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Abstract

Anadaptivestatistical languagemodel is described, which successfully integrateslong distancelinguistic
information with other knowledge sources. Most existing statistical language models exploit only the
immediate history of atext. To extract information from further back in the document’s history, we
propose and use trigger pairsas the basic information bearing elements. This allows the model to adapt its
expectationsto the topic of discourse. Next, statistical evidence from multiple sources must be combined.
Traditionally, linear interpolation and its variants have been used, but these are shown here to be seriously
deficient. Instead, we apply the principle of Maximum Entropy (ME). Each information source givesrise
to a set of constraints, to be imposed on the combined estimate. The intersection of these constraints is
the set of probability functions which are consistent with all the information sources. The function with
the highest entropy within that set is the ME solution. Given consistent statistical evidence, a unique ME
solution is guaranteed to exist, and an iterative algorithm exists which is guaranteed to convergeto it. The
ME framework is extremely general: any phenomenonthat can be described in terms of statistics of the text
can be readily incorporated. An adaptive language model based on the ME approach was trained on the
Wall Street Journal corpus, and showed 32%—-39% perplexity reduction over the baseline. When interfaced
to SPHINX-II, Carnegie Mellon’s speech recognizer, it reduced its error rate by 10%—-14%. This thus
illustrates the feasibility of incorporating many diverse knowledge sources in a single, unified statistical
framework.

1 Introduction

Language modeling is the attempt to characterize, capture and exploit regularities in natura language.
In statistical language modeling, large amounts of text are used to automatically determine the model’s
parameters, in a process known as training. Language modeling is useful in automatic speech recognition,
machine trand ation, and any other application that processes natural language with incompl ete knowledge.

1.1 View from BayesLaw

Natural language can be viewed as a stochastic process. Every sentence, document, or other contextual unit
of text istreated as arandom variable with some probability distribution. For example, in speech recognition,
an acoustic signd A is given, and the goal is to find the linguistic hypothesis L that is most likely to have
givenrisetoit. Namely, we seek the L that maximizes Pr(L|A). Using Bayes Law:
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For agivensigna A, Pr(A|L) isestimated by the acoustic matcher, which compares A to itsstored models
of al speech units. Providing an estimate for Pr(L) isthe responsibility of the language model.

Let L = wf o W1, Wa, ... Wy, Where the w;’s are the words that make up the hypothesis. One way to
estimate Pr(L) isto usethechain rule:

Pr(L) = T Prowiwi™)

i=1

Indeed, most statistica language modelstry to estimate expressions of the form Pr(w; |\/v"1‘ Y. Thelatteris
often written as Pr(w|h), where h « \/v"l‘l iscalled the history.

1.2 View from Information Theory

Another view of statistical language modeling is grounded in information theory. Language is considered
an information source L ([Abramson 63]), which emits a sequence of symbolsw; from a finite a phabet (the
vocabulary). The distribution of the next symbol is highly dependent on the identity of the previous ones —
the source L is a high-order Markov chain.

The information source L has a certain inherent entropy H. Thisisthe amount of non-redundant informa-
tion conveyed per word, on average, by L. According to Shannon’s theorem ([ Shannon 48]), any encoding
of L must use at least H bits per word, on average.

The quality of alanguage model M can bejudged by its cross entropy with regard to the distribution P1(x)
of some hitherto unseen text T:

H'(Pr; Pu) = = Y _ Pr(x) - logPu(x) @
X

H’(Pr; Py) has aso been called the logprob ([Jelinek 89]). Often, the perplexity ([Jdinek et al. 77]) of the
text with regard to the modedl is reported. It isdefined as:

PPy (T) = 2 (PriPw) @A)

Using anideal model, which capitalizeson every conceivabl e correl ationinthelanguage, L's crossentropy
would equal itstrueentropy H. In practice, however, al modelsfall far short of that goal. Worse, the quantity
H is not directly measurable (though it can be bounded, see [Shannon 51, Cover and King 78, Jelinek 89]).
On the other extreme, if the correlations among the w;’s were compl etely ignored, the cross entropy of the
source L would be >, Prerior(W) 100 Prerior(W), Where Pregior(W) iS the prior probability of w. This quantity
istypically much greater than H. All other language models fall within thisrange.

Under thisview, the goal of statistical language modeling isto identify and expl oit sources of information
in the language stream, so as to bring the cross entropy down, as close as possible to the true entropy. This
view of statistical language modeling is dominant in thiswork.



2 Information Sourcesin the Document’s History

There are many potentially useful information sources in the history of adocument. It isimportant to assess
their potentia before attempting to incorporate them into a moddl. In this work, severa different methods
were used for doing so, including mutua information ([ Abramson 63]), training-set perplexity (perplexity of
the training data, see [Huang et al. 93]) and Shannon-style games ([Shannon 51]). See [Rosenfeld 94b] for
more details. In this section we describe severa information sources and variousindicatorsof their potential.

2.1 Context-Free Estimation (Unigram)

The most obvious information source for predicting the current word w; is the prior distribution of words.
Without this “source’, entropy is logV, where V is the vocabulary size. When the priors are estimated
from the training data, a Maximum Likelihood based model will have training-set cross-entropy! of H' =
— > wev P(W) log P(W). Thus the information provided by the priorsis

H(w) — H(Wi| (sriors)) = logV + > ~ P(w) log P(w) (4)
wevV

2.2 Short-Term History (Conventional N-gram)

An N-gram ([Bahl et al. 83]) uses the last N-1 words of the history as its sole information source. Thus a
bigram predicts w; from w;_4, a trigram predicts it from (wi_», w;_1), and so on. The N-gram family of
models are easy to implement and easy to interface to the application (e.g. to the speech recognizer’s search
component). They are very powerful, and surprisingly difficult to improve on ([Jelinek 91]). They seem to
capture well short-term dependencies. It isfor these reasons that they have become the staple of statistical
language modeling. Unfortunately, they are also seriously deficient:

e They are completely “blind” to any phenomenon, or constraint, that is outside their limited scope. As
aresult, nonsensical and even ungrammatical utterances may receive high scores as long as they don't
violatelocal constraints.

¢ Thepredictorsin N-gram model sare defined by their ordinal placein the sentence, not by their linguistic
role. The histories“GOLD PRICESFELL TO” and “GOLD PRICES FELL YESTERDAY TO” seem
very different to a trigram, yet they are likely to have a very similar effect on the distribution of the
next word.

2.3 Short-term Class History (Class-Based N-gram)

The parameter space spanned by N-gram models can be significantly reduced, and reliability of estimates
consequently increased, by clustering the words into classes. This can be done at many different levels: one
or more of the predictors may be clustered, as may the predicted word itself. See [Bahl et al. 83] for more
details.

The decision as to which components to cluster, as well as the nature and extent of the clustering, are
examples of the detail-vs.-reliability tradeoff which is central to all modeling. In addition, one must decide
on the clustering itself. There are three general methods for doing so:

1. Clustering by Linguistic Knowledge ([Jelinek 89, Derouault and Merialdo 86]).

2. Clustering by Domain Knowledge ([Price 90]).

1A smoothed unigramwill have a slightly higher cross-entropy



3. DataDriven Clustering ([Jelinek 89, appendix C], [Jelinek 89, appendix D], [Brown et al. 90b],
[Kneser and Ney 91], [Suhm and Waibel 94]).

See [Rosenfeld 94b)] for amore detailed exposition.

2.4 Intermediate Distance

Long-distance N-gramsattempt to capture directly the dependence of the predicted word on N-1-gramswhich
are some distance back. For example, a distance-2 trigram predicts w; based on (w;_3, wi_»). As a specia
case, distance-1 N-grams are the familiar conventional N-grams.

In [Huang et al. 93] we attempted to estimate the amount of information in long-distance bigrams. A
long-distance bigram was constructed for distance d = 1,..., 10,1000, using the 1 million word Brown
Corpus as training data. The distance-1000 case was used as a control, since at that distance no significant
information was expected. For each such bigram, the training-set perplexity was computed. The latter is
an indication of the average mutua information between word w; and word w;_4. As expected, we found
perplexity to be low for d = 1, and to increase significantly as we moved throughd = 2,3,4, and 5. For
d =6,...,10, training-set perplexity remained at about the same level?. See table 1. We concluded that
significant information existsin the last 5 words of the history.

distance | 1 2 3 4 5 6 7 8 9 10 1000
PP 83 119 124 135 139 138 138 139 139 139 141

Table 1: Training-set perplexity of long-distance bigrams for various distances, based on 1 million words of
the Brown Corpus. The distance=1000 case was included as a control.

