
COMPUTER

SPEECH AND
Computer Speech and Language 17 (2003) 311–328
LANGUAGE

www.elsevier.com/locate/csl
Acoustic model clustering based on syllable structure

Izhak Shafran, Mari Ostendorf *

Department of Electrical Engineering, University of Washington, Box 352500, Seattle, WA 98195-2500, USA

Received 27 February 2001; received in revised form 4 September 2002; accepted 23 September 2002
Abstract

Current speech recognition systems perform poorly on conversational speech as compared to read

speech, arguably due to the large acoustic variability inherent in conversational speech. Our hypothesis is

that there are systematic effects in local context, associated with syllabic structure, that are not being

captured in the current acoustic models. Such variation may be modeled using a broader definition of

context than in traditional systems which restrict context to be the neighboring phonemes. In this paper, we

study the use of word- and syllable-level context conditioning in recognizing conversational speech. We

describe a method to extend standard tree-based clustering to incorporate a large number of features, and
we report results on the Switchboard task which indicate that syllable structure outperforms pentaphones

and incurs less computational cost. It has been hypothesized that previous work in using syllable models for

recognition of English was limited because of ignoring the phenomenon of resyllabification (change of

syllable structure at word boundaries), but our analysis shows that accounting for resyllabification does not

impact recognition performance.

� 2003 Elsevier Science Ltd. All rights reserved.
1. Introduction

Recognizing conversational speech has proved to be more challenging than read speech for
automatic speech recognition (ASR) systems. For the best systems reporting results on the 1999
DARPA Broadcast News benchmark tests, word error rates on the spontaneous speech portion of
the test set (14–16%) were nearly double those on the baseline condition of planned recordings (8–
9%) (Pallett, Fiscuss, Garofolo, & Martin, 1999). Those sites that also participated in 2000
DARPA Conversational Speech benchmark tests, performed at error rates of roughly 30%.
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Though error rates continue to drop, the gap between conversational and news speech remains,
with error rates for Broadcast news being half of what is reported for the Switchboard corpus (Le,
2002). The degradation in performance may be due to many factors such as channel effects,
variability in speaking rate and dialect of speakers, less careful pronunciation, loosely structured
language, and the presence of disfluencies. In 1996, (Weintraub, Taussig, Hunicke-Smith, &
Snodgrass, 1996) demonstrated that a large part of the degradation is related to acoustic variation
associated with speaking style. In this study, spontaneous speech was recorded and then the
transcript of the speech was both read and acted by the same speakers to control for effects related
to speaker, channel and language. While spontaneous speech was recognized with a word error
rate of 52.6%, the acted and read versions were recognized at 37.4% and 28.8% error rates, re-
spectively. The degradation with increasingly casual speaking style was observed across tele-
phone-band and wide-band speech and under matched training and test conditions (Saraclar,
Nock, & Khudanpur, 2000).

In many ASR systems, the acoustic variation of words are modeled at two levels – the pro-
nunciation model which maps word sequences to phonemes, and the acoustic model which maps
phoneme sequences to multivariate acoustic models. Work with simulated data which was pro-
duced using the acoustic models of speech, have pointed to pronunciation variability as a key
problem in recognizing conversational speech (McAllister, Gillick, Scattone, & Newman, 1998).
However, the work on pronunciation modeling in terms of phoneme-level substitutions, deletions
and insertions has so far only yielded small performance gains (Byrne et al., 1997; Riley et al.,
1999). In other work, (Saraclar et al., 2000) showed that modeling pronunciation at the state level
and allowing the components of a Gaussian mixture model to be shared across alternate pro-
nunciations is more beneficial than modeling pronunciation at phoneme level. Experiments by
Hain and Woodland (2000) demonstrate an advantage in using phonetic context to directly in-
fluence the model sequence. Both these studies support the notion that there is a need to represent
variation of a more gradient nature where higher-level context (beyond triphones) influences the
acoustic models of the phonemes as well as the pronunciation of a word.

Conventionally, phone-level acoustic variation has been captured by conditioning the acoustic
models for a phoneme on the context of neighboring phonemes in the hypothesized sequence.
Typically, in large vocabulary ASR, phonemes with immediate neighbors (triphones) and possibly
two neighbors (pentaphones) are used. Conditioning only on phonemic context does not capture
the acoustic variation of conversational speech fully. Already, position of phoneme in word has
been found to be useful in acoustic modeling. This conforms to observations about word-position
effects in linguistic studies of different consonants with electropalatography (EPG) (Keating,
Wright, & Zhang, 1999). The linguopalatal (tongue-palate) contact, which affects the strength and
duration of the sound produced, differs significantly for word-initial vs. word-final consonants.

