost in time) is still needed to find paths of better
quality. This is not the case of the approximation methods based on the
iterative greedy algorithm (polynomial complexity in time). However, despite
of this disadvantage, as we have seen before, the solution provided by the
exact method is guaranteed to be optimal and thus can be used to check the
goodness of the solutions returned by the approximation methods.

5.4.2. Anytime curve
As we said before, the method based on branch and bound is an exact method
that has the ability to solve a temporal problem by giving a solution with a
quality depending on the time allocated for computation. This can be shown
using the results of tests that we have performed on 100 problems of size
100 each, with complete solutions, randomly generated as shown is subsec-
tion 5.3. The “anytime curve” reporting the results is presented in Figure 12.
This curve is based on the average number of constraint violations found after
each period of time. The CSP based method (resolution method) we have seen
in section 3 took 0.44 seconds in average to get a complete solution when
tested on the above randomly generated problems.

HANDLING NUMERIC AND SYMBOLIC TIME INFORMATION 49

Note that the CSP based algorithm is faster than the branch and bound
method in getting a complete solution (in case the problem is consistent)
because of the following two reasons:
1. The search space in the case of the CSP based method is reduced.

Indeed, the goal of the CSP based method is to check for the global
consistency of the problem by looking for a complete solution (assign-
ment of values to variables such that all constraints are satisfied). Two
possible answers are provided by the CSP based algorithm:
− yes (true) if the problem is consistent (does have a complete solution).

The solution can be output as well.
− no (false) otherwise.
Thus local consistency techniques are first applied (in the preprocessing
phase) to reduce the size of the search space (which will improve the
running time of the backtrack search) by removing those values which
have no chance to appear in a complete solution.
In the other hand, the branch and bound method does not return a yes|no
but a partial solution (with an optimal quality) anytime the program is
interrupted. The partial solution provided may contain some inconsistent
values. Thus all values of the initial problem should be kept and the
branch and bound method has to deal with a very large search space
(comparing to the CSP based one). This makes the branch and bound
algorithm slower than the CSP based method.

2. When exploring a given branch of the search space, the inconsis-
tency is detected earlier in the case of the CSP based method. Indeed,
with the help of the local consistency techniques during the backtrack
search, the inconsistency is detected early and the algorithm backtracks
to explore another branch. In the case of the branch and bound method,
even if the inconsistency is detected the algorithm keep exploring the
branch as long as the estimated quality is better than the lower bound.

5.5. Experiments on scheduling problems

In this section we will present the results of experiments performed on job|
machine scheduling problems. A particular example is described as follows:4

The production of five items A, B, C, D and E requires three mono
processor machines M1, M2 and M3. Each item can be produced using
two different ways depending on the order in which the machines are
used. The process time of each machine is variable and depends on the
task to be processed. The following lists the different ways to produce
each of the five items (the process time for each machine is mentioned in
brackets):

50 MALEK MOUHOUB

item A: M2(3),M1(3),M3(6) or
M2(3),M3(6),M1(3)

item B: M2(2),M1(5),M2(2),M3(7) or
M2(2),M3(7),M2(2),M1(5)

item C: M1(7),M3(5),M2(3) or
M3(5),M1(7),M2(3)

item D: M2(4),M3(6),M1(7),M2(4) or
M2(4),M3(6),M2(4),M1(7)

item E: M2(6),M3(2) or
M3(2),M2(6)

The above problem can easily be represented by TemPro. A temporal
event corresponds here to the contribution of a given machine to produce
a certain item. For example, AM1 corresponds to the use of machine M1 to
produce the item A, . . . etc. 16 events are needed in total to produce the five
items. Most of the qualitative information can easily be represented by the
disjunction of Allen primitives. For example, the constraint (disjunction of
two sequences) needed to produce item A is represented by the following
three relations:
AM2 P ∨ M AM1

AM2 P ∨ M AM3

AM1 P ∨ M ∨ P � ∨ M� AM3

However the translation to Allen relations of the disjunction of the two
sequences required to produce item B needs an additional event (EVT17) and
is represented by the following seven binary relations:
BM21 P ∨ M BM1

BM21 P ∨ M BM3

BM21 P ∨ M BM22

BM1 P ∨ P � BM3

BM1 S ∨ F EV T17

BM3 S ∨ F EV T17

BM22 D EV T17

56 binary relations are needed in total to represent all the qualitative
information.