Long-distance N-grams are serioudly deficient. Although they capture word-sequence correlations even
when the sequences are separated by distance d, they fail to appropriately merge training instances that are
based on different values of d. Thusthey unnecessarily fragment the training data.

2.5 LongDistance(Triggers)
251 Evidencefor Long Distance Information

Evidence for the significant amount of information present in the longer-distance history is found in the
following two experiments:

Long-Distance Bigrams. The previous section discusses the experiment on long-distance bigrams reported
in[Huang et al. 93]. As mentioned, training-set perplexity was found to be low for the conventional
bigram (d = 1), and to increase significantly as one moved throughd = 2, 3,4, and 5. Ford = 6, ..., 10,
training-set perplexity remained at about the same level. But interestingly, that level was dightly yet
consistently below perplexity of thed = 1000 case (see table 1). We concluded that some information
indeed existsin the more distant past, but it is spread thinly across the entire history.

Shannon Game at IBM [Mercer and Roukos 92]. A “Shannon game”’ program was implemented at IBM,
where a person tries to predict the next word in a document while given access to the entire history
of the document. The performance of humans was compared to that of atrigram language model. In
particular, the cases where humans outsmarted the model were examined. It was found that in 40% of
these cases, the predicted word, or aword related to it, occurred in the history of the document.

2although below the perplexity of the d = 1000 case. See the following section.



252 TheConcept of a Trigger Pair

Based on the above evidence, we chosethetrigger pair asthe basic information bearing element for extracting
information from the long-distance document history ([Rosenfeld 92]). If aword sequence A is significantly
correlated with another word sequence B, then (A— B) isconsidered a“trigger pair”, with A being thetrigger
and B the triggered sequence. When A occurs in the document, it triggers B, causing its probability estimate
to change.

How should trigger pairs be selected for inclusionin amodel? Even if we restrict our attention to trigger
pairs where A and B are both single words, the number of such pairsistoo large. Let V be the size of the
vocabulary. Note that, unlike in a bigram model, where the number of different consecutive word pairsis
much |ess than V2, the number of word pairswhere both words occurred in the same document is asignificant
fraction of V2.

Our goal isto estimate probabilities of the form P(h, w) or P(w|h). We are thus interested in correlations
between the current word w and features in the history h. For clarity of exposition, we will concentrate on
trigger rel ationships between single words, although the ideas carry over to longer sequences. Let W be any
given word. Define the events W and W, over thejoint event space (h, w) as follows:

W {W=w, i.e. W isthenext word. }
W, : {Weh, i.e. W occurred anywhere in the document’s history }

When considering a particular trigger pair (A — B), we are interested in the correlation between the
event A, and the event B. We can assess the significance of the correlation between A, and B by measuring
their cross product ratio. But significance or even extent of correlation are not enough in determining the
utility of a proposed trigger pair. Consider a highly correlated trigger pair consisting of two rare words, such
as (BREST— LITOVSK), and compare it to a less-well-correlated, but much more common pair?, such as
(STOCK— BOND). The occurrence of BREST provides much more information about LITOVSK than the
occurrence of STOCK does about BOND. Therefore, an occurrence of BREST in thetest datacan be expected
to benefit our modeling more than an occurrence of STOCK. But since STOCK is likely to be much more
common in thetest data, itsaverage utility may very well be higher. If we can afford to incorporate only one
of thetwo trigger pairsinto our model, (STOCK— BOND) may be preferable.

A good measure of the expected benefit provided by A, in predicting B isthe average mutual information
between the two (see for example [Abramson 63, p.106]):

P(B|A) =
PE) + P(A,,B)log

P(B|A)
P(B)

P(B|A.)
P(B)

P(BIA,)
P(B)

I(A,:B) = P(A,,B)log

+ P(A,,B)log + P(A,,B)log (5)

In arelated work, [Church and Hanks 90] uses a variant of the first term of equation 5 to automatically
identify co-locationa constraints.

253 Detailed Trigger Relations

In the trigger relations considered so far, each trigger pair partitioned the history into two classes, based on
whether the trigger occurred or did not occur in it (cal these triggers binary). One might wish to model
long-di stance rel ati onshi psbetween word sequences in more detail. For example, one might wish to consider
how far back in the history the trigger last occurred, or how many times it occurred. In the last case, for
example, the space of all possible historiesis partitioned into several (> 2) classes, each corresponding to
a particular number of times a trigger occurred. Equation 5 can then be modified to measure the amount of
information conveyed on average by this many-way classification.

3in the WSJ corpus, at least.



Before attempting to design a trigger-based model, one should study what long distance factors have
significant effects on word probabilities. Obviously, some information about P(B) can be gained simply by
knowing that A had occurred. But can significantly more be gained by considering how recently A occurred,
or how many times?

We have studied these issues using the Wall Street Journal corpus of 38 million words. First, an index
file was created that contained, for every word, a record of all of its occurrences. Then, for any candidate
pair of words, we computed log cross product ratio, average mutual information (M1), and distance-based and
count-based co-occurrence statistics. The latter were used to draw graphs depicting detailed trigger relations.
Some illugtrations are given in figs. 2 and 3. After using the program to manually browse through many
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Figure 2: Probability of 'SHARES' as a function of the distance from the last occurrence of 'STOCK' in
the same document. The middle horizontal lineisthe unconditional probability. The top (bottom) lineisthe
probability of 'SHARES' giventhat ' STOCK’ occurred (did not occur) beforein the document.

hundreds of trigger pairs, we were able to draw the following general conclusions:

1. Different trigger pairs display different behavior, and hence should be modeled differently. More
detailed modeling should be used when the expected return is higher.

2. Sdf triggers (i.e. triggers of the form (A— A)) are particularly powerful and robust. In fact, for more
than two thirdsof the words, the highest-M1 trigger proved to be the word itself. For 90% of the words,
the self-trigger was among the top 6 triggers.

3. Same-root triggersare also generally powerful, depending on the frequency of their inflection.

4. Mot of the potential of triggersis concentrated in high-frequency words. (STOCK— BOND) isindeed
much more useful than (BREST— LITOV SK).
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Figure 3: Probability of "WINTER'’ as a function of the number of times’' SUMMER’ occurred beforeit in
the same document. Horizontal linesare asin fig. 2.

5. When thetrigger and triggered words are from different domains of discourse, the trigger pair actually
shows some slight mutual information. The occurrence of aword like’ STOCK’ signifiesthat the doc-
ument is probably concerned with financial i ssues, thusreducing the probability of words characteristic
of other domains. Such negativetriggerscan in principlebe exploited in much the same way asregular,
“positive” triggers. However, the amount of information they provideistypically very small.

2.6 Syntactic Constraints

Syntactic constraints are varied. They can be expressed as yes/no decisions about grammaticality, or, more
cautioudly, as scores, with very low scores assigned to ungrammatical utterances.

The extraction of syntactic information would typically involve a parser. Unfortunately, parsing of
genera English with reasonable coverage is not currently attainable. As an alternative, phrase parsing can
be used. Another possibility isloose semantic parsing ([Ward 90, Ward 91]), extracting syntactic-semantic
information.

The information content of syntactic constraintsis hard to measure quantitatively. But they are likely to
be very beneficia. Thisis because thisknowledge source seems complementary to the statistical knowledge

sourceswe can currently tame. Many of the speech recognizer’s errors are easily identified as such by humans
because they violate basic syntactic constraints.

3 Combining I nformation Sour ces

Once the desired information sources are identified and the phenomena to be modeled are determined, one
main issue still needs to be addressed. Given the part of the document processed so far (h), and a word w
considered for the next position, there are many different estimates of P(w|h). These estimates are derived



from the different knowledge sources. How does one combine them all to form one optimal estimate? We
discuss existing solutionsin this section, and propose a new one in the next.

3.1 Linear Interpolation

Given k models {P;(w|h) }i=1.x, we can combine them linearly with:

k
PCOMBINED(W| h) o Z AP (Wl h) (6)
i=1
where0 < A <1 and )" A =1
Thismethod can be used both asaway of combining knowledge sources, and asaway of smoothing (when
one of the component models is very “flat”, such as a uniform distribution). An Estimation-Maximization
(EM) type algorithm ([Dempster et al. 77]) istypically used to determine these weights. Theresult is a set of

weightsthat isprovably optimal with regard to the dataused for itsoptimization. See[Jelinek and Mercer 80]
for more details, and [Rosenfeld 94b] for further exposition.