Our hypothesis is that, in English, syllable structure is also useful in modeling the variation not
accounted for by phoneme context. Consider the phoneme ‘‘t’’ (in the context ‘‘iy t er’’) in
‘‘beater’’, ‘‘beat Ernest’’ and ‘‘return’’. Even though it is the same triphone, the articulation of
phone ‘‘t’’ in the three contexts is distinctly different – in the first it is flapped, in the second it is an
unreleased closure and in the third it is a closure plus a release. These differences are closely re-
lated to syllable structure, and correspond to ambisyllabic, syllable-final, and syllable-initial
contexts, respectively. The use of syllable structure is motivated in part by results from psy-
choacoustic studies, which argue for the syllable as a unit of perception, e.g., Massaro (1972); see
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also Wu (1998) for a survey. Further support comes from corpus analyses. In a series of studies,
Greenberg and Fosler found systematic variation with respect to the syllable constituent, namely
onset, nucleus and coda (Greenberg, 1998; Fosler-Lussier, Greenberg, & Morgan, 1999; Green-
berg & Fosler-Lussier, 2000). They used a subset of Switchboard corpus for conversational speech
and a standard corpus called TIMIT for read speech, annotated by linguists at word, phone and
syllable level. The perceived phones were compared with the lexical expansion of the spoken
words. Both corpora show that the onset of a syllable maintains its canonical identity at most
times (85–91%) regardless of the speaking style, and more so in the presence of consonant clusters.
In general, the nucleus is prone to substitution by a wide range of vowels. The coda is less often
realized in canonical form in conversational speech (63%) than in read speech (81%). The coda is
prone to deletion, but the absence of a coda does not impact canonical realization of nucleus.
These results together support the notion of syllable-initial strengthening, which has been ob-
served as a more gradient phenomena in EPG studies that also suggest that the amount of
strengthening may be equal to that in word-initial position (Keating et al., 1999). An analysis of
errors made by state-of-the-art systems on recognizing conversational speech (Greenberg &
Chang, 2000) suggests that accurate recognition of syllable onsets is more important for word
recognition than syllable codas. While categorical phonetic changes can be accommodated by a
larger phone inventory and a good pronunciation model, as in the TIMIT labeling conventions,
phone substitutions and deletions fail to capture more gradient aspects of variation such as
strength of a stop release. Thus, it is not surprising that state-based pronunciation models out-
perform phone-based models. In this work, we look at a complementary approach to state-based
pronunciation modeling, which is acoustic model context conditioning on high-level contexts,
specifically syllable and word structure.

One way to model syllable structure is to use syllable-sized units rather than phones. For small
vocabulary tasks, a few researchers have successfully used the syllable as a unit for acoustic
modeling (Jones, Downey, & Mason, 1997; Hamaker, Ganapathiraju, Picone, & Godfrey, 1998).
Others (Lleida, Marino, Nadeu, & Salavedra, 1991; Marino, Nogueiras, & Bonafonte, 1997) split
the syllable into demi-syllable units and used them for acoustic modeling. However, these two
approaches lack the ability to effectively model syllables that are rarely or not seen in the training
data. To overcome this deficiency, triphones were used in addition to frequent syllables in
(Doddington, Corrada, & Wheatley, 1997). This approach in conjunction with improvement in
temporal structure of the acoustic model gave a 2% absolute reduction in error rate (from 49% to
47%) on a conversational speech recognition task. A major part of this improvement came from
modeling syllables in monosyllabic words separately from other instances of the same syllable. A
disproportionate number of errors were found to be in words modeled by triphones rather than
syllables, and may be due to poor sharing of parameters between the triphones and syllables (i.e.,
the triphones within infrequent syllables did not share parameters with those in frequent syllables).

The focus of our work is on learning contextual variation directly in the acoustic model using
both word- and syllable-level information, since they seemed promising in both pronunciation
models and previous acoustic studies mentioned above. In contrast to modeling the syllable ex-
plicitly as a unit, we use a tree-based clustering mechanism to allow sharing of parameters across
all contexts for robust estimation. To tackle the problems that arise in using a large number of
contextual features, we have extended the decision tree based clustering to use multiple stages of
clustering.
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The paper is organized as follows. In Section 2, we present a brief review of tree-based acoustic
model clustering, followed by our use of syllable features in them, and then outline issues related
to resyllabification. The details of the multiple stage clustering approach is presented in Section 3.
Experimental results on the use of syllable structure, a resyllabification model, and multistage
clustering are reported in Section 4, using the Switchboard corpus of conversational speech.
Finally, Section 5 concludes and discusses future work.
2. Clustering with syllable features

Since we use decision trees extensively in this work, a brief review of tree-based clustering is
provided, which is followed by a discussion of related work and description of our use of syllable
features.

2.1. Tree-based clustering

For large vocabulary ASR systems, decision tree distribution clustering is used to map the large
number of possible triphone (or pentaphone) contexts into a smaller set of distributions that can
be robustly estimated (Young & Woodland, 1994). This technique is particularly attractive for
parameter tying, as it allows mapping of any sub-word unit that is not seen in the training data to
a cluster made up of acoustically similar units. Typically, a fixed HMM topology of 3–5 five states
is associated with each phoneme, and separate trees are used for each state of a phoneme.

