
PERFORMANCE MEASURES FOR INFORMATION EXTRACTION

John Makhoul, Francis Kubala, Richard Schwartz, Ralph Weischedel

BBN Technologies, GTE Corp.
Cambridge, MA 02138

{makhoul, fkubala, schwartz, weischedel}@bbn.com

 ABSTRACT

While precision and recall have served the information extraction
community well as two separate measures of system
performance, we show that the F -measure, the weighted
harmonic mean of precision and recall, exhibits certain
undesirable behaviors. To overcome these limitations, we define
an error measure, the slot error rate, which combines the
different types of error directly, without having to resort to
precision and recall as preliminary measures. The slot error rate
is analogous to the word error rate that is used for measuring
speech recognition performance; it is intended to be a measure of
the cost to the user for the system to make the different types of
errors.

1. INTRODUCTION

Precision (P) and recall (R) have been used regularly to measure
the performance of information retrieval and information
extraction systems. Precision deals with substitution and
insertion errors while recall deals with substitution and deletion
errors. Because of the community’s desire to have a single
measure of performance that deals with all three types of errors
simultaneously – substitutions, deletions, and insertions – a single
figure of merit, the F-measure, has been defined as a weighted
combination of P and R. In this paper, we analyze the F-measure
in detail and show some of its properties and limitations. The
discussion leads naturally to a new error measure that overcomes
these limitations. The proposed error measure is also consistent
with the error measure already in use by the speech recognition
community.

Even though the conclusions are applicable to various
information extraction and retrieval problems, we shall use
primarily examples from the information extraction tasks as
defined in the Message Understanding Conference (MUC)
evaluations [1].

2. PERFORMANCE MEASURES

For a given test, we assume that there is a reference comprising a
set of tags representing ground truth. Each tag consists of one or
more slots, depending on the tag. (For example, in Named-Entity
extraction in MUC, each tag has two slots “type” and “extent”
while in Template-Element and Scenario-Template extraction,

the tags can have anywhere from one to six slots [1].) Each
system participating in the test produces a response or hypothesis
comprising another set of tags, each of which also consists of one
or more slots. An algorithm is then used to align the hypothesis
against the reference. The corresponding slots are then matched
and scored as either correct or not. If not correct, the error is
marked as either a substitution (incorrect slot), deletion (missing
slot), or insertion (spurious slot). The scores are then added up
and different measures of performance are computed.

We should point out that this paper does not address the
important issues of how to align the hypothesis to the reference or
how to decide whether a slot is correct or not. This paper is only
concerned with how to compute system performance, once the
alignment is completed and the correct/incorrect decisions for all
the slots have been made.

To help in the analysis that follows, we define the following
symbols:

N = total number of slots in the reference

M = total number of slots in the hypothesis

C = number of correct slots – those slots in the hypothesis that
align with slots in the reference and are scored as correct

S = number of substitutions (incorrect slots) – slots in the
hypothesis that align with slots in the reference and are
scored as incorrect

D = number of deletions (missing slots or false rejections) – slots
in the reference that do not align with any slots in the
hypothesis

I = number of insertions (spurious slots or false acceptances) –
slots in the hypothesis that do not align with any slots in the
reference.

It is clear from the above definitions that

N C S D= + + (1)

M C S I= + + . (2)

The total number of correct, substitution, and deleted slots is
equal to the total number of slots in the reference, N, which is
fixed for a given test set. The value of M, however, is in general
different for each system being tested. M may be larger or
smaller than N, depending on whether insertions are more or less
than deletions.

Precision and recall are then defined by:

P
C
M

C
C S I

= =
+ +

, (3)

R
C
N

C
C S D

= =
+ +

. (4)

Precision is the percentage of slots in the hypothesis that are
correct, while recall is the percentage of reference slots for which
the hypothesis is correct. Precision takes account of substitution
and insertion errors while recall takes account of substitution and
deletion errors.

In the interest of having a single performance measure, the F-
measure is used; it is defined as the weighted harmonic mean of P

and R [2]:1

F
P R

PR
P R

= + −

=
− +

≤ ≤
−α α

α α
α1

1
0 1

1

()
, . (5a)

The most popular value corresponds to α = 0.5 and F reduces to
[1]:

 F
PR

P R
=

+
=2

0 5, . .α (5b)

Substituting (3) and (4) in (5a), we obtain

F
C

C S D I
C
N M

=
+ + − +

=
− +

≤ ≤
() ()

, .
1 1

0 1
α α α α

α (6)

Since F is a figure of merit, the higher its value the better we
consider the performance of the system. We can then define E =
1 – F as a corresponding “error measure”. From (6) we see that

E F
S D I

C S D I
= − = + − +

+ + − +
1

1
1

()
()

α α
α α

(7)

= + − +
− +

≤ ≤S D I
N M

()
()

, .
1

1
0 1

α α
α α

α

Note that P, R, F, and E are all guaranteed to be between 0 and 1.