Linear interpolation has very significant advantages, which make it the method of choice in many
situations:

e Linear Interpolation isextremely general. Any language model can be used as a component. |In fact,
once a common set of heldout data is selected for weight optimization, the component models need
no longer be maintained explicitly. Instead, they can be represented in terms of the probabilities they
assign to the heldout data. Each model is represented as an array of probabilities. The EM agorithm
simply looksfor alinear combination of these arrays that would minimize perplexity, and is compl etely
unaware of their origin.

e Linear interpolation is easy to implement, experiment with, and analyze. Wehavecreatedani nt er pol at e
program that takes any number of probability streams, and an optiona bin-partitioning stream, and
runsthe EM agorithm to convergence (see [Rosenfeld 94b, Appendix B]). We have used the program
to experiment with many different component models and bin-classification schemes. Some of our
genera conclusions are:

1. The exact value of the weights does not significantly affect perplexity. Weights need only be
specified to within ~5% accuracy.

2. Very little heldout data (severa thousand words per weight or less) are enough to arrive at
reasonable weights.

e Linear interpolation cannot hurt. The interpolated model is guaranteed to be no worse than any of its
components. Thisisbecause each of the componentscan beviewed asaspecia case of theinterpolation,
withaweight of 1 for that component and O for all others. Strictly speaking, thisis only guaranteed for
the heldout data, not for new data. But if the heldout data set islarge enough, the result will carry over.
So, if we suspect that anew knowledge source can contributeto our current model, the quickest way to
test it would be to build a simple model that uses that source, and to interpolateit with our current one.
If the new source is not useful, it will simply be assigned a very small weight by the EM algorithm
([Jelinek 89]).

Linear interpolation is so advantageous because it reconciliates the different information sources in a
straightforward and simple-minded way. But that simple-mindednessis a so the source of its weaknesses:

e Linearly interpolated models make suboptimal use of their components. Thedifferent informationsources
are consulted “blindly”, without regard to their strengths and weaknesses in particular contexts. Their



weights are optimized globaly, not locally (the “bucketing” scheme is an attempt to remedy this sit-
uation piece-med). Thus the combined model does not make optimal use of the information at its
disposal.

For example, insection 2.4 wediscussed [Huang et al. 93], and reported our conclusion that asi gnificant
amount of information existsin long-distance bigrams, up to distance 4. We have tried to incorporate
this information by combining these components using linear interpolation. But the combined model
improved perplexity over the conventional (distance 1) bigram by an insignificant amount (2%). In
section 5 we will see how a similar information source can contribute significantly to perplexity
reduction, provided a better method of combining evidence is employed.

As another, more detailed, example, in [Rosenfeld and Huang 92] we report on our early work on
trigger models. We used a trigger utility measure, closely related to mutual information, to select
some 620,000 triggers. We combined evidence from multiple triggers using several variants of linear
interpolation, then interpolated the result with a conventional backoff trigram. An example result isin
table 4. The 10% reduction in perplexity, however gratifying, is well below the true potentia of the
triggers, as will be demonstrated in the following sections.

test set trigram PP | trigram+triggersPP | improvement
7T0KW (WSJ) 170 153 10%

Table 4: Perplexity reduction by linearly interpolating the trigram with a trigger model.  See
[Rosenfeld and Huang 92] for details.

e Linearly interpolated modelsare generally inconsistent with their components. Eachinformationsource
typicaly partitions the event space (h,w) and provides estimates based on the relative frequency of
training data within each class of the partition. Therefore, within each of the component models,
the estimates are consistent with the marginals of the training data. But this reasonable measure of
consistency isin general violated by the interpolated model .

For example, a bigram model partitions the event space according to the last word of the history. All
historiesthat end in, say, “BANK” are associated with the same estimate, Pg cram(W[h). That estimate
isconsistent with the portion of the training datathat endsin“BANK?”, in the sense that, for every word
Wl

Z Paicram(W|h) = C(BANK, W) (7
h € traininG-seT
h endsin “BANK”

where C(Bank, W) is the training-set count of the bigram (sank,w). However, when the bigram
component is linearly interpolated with another component, based on a different partitioning of the
data, the combined model depends on the assigned weights. These weights are in turn optimized
globally, and are thusinfluenced by the other marginals and by other partitions. Asaresult, equation 7
generaly does not hold for the interpolated model.

3.2 Backoff

In the backoff method ([Katz 87]), thedifferent information sources are ranked in order of detail or specificity.
At runtime, the most detailed model is consulted first. If it isfound to contain enough information about
the predicted word in the current context, then that context is used exclusively to generate the estimate.
Otherwise, the next model inlineis consulted. Asin the previous case, backoff can be used both as away of
combining information sources, and as away of smoothing.



The backoff method does not actually reconcile multiple models. Instead, it chooses among them. One
problem with this approach is that it exhibits a discontinuity around the point where the backoff decision is
made. In spite of this problem, backing off is ssmple, compact, and often better than linear interpolation.

A problem common to both linear interpol ationand backoff isthat they giveriseto systematic overestima-
tion of some events. This problem was discussed and solved in [Rosenfeld and Huang 92], and the solution
used in a speech recognition systemin [Chase et al. 94].

4 TheMaximum Entropy Principle

In this section we discuss an alternative method of combining knowledge sources, which is based on the
Maximum Entropy approach first proposed by E. T. Jaynes in the 1950's ([Jaynes 57]). The Maximum
Entropy principlewas first applied to language modeling by [DellaPietraet al. 92].

In the methods described in the previous section, each knowledge source was used separately to construct
amodel, and themodel s were then combined. Under the Maximum Entropy approach, one does not construct
separate models. Instead, one buildsa single, combined model, which attemptsto capture al the information
provided by the various knowledge sources. Each such knowledge source givesrise to a set of constraints,
to be imposed on the combined model. These constraints are typically expressed in terms of marginal
distributions, as in the example at the end of section 3.1. This solvesthe inconsistency problem discussed in
that section.

The intersection of al the constraints, if not empty, contains a (possibly infinite) set of probability
functions, which are al consistent with the knowledge sources. The second step in the Maximum Entropy
approach isto choose, from among the functionsin that set, that function which has the highest entropy (i.e.,
the“flattest” function). In other words, once the desired knowledge sources have been incorporated, no other
features of the data are assumed about the source. Instead, the “worst” (flattest) of the remaining possibilities
is chosen.

Let usillustrate these ideas with a simple example.

41 An Example

Assumewewishtoestimate P(“BANK”'|h), namely theprobability of theword “BANK” giventhedocument’s
history. One estimate may be provided by a conventional bigram. The bigram would partitionthe event space
(h, w) based on the last word of the history. The partition is depicted graphicaly in figure 5. Each columnis
an equivalence class in this partition.

[ hendsin“THE" | hendsin“OF" | | |

Table 5: The Event Space {(h,w)} is partitioned by the bigram into equivalence classes (depicted here as
columns). In each class, dl historiesend in the same word.

Consider one such equivaence class, say, the one where the history endsin “THE”. The bigram assigns
the same probability estimate to all eventsin that class:

Pgicram (BANK|THE) = K{THE,BANK} (8)

10



That estimate is derived from the distribution of the training datain that class. Specifically, it is derived
as.

def  C(THE, BANK
K{THE,BANK} = ﬁ 9)

Another estimate may be provided by a particular trigger pair, say (LOAN—BANK). Assume we want
to capture the dependency of “BANK” onwhether or not “LOAN" occurred beforeit in the same document.
Thus a different partition of the event space will be added, as in figure 6. Each of the two rows is an
equivaence class in this partition®.

[ | hendsin“THE” | hendsin“OF | | |

LOANeh | .. ... | ..o | oo

LOANgh | . ... | ... | ...

Table 6: The Event Space {(h,w)} is independently partitioned by the binary trigger word “LOAN” into
another set of equivalence classes (depicted here as rows).

Similarly to the bigram case, consider now one such equivalence class, say, the one where “LOAN” did
occur in the history. The trigger component assigns the same probability estimateto al eventsin that class:

PLOAN—»BANK(BANK“—OAN Eh) = K{BANK,LOANeh} (10)

That estimate is derived from the distribution of the training datain that class. Specifically, it is derived
as.

¢ C(BANK,LOANE€h)
K{BANK,LOANEh} - C(LOAN c h) (11)

Thusthebigram component assignsthe same estimateto all eventsin the same column, whereasthetrigger
component assigns the same estimate to al events in the same row. These estimates are clearly mutually
inconsistent. How can they be reconciled?