In training, all the context-specific observations associated with a particular phone state and
observed in the training data are pooled at the root node of the tree. A set of predefined questions,
typically about phonetic context (e.g., ‘‘Is the left phoneme a vowel?’’), is used to define candidate
binary partitions of a node in the tree. Assuming that all the data in a partition share a common
Gaussian, the question corresponding to the partition that maximizes the likelihood of the data in
a node is chosen as a candidate for the next split. From amongst these candidates, the node with
the best likelihood gain from using 2 versus 1 Gaussian is split. The best partitions of the new
clusters resulting from this split are added to the list of the candidate splits, and thus the tree is
grown until some stopping criterion is met (e.g., limit on the number of leaves or terminal nodes).

More specifically, evaluating goodness of a particular split involves computing a generalized
log likelihood ratio:
log
ðmaxlL;RL

pðXLjlL;RLÞÞðmaxlR;RR
pðXRjlR;RRÞÞ

maxlP;RP
pðXPjlP;RPÞ

� �
;

where li and Ri are means and covariances, respectively; L, R and P subscripts indicate the left,
right and parent nodes; and Xi indicates a data subset, where XP ¼ XL [XR. Efficient imple-
mentation of this ratio for the different candidate splits involves using sufficient statistics com-
puted for each observed context combination (Kannan, Ostendorf, & Rohlicek, 1994), so tree
design complexity depends on the number of observed contexts N . The computational complexity
of growing a tree is OðQNÞ, where Q is the number of candidate questions (the sum of the number
of partitions of a conditioning variable over all variables). For variables of cardinality M , the
number of partitions can be as large as 2M , but typically the question set is restricted in some way
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to reduce this factor to be linear in M . Note that the variables included in the context influence
both the size of Q and N : each new conditioning factor adds linearly to Q and increases the
number of possible triphone contexts by a factor of M3, though typically the number of observed
contexts is smaller. Hence, the cost of tree design increases polynomially with the cardinality of
each new conditioning variable.

The tree is typically designed using a Gaussian state distribution assumption, for simplicity,
then later more complex Gaussian mixture distributions are estimated to model the data in the
leaves using the Estimation-Maximization (EM) algorithm (Rabiner & Juang, 1993). In building a
word model for decoding, a particular context-specific phoneme is dropped down the tree and is
guided by the linguistic questions at the branches. As illustrated in Fig. 1, the distribution as-
sociated with the leaf that it lands in is associated with a state in the context-dependent phone
model.

In most ASR systems, decision tree questions are based on hand-specified phonetic classes (e.g.,
grouped by manner and/or place of articulation) on the neighboring phonemes. By incorporating
a symbolic description of phonemes in the lexicon such as stress, position of the phone in the
word, and position of the phone in the syllable, it is possible to capture new phenomena with
decision tree clustering, such as a tendency to reduce unstressed vowels and to more strongly
release a stop consonant in word onset position. The phonemes in the training data are marked
with these symbols. Then, the tagged models are estimated and clustered, just as for triphones,
except that the decision tree must choose among questions about these tags as well as those de-
fined in terms of phonetic context. Clustering with information other than phonetic neighbors is
sometimes referred to as tagged clustering.
Fig. 1. Decision tree maps context-specific phonemes to acoustic models.
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2.2. Related work on tagged clustering

The idea of using word- and syllable-level features in a decision tree framework for conver-
sational speech is supported by a study conducted at a summer workshop in JHU (Ostendorf,
Byrne, Bacchian, & Finke, 1996). Clustering a subset of standard training data for conversational
speech with triphones that were coded with these features, it was found that questions regarding
them were asked early, i.e., near the top of the tree. This may lead to finding better equivalence
classes, and thus improve acoustic models. To make this study possible, the computational cost
was reduced by ignoring the triphones that span word boundaries, i.e., evaluating performance
with a word-internal triphone system. Thus, the usefulness of these features was not demonstrated
conclusively.

The use of word position (initial, medial, final) as a context-conditioning feature has been
shown to be useful in several studies, for both conversational speech (Finke, 1997; Gunawardana,
1998) and read speech (Reichl & Chou, 1999), and is used in many research systems. The use of
syllable position (initial, medial, final) alone has not so far proved to be useful (Paul, 1997;
Gunawardana, 1998), though Paul reports a small gain when syllable position is used in com-
bination with lexical stress tags. Paul�s results for lexical stress are also mixed, with gains de-
pending on the dictionary used. The mixed results on read speech could be due to a variety of
reasons, including inadequate levels for coding features or the sensitivity to the alignment of the
training data used. Hence, we chose to re-evaluate the use of syllable vs. word position in clus-
tering for conversational speech.