For α = 0.5, E in (7) reduces to:

E
S D I

C S D I
S D I

N M
= + +

+ + +
= + +

+
() /

() /
() /

() /
.

2
2

2
2

(8)

1 In his original proposal, van Rijsbergen [2, p. 174] defines the
combination function F as 1 minus the term in (5a), which he
renames immediately as the effectiveness measure E, which
corresponds to the error measure E in (7). This effectiveness
measure appears to be the main measure used in the information
retrieval literature. We use the term F here as it has been used in

the MUC evaluations [1] but we substituteα β= +1 1 2/() which
is in van Rijsbergen’s original definition.

3. ANALYSIS

The denominator in (8) is equal to the average of the number of
slots in the reference and in the hypothesis. But the major effect
in (8) is the fact that, in the numerator, the deletion and insertion
errors are cut (or deweighted) by a factor of two! If our objective
is to count all errors, then there is no a priori reason why we
should deweight deletions and insertions in this manner. In other
words, by simply using F as our performance measure, we are
implicitly discounting our overall error rate, making our systems
look like they are much better than they really are!

It is important to note that the definitions of P and R are quite
adequate as separate measures of system performance. It is when
P and R are fused into a single measure, as in (5), that the
problem arises. For 0 < α < 1, this fusion between P and R
causes both deletions and insertions to be deweighted in E.
Indeed, the numerator in (7) contains the convex sum of D and I
which can never be greater than either. In other words, no matter
what weight α is chosen to combine P and R, the deweighting of
D and I relative to S is guaranteed. Below, we examine other
single performance measures that focus directly on the three
types of error instead of relying on P and R as primary measures.

4. MUC ERROR MEASURE

A possible solution to the problem described above is provided
by the error measure ERR defined by MUC [1]:

ERR =
S D I

C S D I
+ +

+ + +
. (9)

ERR removes the deweighting of D and I by simply removing the
α weights in (7). Indeed, ERR provides a big step in the right
direction. We, therefore, find it curious that, even though ERR is
computed in MUC evaluations, it has not been used as a primary
measure of system performance. The reason may have been
simply the historical inertia of first using P and R, and then F as
measures of goodness, rather than using error metrics to measure
system performance.

The reason for using error metrics to measure system
performance is that error metrics represent the cost to the user in
having the system make those errors. Cutting the error rate by a
factor of two, for example, is an indication that the cost to the
user is also cut in half in that, if the user were to correct those
errors, one would have to devote only half as much effort.
Improvements in system performance can then be tracked by
measuring the relative decrease in error rate.

The definition of ERR, however, still has a problem in that it
implicitly deweights insertion errors relative to deletions and
substitutions. This fact becomes more obvious when we rewrite
(9) as

ERR =
S D I

N I
+ +

+
. (10)

For a given test set, N is fixed. It is clear from (10) that ERR is a

linear function of S and D but it is a nonlinear function of I. The
nonlinearity is compressive in I in that an increase in I increases
ERR by a smaller amount than a similar increase in either S or D.
The reason, of course, is that the denominator increases when we
increase I but does not increase when either S or D are increased.
(Even though N is a function of S and D, an increase in either of
them must be balanced by a decrease in the other two parameters
so that the sum C + S + D = N remains constant, equal to the total
number of slots in the reference.) One can also show that P has
the same compressive property in I.

5. PROPOSED ERROR MEASURE

Our proposed solution to the deweighting of insertions problem
in ERR is to simply remove I from the denominator in (10). The
result is what we shall call the slot error rate, SER, defined as:

SER = + + = + +
+ +

S D I
N

S D I
C S D

= Total number of slot errors
Total number of slots in reference

. (11)

SER is simply the ratio of the total number of slot errors –
substitutions, deletions, and insertions – divided by the total
number of slots in the reference, which is fixed for a given test.
In this way, the errors from all systems are compared against a
fixed base. Since N is fixed, SER is a linear function of S, D, and
I.

For particular applications, certain types of error may be deemed
more or less important than others. In that case, the definition of
the error SER in (11) can be modified by multiplying the
different types of errors by different weights. However, for
simply developing the information extraction technology, we see
no compelling reason to weight one type of error more or less
than the others.