Linear interpolation solves this problem by averaging the two answers. The backoff method solvesit by
choosing one of them. The Maximum Entropy approach, on the other hand, does away with theinconsistency
by relaxing the conditions imposed by the component sources.

Consider the bigram. Under Maximum Entropy, we no longer insist that P(sank|h) dways have the same
value (K{re sanc}) Whenever the history endsin “THE”. Instead, we acknowledge that the history may have
other features that affect the probability of “BANK”. Rather, we only require that, in the combined estimate,
P(eank |h) be equal to K e sank; ON average in thetraining data. Equation 8 is replaced by

E [ PCOMBINED(BANK|h)] = K{THE,BANK} (12)

hendsin “THE"

where E stands for an expectation, or average. Note that the constraint expressed by equation 12 is much
weaker than that expressed by equation 8. There are many different functions Peoweinen that would satisfy it.
Only one degree of freedom was removed by imposing thisnew constraint, and many more remain.

4The equivalence classes are depicted graphically as rows and columns for clarity of exposition only. In reality, they need not be
orthogonal.
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Similarly, we requirethat Pcoveinen(BANK D) beequal to K gank Loanen) ONaverage over those historiesthat
contain occurrences of “LOAN":

E [ PCOMBINED(BANK|h)] = K{BANK,LOANeh} (13)

“LOAN"Eh

Asinthe bigram case, this constraint is much weaker than that imposed by equation 10.

Given thetremendous number of degrees of freedom left inthemodel, it iseasy to see why theintersection
of al such constraintswould be non-empty. The next step inthe Maximum Entropy approach isto find, among
all the functionsin that intersection, the one with the highest entropy. The search is carried out implicitly, as
will be described in section 4.3.

4.2 |Information Sources as Constraint Functions

Generalizing from the example above, we can view each information source as defining a subset (or many
subsets) of the event space (h, w). For each subset, we impose a constraint on the combined estimate to be
derived: that it agree on average with a certain statistic of the training data, defined over that subset. In
the example above, the subsets were defined by a partition of the space, and the statistic was the marginal
distribution of the training data in each one of the equivalence classes. But thisneed not be the case. We can
define any subset S of the event space, and any desired expectation K, and impose the constraint:

Y [Phw] = K (14)

(hw)es

The subset S can be specified by an index function, also called selector function, f :

def 1 if(hyw)eS
Fs(h.w) = { 0 otherwise
SO equation 14 becomes:
ST IPhwishw] = K (15)
(h,w)

This notation suggests further generalization. We need not restrict ourselves to index functions. Any
real-valued function f (h, w) can be used. We call f (h,w) a constraint function, and the associated K the
desired expectation. Equation 15 now becomes:

(f.P) = K (16)

This generalized constraint suggests a new interpretation: (f , P} isthe expectation of f (h,w) under the
desired distribution P(h, w). We require of P(h, w) to be such that the expectation of some given functions
{fi(h,w)}i=12 . match some desired values {K; }i=1 » .., respectively.

The generdizations introduced above are extremely important, because they mean that any correlation,
effect, or phenomenon that can be described interms of statisticsof (h, w) can bereadily incorporated into the
Maximum Entropy model. All information sources described in the previous section fall into this category,
as do al other information sources that can be described by an algorithm.

Followingisageneral description of the Maximum Entropy model and its solution.
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4.3 Maximum Entropy and the Generalized Iterative Scaling Algorithm
The Maximum Entropy (ME) Principle ([Jaynes 57, Kullback 59]) can be stated as follows:

1. Reformulate the different information sources as constraints to be satisfied by the target (combined)
estimate.

2. Among al probability distributions that satisfy these constraints, choose the one that has the highest
entropy.

Given a general event space {x}, to derive a combined probability function P(x), each constraint i is
associated with a constraint function f ;(x) and a desired expectation K;. The constraint isthen written as:

Eofi € 3" POOfi(x) = K . (17)
X

Given consistent constraints, a unique ME solution is guaranteed to exist, and to be of the form:

PO = [ mi"™, (18)

wherethe y;’s are some unknown constants, to be found. To search the exponentia family defined by (18)
for the y;’s that will make P(x) satisfy dl the constraints, an iterative algorithm, “Generdized Iterative
Scaling” (GIS, [Darroch and Ratcliff 72]), exists, which is guaranteed to converge to the solution. GIS starts
with some arbitrary ,ui(o) values, which define theinitial probability estimate:

PO(x) % H PO 100
i

Each iteration creates a new estimate, which is improved in the sense that it matches the constraints better
than its predecessor. Each iteration (say j) consists of the following steps:

1. Computetheexpectationsof al thef;’sunder the current estimatefunction. Namely, compute Ep f o

>x POOfi(x).

2. Compare the actual values (Epf;i’s) to the desired values (K;'s), and update the y;’s according to the
following formula:
+n - 0O
Hi Hi Erofi (19)

3. Define the next estimate function based on the new ;’s:

pl+D) (x) def H ui(jﬂ) fi(X) (20)
[
Iterating is continued until convergence or near-convergence.

4.4 Estimating Conditional Distributions

Generalized Iterative Scaling can be used to find the ME estimate of a simple (non-conditional) probability
distribution over some event space. But in language modeling, we often need to estimate conditional
probabilities of the form P(w|h). How should thisbe done?

One simple way is to estimate the joint, P(h,w), from which the conditional, P(w|h), can be readily
derived. This has been tried, with moderate success only [Lau et al. 93b]. The likely reason isthat the event
space {(h, w)} isof size O(V-*1), where Visthevocabul ary sizeand L isthehistory length. For any reasonable
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values of V and L, thisis a huge space, and no feasible amount of training data is sufficient to train a model
for it.

A better method was |ater proposed by [Brownet al. ]. Let P(h, w) be the desired probability estimate,
and let P(h, w) be the empirical distribution of the training data. Let f;(h, w) be any constraint function, and
let K; beitsdesired expectation. Equation 17 can be rewritten as.

> P(h) - > Pwih) - fi(h,w) = K (21)
h w

We now modify the constraint to be:

D B Y Pwih) - fih,w) = K (22)
h w

One possible interpretation of this modification is as follows. Instead of constraining the expectation of
fi(h, w) with regard to P(h, w), we constrain its expectation with regard to a different probability distribution,
say Q(h, w), whose conditional Q(w|h) isthe same as that of P, but whose margina Q(h) isthe same asthat of
P. To better understand the effect of this change, define H as the set of all possible histories h, and define Hs,
asthe partition of H induced by f;. Then the modification is equiva ent to assuming that, for every constraint
fi, P(Hs,) = P(Hy,). Since typicaly Hy, is a very small set, the assumption is reasonable. It has several
significant benefits:

1. Although Q(w|h) = P(w|h), modeling Q(h,w) is much more feasible than modeling P(h, w), since
Q(h,w) = 0 for al but aminutefraction of theh’s.

2. When applying the Generalized Iterative Scaling a gorithm, we no longer need to sum over all possible
histories (avery large space). Instead, we only sum over the historiesthat occur in the training data.

3. The unique ME solution that satisfies equations like (22) can be shown to aso be the Maximum
Likelihood (ML) solution, namely that function which, among the exponentia family defined by the
constraints, has themaximum likelihood of generating thetraining data. Theidentity of theML and ME
solutions, apart from being aesthetically pleasing, is extremely useful when estimating the conditional
P(wlh). It means that hillclimbing methods can be used in conjunction with Generdized Iterative
Scaling to speed up the search. Since the likelihood objective function is convex, hillclimbing will not
get stuck in local minima

45 Maximum Entropy and Minimum Discrimination Information

The principleof Maximum Entropy can be viewed asa specia case of the Minimum Discrimination Informa-
tion (MDI) principle. Let Po(x) be a prior probability function, and let {Q,(x)}. be afamily of probability
functions, where « varies over some set. As in the case of Maximum Entropy, {Q.(X)}. might be defined
by an intersection of constraints. One might wish to find the function Qg(x) in that family which is closest to
the prior Pp(x):

Qu(x) € agminD(Qu, Po) (23)

where the non-symmetric distance measure, D(Q, P), is the Kullback-Liebler distance, aso known as dis-
crimination information or asymmetric divergence [Kullback 59]:
DQX),PK) & 3 Qx)log 2 (24)
= P(x)

In the special case when Py(X) is the uniform distribution, Qo(X) as defined by equation 23 is aso the
Maximum Entropy solution, namely the function with the highest entropy in the family {Q,(X)}.. We see
thusthat ME isa specia case of MDI, where the distanceis measured to the uniform distribution.