Tagged clustering studies have also looked at other features. Word type (function vs. content)
was found to be useful in experiments recognizing read speech (Lee & O�Shaughnessy, 1997), and
a preliminary study with prosody shows the potential for improving acoustic models for con-
versational speech (Shafran, Ostendorf, & Wright, 2001). In our work, we will restrict our ex-
perimental study to word and syllable features, but the development of the multi-stage clustering
approach makes possible the use of a greater number of features in general, which might include
these and other features.

2.3. Use of richer syllable features

In this work, we used a rich set of symbols to represent syllable structure, which includes
consonant cluster and ambisyllabicity. The lexicon and syllable coding system used in this work
was developed at the 1996 JHU workshop, and later extended for new words. The lexical ex-
pansion of words are coded at the phoneme level as illustrated in Table 1. Note that the position
of the phone in the syllable distinguishes between onset consonants which are and are not in
clusters, and marks consonants as onset even if they are not syllable initial, unlike previous work
on syllable position. Also, unlike previous work, stress is marked using three levels (taken from
Pronlex and as in most dictionaries): primary, secondary and unstressed. Interpreting primary
stress as the default position of the strong syllable of a word and secondary stress as a potential
position for a strong syllable (i.e., can receive a pitch accent), we labeled monosyllabic content and
function words as having primary and secondary stress, respectively, so that all syllables in the
dictionary were marked with one of the three levels. Here, stress is not an indicator of acoustic
prominence, but rather the potential for a syllable to be relatively stronger or weaker.



Table 1

Coding of word- and syllable-features in the dictionary

Phone position in word Syllable position in word Phone position in syllable Stress

First First Onset initial Stress-less

Middle Middle Onset other Primary

Last Last Nucleus Secondary

Only Only Coda only

Coda initial

Coda other

Ambisyllabic
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The state-level segmentation of the training data (from a triphone system) for each phoneme
was encoded with the word- and syllable-level features from the corresponding lexical expansion
of the word in the lexicon. Initial acoustic models for each context-specific phoneme were esti-
mated from these alignments. These models were then clustered using decision tree training, and
questions about the word- and syllable-level features were used in addition to the standard
contextual questions about neighboring phonemes. Subsequently, the estimate of the distribution
associated with each cluster was refined using EM iterations.

Syllabification may vary systematically at word boundaries, depending on the neighboring
word. For example, ‘‘just a’’ may be resyllabified as ‘‘[jh ah s][t ax]’’ instead of ‘‘[jh ah s t][ax]’’,
‘‘choirs and’’ as ‘‘[k w ay r][z ax n]’’ instead of ‘‘[k w ay r z][ax n]’’ and ‘‘it�s a’’ as ‘‘[ih t][s ax]’’
instead of ‘‘[ih t s][ax]’’, where the latter forms are obtained by stringing together syllables of each
word. A complete description of the process of resyllabification in English is relatively complex.
However, the process of resyllabification can be explained to a large extent by an empirical rule –
the Sonority Dispersion Rule (Clements, 1990; Kenstowicz, 1994). The simplest syllabification is
the one with maximal and most evenly distributed rise in sonority at the beginning and the
minimal drop in sonority at the end. Based on this principle, the Sonority Dispersion Rule moves
the syllable boundary amongst the consonants to minimize the slope of sonority in the nucleus-
coda demi-syllable of the pre-boundary word, and maximize it in the onset-nucleus demi-syllable
of the following word. Sonority ranks can be assigned to groups of phonemes based on their
phonetic properties; here we followed the convention in (Clements, 1990).

Since a small number of rules captures a large fraction of the cases of resyllabification, it is
possible to incorporate resyllabification into the acoustic model of a word by allowing alternate
‘‘pronunciations’’. The specific method used in our work is as follows:
• Candidates for resyllabification include only open-vowel syllables that are word initial and do

not follow a pause or a vowel, based on forced alignments in training and N-best hypotheses in
testing. (Our analysis of ICSI transcriptions shows that 73% of the resyllabifications in speech
occurs in open-vowel word-initial syllables.)

• If the syllable is preceded by a single consonant, mark that consonant as optionally ambisyl-
labic.

• If the syllable is preceded by more than one consonant, apply the Sonority Dispersion Rule to
obtain the alternate syllable boundary.
To study the effect of resyllabification, we performed a series of experiments, using the rules

mentioned above, as further described in Section 4.
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3. Multi-stage clustering

There are a few limitations in using standard decision tree design techniques for clustering
phonemes when they are coded with a large number of features. The number of elementary coded
phonemes (or, context combinations) increases drastically with the number of features, increasing
the memory requirements for storing sufficient statistics of all possible coded phones. Each code
of cardinalityM increases the number of unique context combinations by a factor of M3 when the
code applies to left, center and right contexts (in practice, they are constrained by the diversity of
the data). In addition, the large number of partitions that need to be tested to use these features –
potentially 3� 2M�1 questions to test at each stage – raises the computational cost of clustering.
Furthermore, phonemes in infrequent contexts, which constitute a large fraction of the phonemes,
are estimated poorly and the partitions learned may not represent general trends in speech. For
example, the percent of observed contexts with fewer than five frames are 3% of 32k triphones,
42% of 2100k pentaphones, and 6% of 186k syllable-coded phone-states.