The slot error rate SER is exactly analogous to the word error rate
which has been in use as the primary measure of speech
recognition performance for many years. The word error rate is
similarly defined as the sum of word substitutions, deletions, and
insertions, divided by the total number of words in the reference.
The simplicity and utility of this error in measuring the relative
improvements in speech recognition performance has withstood
the test of many years of significant advances in the state of the
art.

6. COMPARATIVE ANALYSIS OF
ERROR MEASURES

ERR, the error measure defined by MUC, does have one esthetic
advantage in that it is guaranteed to be between 0 and 1, while
SER, the slot error rate, can become greater than 1 under certain
high error conditions. Some may feel uncomfortable with the
notion of an error rate that is greater than 100%, but this
possibility is not as unreasonable as it might appear at first
glance.

Consider the following two hypothetical high-error-rate systems:
System A gives nothing as its output, while system B produces
0.2N slots that are all judged as insertions. So, system A will
have S = 0, D = N, and I = 0, and system B will have S = 0, D =
N, and I = 0.2N. Table 1 shows the two cases and the
corresponding values of ERR and SER. Both error measures give
system A an error rate of 100%,which is appropriate since the
system missed all N slots in the reference. But system B not only
missed all N slots in the reference, it also introduced an additional
0.2N insertions. ERR gives system B an error of 100% also,
effectively saying that system A and B performed equally, while
the error SER says that system B is 20% worse than system A
and, since it already gave system A 100%, it should give system
B a score of 120%. We believe that SER gives the more
satisfying answer in terms of the cost to the user. Not only did
system B miss all the useful information, it introduced an
additional amount of incorrect information that the user has to
deal with.

S D I ERR SER

System A 0 N 0 1.0 1.0

System B 0 N 0.2N 1.0 1.2

Table 1. The values of two error measures for two high-error-rate
systems.

The above example is quite extreme, of course. To see the effects
of the different error measures on more realistic data, we show in
Table 2 the values of the error measures for three different types
of information extraction tests from the MUC-6 evaluations:
Named Entity, Template Element, and Scenario Template [1].
For each test, we show the results for the best performing system
in MUC-6. The values shown are those of the F-measure in (5b),
E, ERR, and SER, all multiplied by 100. In all cases

SER ≥ ERR ≥ E

as is guaranteed from the definitions of the three error measures.
The major difference, however, takes place when we go from E
to ERR; the increase from ERR to SER is not as large. The
reason for the large increase in going from E to ERR is the fact
that ERR does not deweight the deletions and insertions by a
factor of 2. While Table 1 showed an example where SER could
be much larger than ERR, we see from Table 2 that, in practice,
the difference is not so large. By comparing the E and SER
columns, we see that the values of E are approximately 30%
lower than those of SER. Our interpretation is that E , and
therefore F, under represents the total error by about 30%. Based
on these results, we can write

1 0 7

1 5 1

− ≅
≅ −

F

F

.

. ().

 SER

SER
(12)

In other words, in practice, the slot error rate is about 50% higher
than the error rate represented by the F-measure.

MUC-6 Test F E = 1 - F ERR SER

Named Entity 96.42 3.58 5.01 5.07

Template Element 79.99 20.01 29.46 30.80

Scenario Template 56.40 43.60 56.52 61.17

Table 2. The values of the F-measure along with three different
error measures: E, ERR, and SER, for the best performing system
in each of three different information extraction tests from MUC-
6.

7. CONCLUSIONS

Precision and recall have been and continue to be very useful
measures of performance for information retrieval and extraction.
Precision deals with substitution and insertion errors while recall
deals with substitution and deletion errors. Because of our desire
to have a single measure of performance that deals with all three
types of errors simultaneously, the F-measure was defined. By
examining E = 1 – F, we showed how deletions and insertions
are deweighted such that the combined error is never greater than
either. To ameliorate this drawback of the F -measure, we
proposed a simple error measure that is equal to the sum of the
three types of errors – substitutions, deletions, and insertions –
divided by the total number of slots in the reference. This error
measure, the slot error rate SER, is analogous to the word error
rate that is used worldwide for measuring speech recognition
performance. As the community embarks on performing
information extraction from speech, it is good to know that the
same error measure is appropriate for assessing the performance
of both technologies – speech recognition and information
extraction.

REFERENCES

1. N. Chinchor and G. Dungca, “Four Scores and Seven
Years Ago: The Scoring Method for MUC-6,” Proc.
MUC-6 Conference, Columbia, MD, pp. 33-38 and pp.
293-316, Nov. 1995.

2. C.J. van Rijsbergen, Information Retrieval, London:
Butterworth, 1979.