In aprecursor to thiswork, [DellaPietraet al. 92] used the history of a document to construct a unigram.
The latter was used to constrain the marginals of a bigram. The static bigram was used as the prior, and the
MDI solution was sought among the family defined by the constrained marginals.
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4.6

Assessing the Maximum Entropy Approach

The ME principle and the Generalized Iterative Scaling a gorithm have several important advantages:

1.

5.

The ME principle is simple and intuitively appealing. It imposes al of the constituent constraints,
but assumes nothing else. For the specia case of constraints derived from marginal probabilities, it is
equivalent to assuming alack of higher-order interactions[Good 63].

ME is extremely general. Any probability estimate of any subset of the event space can be used,
including estimates that were not derived from the data or that are inconsistent with it. Many other
knowledge sources can be incorporated, such as distance-dependent correlations and complicated
higher-order effects. Notethat constraints need not be independent of nor uncorrelated with each other.

. The information captured by existing language models can be absorbed into the ME model. Later on

in this document we will show how thisis done for the conventional N-gram model.

Generaized Iterative Scaling lends itself to incremental adaptation. New constraints can be added at
any time. Old constraints can be maintained or else allowed to relax.

A unigue ME solution is guaranteed to exist for consistent constraints. The Generalized Iterative
Scaling algorithm is guaranteed to convergeto it.

This approach & so has the following weaknesses:

1.

Generalized Iterative Scaling is computationally very expensive (For more on this problem, and on
methods for coping with it, see [Rosenfeld 94b, section 5.7]).

. While the algorithmis guaranteed to converge, we do not have atheoretica bound on its convergence

rate (for al systems we tried, convergence was achieved within 10-20 iterations).

. It is sometimes useful to impose constraints that are not satisfied by the training data. For example,

we may choose to use Good-Turing discounting [ Good 53] (as we have indeed done in this work), or
else the constraints may be derived from other data, or be externally imposed. Under these circum-
stances, equivalence with the Maximum Likelihood principle no longer exists. More importantly, the
constraints may no longer be consistent, and the theoretical results guaranteeing existence, uniqueness
and convergence may not hold.

5 Using Maximum Entropy in Language M odeling

In this section, we describe how the Maximum Entropy framework was used to create a language model
which tightly integrates varied knowledge sources.

5.1

Distance-1 N-grams

5.1.1 Conventional Formulation

In the conventional formulation of standard N-grams, the usua unigram, bigram and trigram Maximum
Likelihood estimates arereplaced by unigram, bigram and trigram constrai ntsconveying the sameinformation.
Specifically, the constraint function for the unigram wy is:

1 ifw=wy

Fu (h, W) :{ 0 otherwise (25)
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Thedesiredvaue, Ky, , isset to E[f w,], theempirical expectation of f,, , i.e. itsexpectationinthetraining
data

~ 1
Elfw] € 5 D fuwhw), (26)
(h,w) ETRAINING
and the associated constraint is:
D PN PwWIh)f w(h,w) = E[fw,]. (27)
h w

(As before, P() denotes the empirical distribution.) Similarly, the constraint function for the bigram
{wi, Wy} is.

_ [ 1 ifhendsinw;andw=w;

Fwwey (0 W) = { 0 otherwise (28)

and its associated constraint is:
D P Y PO g vy (0 W) = ETF fue e ] (29)

h w
Findly, the constraint function for the trigram {wz, w,, w3} is:
_ [ 1 ifhendsin(wg,w;) and w =ws

F vz e (1 W) = { 0 otherwise (30)

and its associated constraint is:
D P Y PN fu sy (0 W) = ELTF iy s - (31)

h w

5.1.2 Complemented N-gram Formulation

Each constraint in a ME model induces a subset of the event space {(h,w)}. One can modify the N-gram
congtraints by modifying their respective subsets. In particular, the following set subtraction operations can
be performed:

1. Modify each bigram constraint to exclude all events (h, w) that are part of an existing trigram constraint
(call these “complemented bigrams’).

2. Modify each unigram constraint to exclude al events (h, w) that are part of an existing bigramor trigram
congtraint (call these “complemented unigrams’).

These changes are not merely notational — the resulting model differs from the original in significant
ways. Neither are they applicable to ME models only. In fact, when applied to a conventional Backoff
model, they yielded a modest reduction in perplexity. This is because at runtime, backoff conditions are
better matched by the “complemented” events. Recently, [Kneser and Ney 95] used a similar observation to
motivate their own modification to the backoff scheme, with similar results.

For the purpose of theM E model, though, themost important aspect of complemented N-gramsisthat their
associated events do not overlap. Thus only one such constraint is active for any training datapoint (instead
of up to threg). Thisin turn results in faster convergence of the Generalized Iterative Scaling algorithm
([Rosenfeld 94b, p. 53]). For thisreason we have chosen to use the complemented N-gram formulation in
thiswork.
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5.2 Triggers
5.2.1 Incorporating Triggersinto ME
To formulate a (binary) trigger pair A— B as a constraint, define the constraint function f o_g as:

1 ifAechw=B

fa-s(h W) :{ 0 otherwise (32)

Set Ka_g to E[f a_g], the empirical expectation of f o_g (i.e. its expectation in the training data). Now
impose on the desired probability estimate P(h, w) the constraint:

> B> PwIh)f as(h,w) = E[fagl. (33)
h w

5.2.2 Sdlecting Trigger Pairs

In section 2.5.2 , we discussed the use of mutual information as a measure of the utility of a trigger pair.
Given the candidate trigger pair (BUENOS—AIRES), this proposed measure would be:

P(AIRESBUENOS, )
P(AIRES
P(AIRES|BUENOS,)
P(AIRES)
P(AIRESBUENOS)
P(AIRES
P(AIRES/BUENOS,)
P(AIRES)

I(BUENOS,:AIRES) = P(BUENOS,, AIRES)log

+ P(BUENOS,, AIRES) log

+ P(BUENOS,, AIRES) log

+ P(BUENOS,, AIRES) log

(34)

This measure is likely to result in a high utility score in this case. But is this trigger pair redly that
useful? Triggersare used in additionto N-grams. Therefore, trigger pairsare only useful to the extent that the
information they provide supplements the information aready provided by N-grams. In the example above,
“AIRES’ isamost dways predicted by “BUENQOS’, using a bigram constraint.

One possible fix is to modify the mutual information measure, so as to factor out triggering effects that
fall within the range of the N-grams. Let h = W'l_l. Recall that

A E ac wi .

Then, in the context of trigram constraints, instead of using MI(A, :B) we can use MI(A,.34 : B), where:

Aczg € {Aew 3

We will designate this measure with M1-3g.

Using the WSJ occurrence file described in section 2.5.2, the 400 million possible (ordered) trigger pairs
of the WSJ 520,000 word vocabulary were filtered. Asafirst step, only word pairsthat co-occurred in at least
9 documents were maintained. This resulted in some 25 million (unordered) pairs. Next, MI(A,.3q : B) was
computed for al these pairs. Only pairsthat had at least 1 milibit (0.001 bit) of average mutual information
were kept. Thisresulted in 1.4 million ordered trigger pairs, which were further sorted by M1-3g, separately
for each B. A random sampleisshownintable7. A larger sampleisprovided in [Rosenfeld 94b, appendix
Cl.

Browsing the complete list, several conclusions could be drawn:
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HARVEST < CROP HARVEST CORN SOYBEAN SOYBEANS AGRICULTURE GRAIN DROUGHT GRAINS

HARVESTING < CROP HARVEST FORESTS FARMERS HARVESTING TIMBER TREES LOGGING ACRES

HASHEMI < IRAN IRANIAN TEHRAN IRAN’S IRANIANS LEBANON AYATOLLAH HOSTAGES KHOMEINI

HASTINGS <= HASTINGS IMPEACHMENT ACQUITTED JUDGE TRIAL DISTRICT FLORIDA
HATE <« HATE MY YOU HER MAN ME | LOVE

HAVANA < CUBAN CUBA CASTRO HAVANA FIDEL CASTRO'S CUBA’'S CUBANS COMMUNIST MIAMI

BUSHELS

FOREST

ISRAELI HOSTAGE SHIITE ISLAMIC IRAQ PERSIAN TERRORISM LEBANESE ARMS ISRAEL TERRORIST

REVOLUTION

Teble 7: The best triggers”A” for some given words*B”, in descending order, as measured by MI(A,.3q : B).

5.