These problems have restricted previous work on tagged clustering. For example, in (Ostendorf
et al., 1996), experimental costs were reduced by restricting the use of syllable boundary and stress
only to word-internal triphones, discarding triphones that spanned word boundaries. In other
work, cross-word context is used but only with simple tag sets such as word position (begin,
middle, end). We address these problems by introducing a new tree design technique based on
multi-stage clustering.

Our approach to reduce the storage and computational costs for clustering is based on dividing
the task into multiple stages. The decision tree can be viewed as a function,T, that maps a feature
vector, f, consisting of contextual information to an index, a, a particular state of an acoustic
model, thus T : f ! a. As illustrated in Fig. 2, for two-stage clustering, we group the contextual
Fig. 2. Multi-stage clustering illustrated here with two stages.
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information into two feature vectors f1 and f2, optionally allowing some common components
between them. In the first stage, the training data is annotated only with the values of vector f1.
Using the annotated data, we grow a decision tree,T1, which maps the different values of f1 to the
index of its leaves B, thus T1 : f1 ! b where b 2 B. In the second stage, the training data is an-
notated with f2 along with the value of b which is obtained by dropping its context f1 down the
tree T1. Using the newly annotated training data, a new decision tree, T2 is grown that maps
½b f2� to the index of acoustic models as represented by the leaves of T2, thus T2 : ½b f2� ! a.

In current decision tree clustering for speech recognition, questions about features are defined
by hand and are linguistically motivated. This is straightforward for the features in f1 and f2, but
not for the index b. Allowing all possible partitions of B is impractical since there are 2jBj binary
partitions, and to use the features in the first stage adequately, the size of T1 (i.e., the number of
leaves, jBj) needs to be large. To solve this problem we define binary questions that test whether a
node b belongs to a subtree of the first treeT1 or not. Such questions are equivalent to compound
questions which are obtained by performing an ‘‘and’’ operation on the set of binary questions
about the features in f1 that lead to node b. Defining questions on subtrees permits the decision
tree to test a large number of partitions, and is more efficient than allowing all partitions. For
example, asking only 9 questions leads to M ¼ 10 leaves, in which case the naive partition allows
29 ¼ 512 questions on the associated variable. Instead, we define questions over subtrees ofT1, so
that the number of questions is OðMÞ. Restricting questions to subtrees of size 3 on the 10-leaf tree
would lead to a set of 4–8 questions, depending on the balance of the tree. In our experiments with
larger trees, we restrict questions to subtrees of at least five leaves.

Once the second stage tree T2 is grown, the questions on subtrees in T1 are replaced with the
equivalent compound questions to obtain a single tree. For example, if T2 chooses the question,
‘‘b 2 subtreeðjÞ?’’, then it is replaced with the sequence of questions from T1 that lead to the root
node of subtree j. Note that, in principle, there is no limit to the number of stages, but this work
considers only two.

Themulti-stage clustering techniques helps ameliorate the problemof sparse data by reducing the
number of coded units for which sufficient statistics need to be estimated, since only a subset of the
features are used at each clustering stage. The root node at every stage has all the data available to it
or, in this case, all the data associated with the particular state and the phone. The number of ele-
mentary units that need to be clustered in stage i depends on the features f i used in that stage and, if
i > 1, the number of leaves of the preceding tree Ti�1. Both of these factors can be controlled to
reduce the effects of data fragmentation, essentially by trading off the potential for more directly
modeling interaction between features (with a large dimension f i) with the robustness (and com-
putational) advantages of a low dimension feature set f i. Note that robust estimation of statistics of
elementary units also benefits from the general principle of increasing system complexity incre-
mentally. In particular, we use phone alignments from our best triphone system, rather than
bootstrapping from monophone models, as shown to be important in (Gunawardana, 1998).

The storage and computational cost of the multi-stage clustering depends on various factors.
The number of sufficient statistics that need to be clustered in the two stages is determined by the
number of components used in f1 and f2, and the size of T1, as mentioned above. The number of
sufficient statistics is limited by the diversity of the data, and also depends on how uniformly the
training data is divided into the clusters (how balanced the tree is). If a maximal tree is grown for
T1, then the multistage clustering will be computationally more expensive than clustering a single
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tree. The size of T1 may be set using a constraint on total number of leaves, or saturation of
likelihood increase. To reduce the number of partitions that are tested in the second stage, we
selected only a subset of subtrees (the largest) from the first stage during clustering at the top of the
second stage, where the largest proportion of the computation occurs in training decision trees.
4. Experiments, results and observations