The following (see Figure 13) is the solution to the above problem
provided by the CSP based method we have seen in section 3. Note that this
solution is optimal5 but not unique.

In order to evaluate and compare the performance of our methods on
job|machine scheduling problems, we have performed experimental tests
on job|machine scheduling problems each characterized by the parameters
nb_art and nb_mach which correspond respectively to the number of articles
and machines each problem has. Table 5 presents the running time in seconds

HANDLING NUMERIC AND SYMBOLIC TIME INFORMATION 51

Figure 13. Optimal solution provided by the CSP based method.

needed by each of the exact and approximation methods to obtain the optimal
solution for each problem. The first three columns correspond respectively
to the number of articles, machines and generated events characterizing
each problem. After performing preliminary tests on different job|machine
scheduling problems, we have identified the best values for the parameters of
the approximations methods, as follows.
− For MCRW, p = 10.
− For SDRW, p = 18.
− For Tabu Search, tl_size = 10.

As we can easily see in Table 5 the running time of the MCRW method
is better than the other approximation (SDRW and Tabu search) and exact
(Branch and bound) methods especially for large size problems. This is
mainly because the problems are in general not over-constrained and as we
have seen before, this is the case where the MCRW presents the best results.

Table 6 presents the results of tests performed on scheduling problems
when the value of Horizon (time before which all events should be achieved)
is strictly smaller than the optimal value (26 in the case of the scheduling
problem we have seen in example). In this case the problems become incon-
sistent. The parameter q corresponds to the quality of the solution provided
by the method. The result provided by the CSP based method corresponds
to the time needed to detect the inconsistency of the problem. This can
either be achieved at the local consistency level (if the problem is not arc
or path consistent than it is not consistent) or at the backtrack search level by
exploring the entire search tree before deciding that the problem is incon-
sistent. However, as we have seen before, this method does not have the
ability to provide the optimal solution (solution with minimum number of

52 MALEK MOUHOUB

Table 5. Comparative results for job|machine scheduling problems.

Problem CSP based MCRW SDRW Tabu Search BB

nb_art nb_mach nb_events Time Time Time Time Time

5 3 17 0.65 0.8 1.2 1.34 4.45

10 5 54 1.90 1.4 1.80 1.90 6.05

20 7 148 5.25 2.24 3.20 3.88 10.12

30 8 252 12.37 3.44 4.67 4.77 16.78

50 10 520 37 6.12 7.44 8.72 89

70 12 858 112 12.52 14 16.25 230

100 15 1600 12210 27 34 32 24560

Table 6. Comparative results for the inconsistent scheduling problem.

Problem CSP based MCRW SDRW Tabu Search BB

nb_art nb_mach nb_events Time Time q Time q Time q Time q

5 3 17 0.92 1.10 2 1.2 5 1.34 8 3.93 2

10 5 54 1.90 2.12 5 2.44 7 3.02 13 5.54 5

20 7 148 3.25 3.56 9 3.88 12 3.78 15 11.12 9

30 8 252 8.25 6.34 13 7.02 22 6.66 17 21 13

50 10 520 238 11.17 22 12.02 40 14.12 37 1389 22

70 12 858 1512 78 30 112 58 428 47 23227 30

100 15 1600 24345 227 54 830 94 324 112 44578 54

unsolved constraints). Concerning the comparison of the other methods, we
can argue in the same way as for Table 5 i.e., the MCRW method presents
the best results and is the only one (comparing to the other approximation
methods) that succeeds to have a solution with the optimal quality. Note that
constraint violations (quality of the solution) correspond here to the overlap-
ping between events processed by the same mono processor machine. The
branch and bound method is used to guarantee the optimality of the solution
returned by the approximation methods.