. Sdf-triggers, namely wordsthat trigger themselves (A— A) are usualy very good trigger pairs. Infact,

in 68% of the cases, the best predictor for aword istheword itself. In 90% of the cases, the self-trigger
isamong thetop 6 predictors.

. Words based on the same stem are a so good predictors.

. Ingenerd, thereis great similarity between same-stem words:

¢ The strongest association is between nouns and their possessive, both for triggers (i.e. B «
. XYZ,...XYZ'S...) and for triggered words (i.e. the predictor sets of XYZ and XYZ'S are
very similar).

o Next isthe association between nouns and their plurals.

¢ Next isadjectivization (IRAN-IAN, ISRAEL-).

. Even when predictor sets are very similar, there is till a preference to self-triggers (i.e. (XYZ)

predictor-set is biased towards (XYZ), (XYZ)S predictor-set is biased towards (XYZ)S, (XYZ)'S
predictor-set is biased towards (XYZ)'S).

Thereis preference to more frequent words, as can be expected from the mutual information measure.

The MI1-3g measure is still not optimal. Consider the sentence:

“Thedistrict attorney’s office launched an investigationintoloansmade by severa well connected
banks.”

The MI-3g measure may suggest that (ATTORNEY—INVESTIGATION) isagood pair. And indeed, a
model incorporating that pair may use“ATTORNEY” totrigger “INVESTIGATION” in the sentence above,
raising its probability above the default value for the rest of the document. But when “INVESTIGATION”
actualy occurs, it is preceded by “LAUNCHED AN”, which alowsthe trigram component to predict it with
amuch higher probability. Raising the probability of “INVESTIGATION” incurs some cost, which is never
justified in this example. This happens because M1-3g till measures “simple” mutua information, and not
the excess mutual information beyond what is aready supplied by the N-grams.

Similarly, trigger pairs affect each others' usefulness. The utility of thetrigger pair Ay — B is diminished
by the presence of the pair A, — B, if the information they provide has some overlap. Also, the utility of a
trigger pair depends on the way it will be used in the model. MI1-3g failsto consider these factors as well.

For an optimal measure of the utility of atrigger pair, a procedure like the following could be used:
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1. Train an ME model based on N-grams alone.

2. For every candidate trigger pair (A— B), train a specia instance of the base model that incorporates
that pair (and that pair only).

3. Compute the excess information provided by each pair by comparing the entropy of predicting B with
and without it.

4. For every B, choose the one trigger pair that maximizes the excess information.

5. Incorporate the new trigger pairs (one for each B in the vocabulary) into the base model, and repeat
from step 2.

For atask aslarge asthe WSJ (40 millionwords of training data, millionsof constraints), thisapproachis
clearly infeasible. Butinmuch smaller tasksit could be employed (seefor example[ Ratnaparkhi and Roukos 94]).

523 AsmpleME system

The difficulty in measuring the true utility of individual triggers means that, in general, one cannot directly
compute how much informationwill be added to the system, and hence by how much entropy will be reduced.
However, under specia circumstances, this may till be possible. Consider the case where only unigram
congtraintsare present, and only asingletrigger is provided for each wordinthevocabulary (one*A’ for each
‘B’"). Because thereisno “crosstalk” between the N-gram constraints and the trigger constraints (nor among
the trigger constraints themselves), it should be possible to calculate in advance the reduction in perplexity
due to theintroduction of the triggers.

To verify thetheoretical arguments (as well asto test the code), the foll owing experiment were conducted
on the 38 million words of the WSJ corpus language training data (vocabulary=19,981, see appendix A ).
First, a ME model incorporating only the unigram constraints was created. Itstraining-set perplexity (PP)
was 962 — exactly as calculated from simple Maximum Likelihood estimates. Next, for each word 'B ’ in
the vocabulary, the best predictor ' A’ (as measured by standard mutual information) was chosen. The 19,981
trigger pairs had a total mutual information of 0.37988 bits. Based on the argument above, the training-set
perplexity of the model after incorporating these triggers should be:

962 - 27%379% ~ 739

The triggers were then added to the model, and the Generalized Iterative Scaling algorithm was run. It
produced the following output:

iteration training-PP  improvement

1 19981.0
2 1919.6 90.4%
3 999.5 47.9%
4 821.5 17.8%
5 772.5 6.0%
6 755.0 2.3%
7 747.2 1.0%
8 743.1 0.5%
9 740.8 0.3%
10 739.4 0.2%

In compl ete agreement with the theoretical prediction.
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5.3 A Model Combining N-gramsand Triggers

Asafirst major test of the applicability of the M E approach, M E model s were constructed which incorporated
both N-gram and trigger constraints. One experiment was run with the best 3 triggers for each word (as
judged by the M1-3g criterion), and another with the best 6 triggers per word.

In both N-gram and trigger constraints (asin all other constraintsincorporated later), the desired value of
each constraint (the right-hand side of equations 27, 29, 31 or 33) was replaced by its Good- Turing discounted
value, sincethe latter is a better estimate of the true expectation of that constraint in new data®.

A conventiona backoff trigram model was used as a basdline. The Maximum Entropy models were also
linearly interpolated with the conventional trigram, using aweight of 0.75 for the ME model and 0.25 for the
trigram. 325,000 words of new data were used for testing®. Resultsare summarized intable 8.

vocabulary top 20,000 words of WSJ corpus

training set 5MW (WSJ)

test set 325KW (WSJ)

trigram perplexity (baseline) 173 173

ME experiment top 3 top 6

ME constraints:
unigrams 18400 18400
bigrams 240000 240000
trigrams 414000 414000
triggers 36000 65000

ME perplexity 134 130
perplexity reduction 23% 25%

0.75-ME + 0.25-trigram perplexity 129 127
perplexity reduction 25% 27%

Table 8: Maximum Entropy models incorporating N-gram and trigger constraints.

Interpolation with the trigram model was done in order to test whether the ME model fully retained all
the information provided by the N-grams, or whether part of it was somehow lost when trying to incorporate
the trigger information. Since interpolation reduced perplexity by only 2%, we conclude that almost al
the N-gram information was retained by the integrated ME model. This illustrates the ability of the ME
framework to successfully accommodate multiple knowledge sources.

Similarly, there was littleimprovement in using 6 triggers per word vs. 3 triggers per word. This could
be because little information was left after 3 triggers that could be exploited by trigger pairs. More likely
it is a consequence of the suboptima method we used for selecting triggers (see section 5.2.2). Many 'A’
triggersfor the sameword ‘B’ are highly correlated, which means that much of theinformation they provide
overlaps. Unfortunately, the M1-3g measure discussed in section 5.2.2 fails to account for this overlap.

The basalinetrigram model used in thisand all other experiments reported here was a“ compact” backoff
model: al trigrams occurring only once in the training set were ignored. This modification, which is the
standard inthe ARPA community, resultsin very slight degradationin perplexity (1%inthiscase), but realizes
significant savingsin memory requirements. All ME models described here a so discarded thisinformation.

5Notethat this modificationinvalidatesthe equival encewith the M aximum Likelihood principlediscussedin section 4.4. Furthermore,
since the constraints no longer match the marginals of the training data, they are not guaranteed to be consistent, and hence a solution is
not guaranteedto exist. Nevertheless, our intuition was that the large number of remaining degreesof freedom will practically guarantee
asolution, and indeed this has always proven to be the case.

6We used a large test set to ensure the statistical significance of the results. At this size, perplexity of half the data set, randomly
selected, iswithin ~1% of the perplexity of the whole set.
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54 ClassTriggers
54.1 Moativation

In section 5.2.2 we mentioned that strong triggering relations exist among different inflections of the same
stem, similar to thetriggering relation aword haswithitself. It isreasonableto hypothesizethat thetriggering
relationship is really among the stems, not the inflections. This is further supported by our intuition (and
observation) that triggers capture semantic correlations. One might assume, for example, that the stem
“LOAN" triggersthe stem “BANK?”. Thisrelationship will hopefully capture, in a unified way, the affect that
the occurrence of any of “LOAN", “LOANS’, “LOAN’S’, and “LOANED” might have on the probability
of any of “BANK”, “BANKS" and “BANKING” occurring next.