4.1. Experimental framework

4.1.1. Speech corpus
We used the Switchboard and Callhome corpora, which together provide a collection of about

140 h of spontaneous telephone conversations between pairs of callers in American English
(Godfrey, Holliman, & McDaniel, 1992). All the experiments were tested on a subset of the 1998
NIST Hub-5 development test set (NIST, 1998), consisting of about 12.5k words in approximately
an hour of speech from 14 conversations. In addition, tests were also performed on 2000 NIST
Hub-5 evaluation test set (NIST, 2000), consisting of about 42k words in approximately three and
a half hours of speech from 40 conversations. All results use the standard criterion of word error
rate (WER), where WER ¼ ðC � IÞ=R, the number of words correct is C, inserted is I and the
total number of words in the reference transcript is R.

4.1.2. Recognition system
The speech data is preprocessed to produce a 14-dimensional vocal-tract-length-normalized

MFCCvector sequence augmentedwith its first-order derivatives, at a rate of 100 vectors per second.
This serves as acoustic input to the recognition system (Zavaliagkos, McDonough, Miller, & El-
Jaroudi, 1998). Two types of acoustic models were used in our tests. In our initial experiments, a
standard left-to-rightHMMtopologywith 5 states and skips is used tomodel the acoustic units, with
a single full covariance Gaussian as the observation distribution for each state. Allophones of each
phoneme and state are clustered to produce 10,000 means and 2000 subtree-shared covariances. By
avoiding expensivemixture splitting, this allows acousticmodels tobe trainedquickly, at the cost of a
small performance degradation. In the experiments on the evaluation test set, three-state HMMs
(with no skips) and 8000 clustered states were modeled by more complex 16-mixture Gaussian
distributions with diagonal covariances. These models were trained in the feature space containing
derivatives as well as accelerations of the MFCC. In each table of experiments described below, the
number of parameters in the acoustic model were kept fixed.

To reduce experimentation time, we restricted our experiments to a lattice re-scoring decoding
paradigm and did not adapt the models to the speaker being tested. The word-level lattices for the
development set were derived from the 100 best hypotheses provided by BBN. It has an oracle
WER of about 20% and 1-best WER of 42.6%.1 These lattices contained language model scores
1 The 1-best WER for the development set is actually better than the results reported here, because the N-best

hypotheses were generated with a significantly different system. While it is often useful in rescoring to combine scores

from different acoustic models, since our focus was on understanding the behavior of the syllable features, the BBN and

the AT&T acoustic model scores were not used in the results reported here.
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from a part-of-speech smoothed trigram trained with Broadcast news data as well as the
Switchboard and Callhome data (Iyer & Ostendorf, 1997). The lattices for evaluation set was
generated using gender-independent models of AT&T switchboard system, and has an oracle
WER of about 10% and 1-best WER of 35.4% (Ljolje, Hindle, Riley, & Sproat, 2000). For re-
scoring them, language model scores were obtained from AT&T 6-gram language model.

4.1.3. Lexicon
For this study, we use the syllabified dictionary and the coding system that was developed at the

1996 summer workshop at John Hopkins University (JHU-WS-Lexicon, 1996). A brief review of
the lexicon is given here; further details can be found in (Ostendorf et al., 1996). The stress
markings for the multisyllabic words in this lexicon are taken from Pronlex dictionary; mono-
syllabic words were marked with either primary or secondary stress depending on whether or not
the word was a content word, as described in Section 2.3. Syllabification for this lexicon was
performed automatically using Fisher�s implementation of Kahn�s principles for English syllabi-
fication (Fisher, 1996). The syllabification is performed by assigning as many consonants to
syllable onsets as possible (maximal onset rule) where permitted onsets were predefined. Among
the possible syllabifications of a word, the most casual variant was selected to represent the nature
of conversational speech. In this process, the morpheme boundaries were not taken into con-
sideration. However, the use of casual variants of syllabification mitigates the associated syllab-
ification errors, since many of the consonants at the boundary were labeled as ambisyllabic, rather
than with the wrong syllable. To syllabify foreign words, an augmented list of permitted onsets
was applied on those words that initially failed to parse.

4.2. Testing syllable features

We developed gender-dependent systems using information about word and syllable structure,
as mentioned in Section 2.3. During acoustic model training, the decision trees were allowed to
ask questions about syllable and word information of the center and the immediate neighboring
phonemes, in addition to the questions about triphone context. The recognition performance of
these systems were compared with triphone and pentaphone systems with same number of model
parameters. In all the systems described below, the clustered triphones were trained using a single
stage of clustering from the same base triphone alignment and then re-estimated with a few passes
of EM training. The results are summarized in Table 2 for the development set and in Fig. 3 for
the evaluation set.