6. Conclusion and future work

In this paper we have presented a system that handles temporal problems
involving both numeric and symbolic information (the architecture of the

HANDLING NUMERIC AND SYMBOLIC TIME INFORMATION 53

system is presented in Figure 14). One of the main tasks of the system is
to check and to maintain, in real time, the consistency of a given temporal
constraint problem. This is very important for many industrial applications
such as on line scheduling, planning and natural language processing where
an incomplete solution should be provided without missing a given deadline.
For this purpose, we use exact and approximation methods based respectively
on branch and bound and local search techniques. Experimental tests on
large size randomly generated temporal constraint problems and scheduling
problems demonstrated that the Min Conflict Random Walk method is the
algorithm of choice in the case of under constrained and middle constrained
problems while Tabu Search and Steepest Descent Random Walk are the
methods of choice in the case of over constrained problems. The exact method
based on branch and bound is useful to verify the optimality and, therefore,
the quality of the solution returned by the approximation methods.

In the near future, we intend to integrate our model TemPro into a plan-
ning system. Indeed, Planning systems based on the state space approach, for
example, use a sequential notion of time (systems like TWEAK (Chapman
1987) and SNLP (McAllester and Rosenblitt 1991) are based on a ordering
relation between operators). Our goal is to enrich the time representation of
the planning system especially by handling numeric and symbolic constraints.
A problem to plan will include, in addition to the implicit temporal relations
(orderings generated during the planning process to solve some resource
conflicts), a set of explicit temporal constraints. One of the main roles of
the planner is to maintain, during the construction of the plan, the consis-
tency of the latter given the temporal constraints. This will be handled by the
resolution techniques we have developed.

Another perspective consists of solving temporal constraint problems in
a dynamic environment. We may, for example, add new information or relax
some constraints when there are no more solutions. In those cases we need to
check if there still exist solutions to the problem every time a constraint has
been added or removed. Adding temporal constraints can easily be handled
by TemPro, we have just to put in this case the new constraint in the lists of
constraints to be checked. However, constraint relaxation can not be handled
by our techniques. Indeed, when we remove a constraint, our algorithms
cannot find which value, that has been already removed, must be put back
and which one must not. We must then transform our satisfaction techniques
so that they will be able to save the reason why a certain value has been
removed.

We also intend to extend our model TemPro in order to manage incomplete
information, that is:

54 MALEK MOUHOUB

Figure 14. System solving temporal constraint satisfaction problems.

1. To handle estimated duration and temporal windows bounds. If we have
to plan different tasks in an operating system for example, the corre-
sponding processes will have an estimated duration depending on certain
parameters. In this case we have to think of a new method of propagating
estimated constraints.

HANDLING NUMERIC AND SYMBOLIC TIME INFORMATION 55

2. To manage assumptions in the case where a given time information is
incomplete. Managing assumptions can be handled by an assumptions
truth maintenance systems (ATMS) (de Kleer 1986), however we may
also use constraint satisfaction techniques in this case. Indeed, ATMS and
CSP techniques embody the same computational trade-offs. CSP local
consistency algorithms, for example, are motivated by exactly the same
set of problems solving concerns as the ATMS algorithms. Also, most of
the CSP local consistency algorithms themselves have almost identical
analogs in the ATMS framework.

Notes

1. A binary CSP involves a list of variables defined on finite domains of values and a list of
binary relations between variables.

2. Note that this name and the corresponding acronym was used in (Dechter et al. 1991).
A comparison of the approach proposed in this later paper and our model TemPro is
described in (Mouhoub et al. 1998).

3. Note that some CSP problems can be solved in polynomial time. For example, if the
constraint graph corresponding to the CSP has no loops, then the CSP can be solved in
O(nd2) where n is the number of variables of the problem and d is the domain size of the
different variables.

4. This problem is taken from (Laborie 1995).
5. The total processing time of all machines needed to produce the five items, 26 seconds, is

minimal.

References

Allen, J. (1983). Maintaining Knowledge about Temporal Intervals. CACM 26(11): 832–843.
Baptiste, P. & Pape, C. L. (1995). Disjunctive Constraints for Manufacturing Scheduling:

Principles and Extensions. In Third International Conference on Computer Integrated
Manufacturing. Singapore.