It should be noted that class triggers are not merely a notational shorthand. Even if one wrote down all
possible combinations of word pairs from the above two lists, the result would not be the same as in using
the single, class-based trigger. Thisis because, in a class trigger, the training data for al such word-pairsis
clustered together. Which system is better is an empirical question. It depends on whether these words do
indeed behave similarly with regard to long-distance prediction, which can only be decided by looking at the
data

54.2 ME Congtraintsfor Class Trigger
Let A & {A1, A2, ...Aq} be some subset of the vocabulary, and let BB e {B1,By,...Bn} be ancther
subset. The ME constraint function for the class trigger (AA = BB) is:

1 if(GAAc AAAch)Awe BB

0 otherwise (35)

fan—ga(h,W) = {
Set Kaapp tO E[fAA_,BB], the empirical expectation of f pa_ss. Now impose on the desired probability
estimate P(h, w) the constraint:

SR> PN anes(h,w) = E[f ares] (36)

h

54.3 ClusteringWordsfor ClassTriggers

Writing the ME constraints for class triggersis straightforward. The hard problem is finding useful classes.
Thisis reminiscent of the case of class-based N-grams. Indeed, one could use any of the general methods
discussed in section 2.3 : clustering by linguistic knowledge, clustering by domain knowledge, or datadriven
clustering.

To estimate the potentia of class triggers, we chose to use the first of these methods. The choice was
based on the strong conviction that some stem-based clustering is certainly “correct”. This conviction was
further supported by the observations made in section 5.2.2, after browsing the * best-predictors’ list.

Using the ’morphe’ program, developed at Carnegie Melon’, each word in the vocabulary was mapped
to one or more stems. That mapping was then reversed to create word clusters. The ~20,000 words formed
13,171 clusters, 8,714 of which were singletons. Some words bel onged to more than one cluster. A randomly
selected sampleis shown in table 9.

Next, two ME models were trained. The first included all “word self-triggers’, one for each word in the
vocabulary. The second included all “class self-triggers’ (f aa—aa), onefor each cluster AA. A threshold of 3
same-document occurrences was used for both types of triggers. Both models aso included al the unigram
congtraints, with athreshold of 2 global occurrences. The use of only unigram constraintsfacilitated the quick
estimation of the amount of information in the triggers, as was discussed in section 5.2.3. Both modelswere
trained on the same 300,000 words of WSJ text. Results are summarized in table 10.

"We are grateful to David Evans and Steve Henderson for their generosity in providing us with this tool
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[ACCRUAL]

ACCRUAL

[ACCRUE] ACCRUE, ACCRUED, ACCRUING
[ACCUMULATE] ACCUMULATE, ACCUMULATED, ACCUMULATING
[ACCUMULATION] ACCUMULATION

[ACCURACY] ACCURACY

[ACCURATE] ACCURATE, ACCURATELY

[ACCURAY] ACCURAY

[ACCUSATION] ACCUSATION, ACCUSATIONS

[ACCUSE] ACCUSE, ACCUSED, ACCUSES, ACCUSING
[ACCUSTOM] ACCUSTOMED

[ACCUTANE] ACCUTANE

[ACE] ACE

[ACHIEVE] ACHIEVE, ACHIEVED, ACHIEVES, ACHIEVING

[ACHIEVEMENT]
[ACID]

ACHIEVEMENT, ACHIEVEMENTS
ACID

Table9: A randomly selected set of examples of stem-based clustering, using morphol ogical analysisprovided
by the’ morphe’ program.

vocabulary top 20,000 words of WSJ corpus
training set 300KW (WSJ)

test set 325KW (WSJ)

unigram perplexity 903

model

word self-triggers

class sdlf-triggers

ME constraints:

unigrams 9017 9017
word self-triggers 2658 —
class sdlf-triggers — 2409
training-set perplexity 745 740
test-set perplexity 888 870

Table 10: Word sdlf-triggers vs. class sdlf-triggers, in the presence of unigram constraints. Stem-based
clustering does not help much.

Surprisingly, stem-based clusteringresulted inonly a2% improvement intest-set perplexity inthiscontext.
One possiblereason isthe small amount of training data, which may not be sufficient to capture long-distance
correlations among the less common members of the clusters. The experiment was therefore repeated, this
time training on 5 million words. Results are summarized in table 11, and are even more disappointing.
The class-based modd is actualy dlightly worse than the word-based one (though the difference appears
insignificant).

Why did stem-based clustering fail to improve perplexity? We did not find a satisfactory explanation.
One possibility is as follows. Classtriggers are alegedly superior to word triggersin that they aso capture
within-class, cross-word effects, such astheeffect “ACCUSE” hason “ACCUSED”. But stem-based clusters
often consist of one common word and several much less frequent variants. In these cases, all within-cluster
cross-word effects include rare words, which means their impact is very small (recall that a trigger pair’'s
utility depends on the frequency of both its words).
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vocabulary top 20,000 words of WSJ corpus
training set 5MW (WSJ)
test set 325KW (WSJ)
unigram perplexity 948
model word self-triggers | class self-triggers
ME constraints:
unigrams 19490 19490
word self-triggers 10735 —
class sdlf-triggers — 12298
training-set perplexity 735 733
test-set perplexity 756 758

Table 11: Word self-triggersvs. class sdlf-triggers, using more training data than in the previous experiment
(table 10). Results are even more disappointing.

5.5 LongDistance N-grams

In section 2.4 We showed that there is quite a bit of information in bigrams of distance 2, 3 and 4. But in
section 3.1, we reported that we were unable to benefit from thisinformation using linear interpolation. With
the Maximum Entropy approach, however, it might be possibleto better integrate that knowledge.

5.5.1 LongDistance N-gram Constraints

Long distance N-gram constraints are incorporated into the ME formalism in much the same way as the
conventiond (distance 1) N-grams. For example, the constraint function for distance-j bigram {w, w»} is

f fag ey (0 0) = { 5 o = v W= v 37)
and its associated constraint is
Xh: ﬁ(h)XW: Pawihfll, . (hw) = EFE 1. (38)
where E[f P\}VlyWZ}] isthe expectation of f P\}\’LWZ} inthe training data:
Bl 1 € % Yoot ). (39)

(h,w) ETRAINING

Similarly for the trigram constraints, and similarly for “complemented N-grams” (section 5.1.2).

5.6 AddingDistance-2 N-gramsto the Model

Themodel described in section 5.3 was augmented to includedistance-2 bigramsand trigrams. Three different
systems were trained, on different amounts of training data: 1 millionwords, 5 millionwords, and 38 million
words (the entire WSJ corpus). The systems and their performance are summarized in table 12. The trigram
model used as baseline was described in section 5.3. Training timeis reported in ’'apha-days which isthe
amount of computation done by a DEC/Alpha 3000/500 workstation in 24 hours.

The 38MW system was different than the others, in that it employed high thresholds (cutoffs) on the
N-gram constraints: distance-1 bigrams and trigrams were included only if they occurred at least 9 timesin
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vocabulary top 20,000 words of WSJ corpus
test set 325KW
training set IMW | 5MW 38MW*
trigram perplexity (baseline) 269 173 105
ME constraints:
unigrams 13130 | 18421 19771
bigrams 65397 | 240256 327055
trigrams 79571 | 411646 427560
distance-2 bigrams 67186 | 280962 651418
distance-2 trigrams 65600 | 363095 794818
word triggers (max 3/word) | 20209 | 35052 43066
training time (a pha-days) <1 12 ~ 200
test-set perplexity 203 123 86
perplexity reduction 24% 29% 18%

Table 12: A Maximum Entropy model incorporating N-gram, distance-2 N-gram and trigger constraints. The
38MW system used far fewer parameters than the baseline, since it employed high N-gram thresholds to
reduce training time.

the training data. Distance-2 bigrams and trigrams were included only if they occurred at least 5 times in
the training data. This was done to reduce the computationa 1oad, which was quite severe for a system this
size. The cutoffs used for the conventional N-grams were higher than those applied to the distance-2 N-grams
because it was anticipated that the information lost from the former knowledge source will be re-introduced
later, at least partialy, by interpolation with the conventional trigram model. The actual values of the cutoffs
were chosen so as to make it possible to finish the computation in 2-3 weeks.

As can be observed, theMaximum Entropy model issignificantly better thanthetrigrammodel. Itsrelative
advantage seems greater with more training data. With the large (38MW) system, practical consideration
required imposing high cutoffs on the ME model, and yet its perplexity is still significantly better than that of
the baseline. Thisis particularly notable because the ME model uses only onethird the number of parameters
used by the trigram model (2.26 millionvs. 6.72 million).