While the difference in performance of the triphone and pentaphone systems on the develop-
ment set is not statistically significant,2 the system based on word- and syllable-features is sig-
nificantly better than triphone system, according to NIST statistical significance tests (at the level
of p¼ 0.001 for matched pair sentence segment, Wilcoxon signed rank and McNemar). Contrary
to other reported results, we find consistent gain from using features in addition to word position,
particularly at higher beams (with a significance level of p¼ 0.002 for McNemar test). Due to its
2 Other systems showing improved performance with pentaphones appear to have increased numbers of parameters in

the pentaphone system, whereas here the number is constrained to be roughly the same.



Table 2

WER of systems using different features in clustering (development test set)

System WER (%)

Triphone 44.56

Pentaphone 44.37

Triphone+word-position 44.31

Triphone+word-position+ syllable-features 44.05

Fig. 3. WER of systems using different features in clustering (evaluation test set), at different search beam widths.
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complexity, we did not rescore the bushier lattices of the evaluation set with the pentaphone
system.

The computational cost for decoding and trainingwere also significantly lower for the systemwith
word- and syllable-features. In training, the pentaphone system required testing 350 potential
partitions for clustering up to 2.5M acoustic units, while the system with syllable features required
testing only 200 potential partitions for 700k acoustic units. In decoding, the system with syllable
features was 20% faster. In addition, unlike pentaphones, which incur extra computational expense
and software flexibility to span the two forward contexts, the coded-triphones only look ahead as
much as a single phone and could be incorporated in a standard first pass triphone decoder.

4.3. Observations on the use of syllable features

To study how the syllable features were used, we analyzed the questions that were chosen in the
decision tree for clustering acoustic units. Two measures were used to characterize the utility of



Table 3

Word- and syllable-feature usage in decision trees trained on the Switchboard and Callhome corpora (about 140 h of

speech)

Feature Questions in the tree (%) Data affected (%) Degrees of freedom

Triphone 66 70 2� 90 ¼ 180

Phone in word 10 37 3� 6 ¼ 18

Syllable in word 11 25 3� 6 ¼ 18

Phone in syllable 3 31 14þ 3þ 4 ¼ 21

Stress 11 32 3� 2 ¼ 6
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features – the number of questions asked about a feature in the tree and the percentage of total
data affected or split by the feature. To make a fair comparison across the columns, the number of
partitions tested (or degrees of freedom) for each feature also needs to be taken into account (see
Table 3).

Even though questions about phone identity allow three times as many degrees of freedom (in
the sense of number of candidate binary partitions) as all other features combined, the decision
trees chose the latter at least one in three times. Among all the features, the fewest questions are
asked about position of the phone in the syllable. However, it affected disproportionately a larger
amount of data. This feature is likely to be used higher up in the tree, suggesting that questions
about it generalize over a large fraction of the data. The lexical stress and position of the syllable in
the word is least useful, as it affects the least amount of data. It was also observed that the questions
about the position of the center and the right phone in the syllable is significantly more important
(4–6 times the fraction of data affected) than that of the left phone. Whether the center phone was
in a monosyllabic word was among the top questions about the position of syllable in the word, as
one might expect from the gains observed in modeling monosyllabic word (Doddington et al.,
1997), but the amount of data affected was not high so it did not stand out as a particularly im-
portant feature. In general, the pattern of usage of the features across gender is similar.

Interestingly, even though the pentaphone models had a higher likelihood on the training data,
the syllable system had a better likelihood on the test data. Analogous to using likelihood on
independent data as a model selection criterion, we argue that the higher likelihood indicates that
syllable system generalizes better, as confirmed by improvements in word error rate.

4.4. Impact of resyllabification

First, we studied the effect of resyllabification on the training data. The method described in
Section 2.3 was applied on a single phoneme path to generate alternate syllabifications across
word boundaries for all vowel-initial words in the training set. This produced about 13% coded
phonemes in the alternate resyllabified paths, and constituted only 50 new types of coded pho-
nemes (about 3% of the total number of uniquely coded phones in the lexicon) distributed across
15 phonemes. Next, using the acoustic models developed in Section 2.3, we let the decoder choose
the best path from the lattice of possible paths. A few examples of resyllabification that were
chosen are listed in Table 4.

The number of alternate coded phonemes that the decoder chose was only about 7% of those
hypothesized. This was about 1% of the total labels in the training data and involved many different



Table 4

Examples of resyllabifications automatically chosen in the training data

Partial word sequence Resyllabifications

bridge across [b r ih [jh] ax]. . .
did it [d ih [d] ih t]

work and [w er [k] ax n]

choirs and [k w ay r][z ax n]. . .
drugs out there [d r ah g][z aw t]. . .
lots of times I�d . . . [t ay m][z ay d]

its an [ih t][s ax]. . .
minutes up [m ih][n ih t][s ah p]

takes a [t ey k][s ax]
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phones. In comparison, we observed about 4.5% vowel-initial resyllabifications in the ICSI tran-
scripts. Thus, wemay have captured about one in four resyllabifications. Examination of the chosen
resyllabifications indicate that a large number of them involved phoneme ‘‘s’’ and ‘‘z’’ or were
ambisyllabic. Since the total data affected was low, we did not expect resyllabification to affect our
acoustic model significantly, and continued using the same models without bootstrapping.