Bessière, C., Isli, A. & Ligozat, G. (1996). Global Consistency in Interval Algebra Networks:
Tractable Subclasses. ECAI’96. Budapest, Hongrie.

Bessière, C. & Régin, J. C. (2001). Refining the Basic Constraint Propagation Algorithm. In
Seventeenth International Joint Conference on Artificial Intelligence (IJCAI’01), 309–315.
Seattle, WA.

Chapman, D. (1987). Planning for Conjunctive Goals. Artificial Intelligence 32: 333–377.
de Kleer, J. (1986). An Assumption-based Truth Maintenance System. Artificial Intelligence

28: 127–162.
Dechter, R., Meiri, I. & Pearl, J. (1991). Temporal Constraint Networks. Artificial Intelligence

49: 61–95.
Dechter, R. & Pearl, J. (1988). Network-based Heuristics for Constraint Satisfaction Problems.

Artificial Intelligence 34: 1–38.

56 MALEK MOUHOUB

Freuder, E. C. & Wallace, R. J. (1992). Partial Constraint Stisfaction. Artificial Intelligence
58: 21–70.

Golumbic, C. & Shamir, R. (1993). Complexity and Algorithms for Reasoning about Time: A
Graphic-theoretic Approach. Journal of the Association for Computing Machinery 40(5):
1108–1133.

Haralick, R. & Elliott, G. (1980). Increasing Tree Search Efficiency for Constraint Satisfaction
Problems. Artificial Intelligence 14: 263–313.

Hwang, C. & Shubert, L. (1994). Interpreting Tense, Aspect, and Time Adverbials: A Compo-
sitional, Unified Approach. In Proceedings of The First International Conference on
Temporal Logic, LNAI, Vol 827, 237–264. Berlin.

Laborie, P. (1995). Une approche intégrée pour la gestion de ressources et la synthèse de
plans. Ph.D. thesis, École Nationale Supérieure des Télécommunications.

Laborie, P. & Ghallab, M. (1995). Planning with Sharable Resource Constraints. IJCAI-95:
1643–1649.

Mackworth, A. K. (1977). Consistency in Networks of Relations. Artificial Intelligence 8:
99–118.

McAllester, D. & Rosenblitt, D. (1991). Systematic Nonlinear Planning. AAAI-91: 634–639.
Minton, S., Johnston, M. D., Philips, A. B. & Laird, P. (1992). Minimizing conflicts: A

Heuristic Repair Method for Constraint Satisfaction and Scheduling Problems. Artificial
Intelligence 58: 161–205.

Mouhoub, M., Charpillet, F. & Haton, J. (1998). Experimental Analysis of Numeric and
Symbolic Constraint Satisfaction Techniques for Temporal Reasoning. Constraints: An
International Journal 2: 151–164. Kluwer Academic Publishers.

Orgun, M. (1996). On Temporal Deductive Databases. Computational Intelligence 12(2): 235–
259.

Pape, C. L. & Smith, S. (1987). Management of Temporal Constraints for Factory Scheduling.
Temporal Aspects in Information Systems Conference, 165–176. Sophia Antipolis, France.

Sabin, D. & Freuder, E. C. (1994). Contradicting Conventional Wisdom in Constraint
Satisfaction. In Proc. 11th ECAI, 125–129. Amsterdam, Holland.

Selman, B. & Kautz, H. A. (1993). An Empirical Study of Greedy Local Search for
Satisfiability Testing. AAAI’93: 46–51.

Song, F. & Cohen, R. (1991). Tense Interpretation in the Context of Narrative. AAAI’91: 131–
136.

van Beek, P. & Manchak, D. W. (1996). The Design and Experimental Analysis of Algorithms
for Temporal Reasoning. Journal of Artifical Intelligence Research 4: 1–18.

Wallace, R. J. (1995). Partial Constraint Satisfaction. Lecture Notes in Computer Science 923:
121–138.

Zhang, Y. & Yap, R. H. C. (2001). Making AC-3 an Optimal Algorithm. In Seventeenth
International Joint Conference on Artificial Intelligence (IJCAI’01), 316–321. Seattle,
WA.