The impact of resyllabification on test data was evaluated using N-best re-scoring. After ex-
panding each of the 100 hypotheses into a lattice with alternate resyllabification paths, we let the
decoder choose the best path using the acoustic models developed in Section 4.2. The word error
rate did not show any improvements. This may be explained simply by the small number of tokens
affected by resyllabification; however, there are other possible explanations for this result. For
example, resyllabification tends to occur in high frequency word pairs, where it may be that the
language model score adequately compensates for any loss in acoustic match. Further, it is likely
that the combination of right phonetic context and word position allows the clustering trees to
encode resyllabification implicitly,3 in which case explicit modeling of resyllabification is unnec-
essary. It may also be the case that resyllabifications where a coda becomes ambisyllabic are
missed by our system because of the acoustic similarity. In acoustic clustering, among the data
affected by questions about syllable position, only 5% was affected by questions about coda and
11% about ambisyllabic. In cases where an explicit resyllabification provides an improved char-
acterization and the models are initially biased toward the un-resyllabified hypotheses, training
acoustic models iteratively may improve the results, but the number of such cases may not
warrant the added system complexity.

4.5. Verification of multi-stage clustering

To evaluate the effectiveness of multi-stage clustering we trained gender-specific pentaphone
systems using standard single-stage clustering and two-stage clustering. The systems were trained
from a base triphone alignment with one pass of Viterbi training and a few passes of EM. In the
first stage of the second system, we clustered the data into 1000 clusters for each of the five states,
3 In a large number ð>90%Þ of resyllabifications in the ICSI transcriptions, the syllable boundary moves across the

word by one phone (e.g., [th ih ng z] [aa n]! [th ih ng] [z aa n]).



Table 5

Word error rates of systems trained with one vs. two stages of clustering

System

(a) Pentaphone: 1 stage 44.37%

(b) Pentaphone: 2 stage 44.39%
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using the second phone neighbors as features. In the second stage, we clustered the data using the
leaf indices ofT1 along with the triphone context to obtain the final models. This specific order of
the split features (f1 : �2 neighbors; f2 : �1 neighbors) was chosen after comparing the likeli-
hoods of resulting models from both orders on an independent data set. While much more so-
phisticated mechanisms could be envisioned for choosing feature subsets, we did not expect this to
lead to a significant gain in performance on our task.

The two-stage pentaphone system for both genders performed as well as the one-stage systems.
Thus the result shows that incorporating features in multiple stages is a viable method for using a
large number of features in acoustic modeling (see Table 5).

The memory used in clustering is directly proportional to the number of unique contexts to be
clustered. In the single-stage pentaphone system, we had about 2M unique contexts, whereas in
two stage system, we had only about 78K in the first stage and less than 0.5M in the second stage,
thus reducing the memory requirement at any time by a factor of 4. This could be reduced further
by shrinking the size of the first tree. The computational cost of two-stage clustering in this case is
half that of single-stage clustering.
5. Conclusions

We have shown a small but consistent improvement in using syllable structure in addition to
word position in a large vocabulary recognition task. This, is in contrast to other reported results,
and may be due to our use of high quality state alignments and a more detailed syllable coding
system. The results also suggest that the syllable features generalize better than long span (pen-
taphone) phonetic context. Perhaps more importantly, the system using syllable features has lower
training and decoding computational costs than a pentaphone system of equivalent size. In ad-
dition, our studies show that alternate paths of resyllabification predicted by general linguistic
rules do not provide any improvement in recognition performance, though it is possible that gains
may be obtained with further iterations of training.

To take full advantage of syllable features, we conjecture that temporal variation must also be
modeled. For example, the fixed-state topology could be replaced with a context-specific topol-
ogy. This may be carried out within a decision tree framework such as (Eide, 1999).

We have also developed a multi-stage clustering system that enables the use of a large number of
features in clustering. Multi-stage clustering addresses the general issue of unreliable estimates of
infrequent context as well as the higher computational cost incurred in clustering them. Speech
recognition experiments show that the approach performs as well as a single stage of clustering with
significantly reduced computational costs. In the work described here, the feature groups were
chosen heuristically based on linguistic intuitions. The approach could be extended to incorporate
data-driven techniques for organizing features into hierarchies for use in the different stages.
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The features explored in this work included phonetic context and syllable structure, but they
could easily be expanded to include other features such as speaking rate (quantized into finite
levels), hyperarticulation, word type (function vs. content word), prosodic constituent structure,
or other factors that have been show to have some effect on ASR performance. An advantage of
the clustering approach over explicit estimation of different models is that data is not divided
unnecessarily.
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