To assess the rel ative contribution of the variousinformation sources employed in the above experiments,
Maximum Entropy models were constructed based on various subsets of these sources, using the IMW
system. Within each information source, the type and number of constraints are the same as in table 12.
Results are summarized in table 13.

vocabulary top 20,000 words of WSJ corpus
training set IMW
test set 325KW
perplexity %change
trigram (basdline) 269 —
ME models:
dist.-1 N-grams + dist.-2 N-grams 249 -8%
dist.-1 N-grams + word triggers 208 -23%
dist.-1 N-grams + dist.-2 N-grams + word triggers 203 -24%

Table 13: Perplexity of Maximum Entropy models for various subsets of the information sources used in
table 12. With IMW of training data, information provided by distance-2 N-gramsis largely overlapped by
that provided by triggers.
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The most notable result is that, in the IMW system, distance-2 N-grams reduce perplexity by 8% by
themselves, but only by 1-2% when added to the trigger constraints. Thus the information in distance-2
N-grams appears to be largely overlapped by that provided by the triggers. In contrast, distance-2 N-grams
resulted in an additional 6% perplexity reductionin the 5SMW system (see tables 8 and 12).

5.7 Maximum Entropy asa Knowledge I ntegrator

The experiments reported above clearly demonstrate our ability to significantly improve on the baseline
trigram by integrating conventional N-grams, distance-2 N-grams and long distancetriggersusing alog-linear
model and the Maximum Entropy principle. But how much of the reduction in perplexity is actually dueto
using the ME approach, as opposed to arising from the alternative knowl edge sources themselves? How much
improvement could have been achieved by integrating the same knowledge sources in a different, perhaps
less computationally intensive way?

In section 3.1, we discussed two earlier attempts to do so. In the first, we used linear interpolation to
combine the conventional N-gram with all long-distance N-grams up to distance 4. Each of the 4 N-gram
component models was trained on the same data (1 million words), and the interpolation weights were
optimized using heldout data. Thisresulted in a consistently trained model. And yet, perplexity was reduced
by only 2% over the baseline, as compared to the 8% reduction in table 13.

In our second attempt ([Rosenfeld and Huang 92]), we combined evidence from multiple triggers using
severa variants of linear interpolation, then interpolated the result with a conventional backoff trigram. This
resulted in some 10% reduction in perplexity, as compared to the respective 23% reduction using the ME
framework. Admittedly, thislast comparisonisnot aswell controlled asthepreviousone, sincetheinteractions
among the varioustriggerswere not consistently trained in the linear interpolation mode (thoughthetriggers
themselves were). It isnot clear how the triggers’ interaction could have been modeled consistently without
an exponential growth in the number of parameters. In any case, this only serves to highlight one of the
biggest advantages of the ME method: that it facilitates the consistent and straightforward incorporation of
diverse knowledge sources.

6 Adaptation in Language Modeling

6.1 AdaptationVs. Long Distance Modeling

This work grew out of a desire to improve on the conventional trigram language model, by extracting
information from the document’s history. This approach is often termed “long-distance modeling”. The
trigger pair was chosen as the basi ¢ information bearing element for that purpose.

But triggers can be aso viewed as vehicles of adaptation. As the topic of discourse becomes known,
triggers capture and convey the semantic content of the document, and adjust the language model so that
it better anticipates words that are more likely in that domain. Thus the models discussed so far can be
considered adaptive as well.

Thisduality of long-distancemodeling and adaptive modelingisquitestrong. Thereisno clear distinction
between thetwo. In one extreme, atrigger model based on the history of the current document can be viewed
as a static (non-adaptive) probability function whose domain is the entire document history. In another
extreme, atrigram model can be viewed as a bigram which isadapted at every step, based on the penultimate
word of the history.

Fortunately, this type of distinction is not very important. More meaningful is classification based on
the nature of the language source, and the relationship between the training and test data. In this section
we propose such classification, and study the adaptive capabilities of Maximum Entropy and other modeling
techniques.
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6.2 Three Paradigms of Adaptation

The adaptation discussed so far was the kind we call within-domain adaptation. In this paradigm, a hetero-
geneous language source (such as WS)J) is treated as a complex product of multiple domains-of-discourse
(“sublanguages’). The god is then to produce a continuously modified model that tracks sublanguage
mixtures, sublanguage shifts, style shifts, etc.

In contrast, a cross-domain adaptation paradigm is one in which the test data comes from a source to
which the language model has never been exposed. The most salient aspect of this case is the large number
of out-of-vocabulary words in the test data, as well as the high proportion of new bigrams and trigrams.

Cross-domain adaptation is most important in cases where no data from the test domain is available for
training the system. But in practice thisrarely happens. More likely, alimited amount of training data can
be obtained. Thus a hybrid paradigm, limited-data domain adaptation, might be the most important one for
real-world applications.

6.3 Within-Domain Adaptation

Maximum Entropy models are naturally suited for within-domain adaptation®. This is because constraints
aretypicaly derived from thetraining data. The ME model integratesthe constraints, making the assumption
that the same phenomena will hold in the test data as well.

But thislast assumptionisalso alimitation. Of al thetriggers selected by the mutua information measure,
salf-triggers were found to be particularly prevalent and strong (see section 5.2.2). This was true for very
common, as well as moderately common words. It is reasonable to assume that it aso holds for rare words.
Unfortunately, Maximum Entropy triggers as described above can only capture self-correlationsthat are well
represented in the training data. Aslong as the amount of training dataisfinite, self correlation among rare
wordsisnot likely to exceed the threshold. To capture these effects, the ME model was supplemented with a
“rare words only” unigram cache, to be described in the next subsection.

Another source of adaptive information is self-correlations among word sequences. In principle, these
can be captured by appropriate constraint functions, describing trigger rel ations among word sequences. But
our implementation of triggerswas limited to singleword triggers. To capture these correlations, conditional
bigram and trigram caches were added, to be described subsequently.

N-gram cacheswerefirst reported by [Kuhn 88] and [Kupiec 89]. [Kuhn and De Mori 90][Kuhn and De Mori 90b]
employed a POS-based bigram cache to improve the performance of their static bigram. [Jelinek et al. 91]
incorporated a trigram cache into a speech recognizer and reported reduced error rates.

6.3.1 Sdlective Unigram Cache

In a conventional document based unigram cache, al words that occurred in the history of the document are
stored, and are used to dynamically generate a unigram, which isin turn combined with other language model
components.

The motivation behind a unigram cache is that, once a word occurs in a document, its probability of
re-occurring istypically greatly elevated. But the extent of this phenomenon depends on the prior frequency
of theword, and ismost pronounced for rare words. The occurrence of acommon word like“THE” provides
little new information. Put another way, the occurrence of arare word ismore surprising, and hence provides
more information, whereas the occurrence of a more common word deviates |ess from the expectations of a
static model, and therefore requires a smaller modification toit.

Bayesian methods may be used to optimally combine the prior of aword with the new evidence provided
by its occurrence. As arough approximation, a selective unigram cache was implemented, where only rare
wordsarestored inthe cache. A wordisdefined asrarerelativeto athreshold of static unigram frequency. The
exact value of the threshold was determined by optimizing perplexity on unseen data. Inthe WSJ corpus, the
optimal threshold was found to be in the range 10~3-10~4, with no significant differences within that range.

8Although they can be modified for cross-domain adaptation as well. See next subsection.
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This scheme proved more useful for perplexity reduction than the conventional cache. This was especialy
true when the cache was combined with the ME model, since the latter captures well self correlations among
more common words (see previous section).

6.3.2 Conditional Bigram and Trigram Caches

In a document based bigram cache, all consecutive word pairs that occurred in the history of the document
are stored, and are used to dynamically generate a bigram, which is in turn combined with other language
model components. A trigram cache issimilar but is based on all consecutive word triples.

An dternative way of viewing a bigram cache is as a set of unigram caches, one for each word in the
history. At most one such unigram is consulted at any onetime, depending on theidentity of thelast word of
the history. Viewed thisway, it isclear that the bigram cache should contributeto the combined model only if
thelast word of the history isa (non-selective) unigram“cache hit”. In all other cases, the uniformdistribution
of the bigram cache would only serve to flatten, hence degrade, the combined estimate. We therefore chose
to use a conditional bigram cache, which has a non-zero weight only during such a“hit”.

A similar argument can be applied to the trigram cache. Such a cache should only be consulted if the
last two words of the history occurred before, i.e. the trigram cache should contribute only immediately
following a bigram cache hit. However, Experimentation with such a trigram cache, constructed similarly
to the conditional bigram cache, revealed that it contributed little to perplexity reduction. This is to be
expected: every bigram cache hit is aso a unigram cache hit. Therefore, the trigram cache can only refine
the distinctionsalready provided by the bigram cache. A document’s history istypically small (225 wordson
average in the WSJ corpus). For such a modest cache, the refinement provided by the trigram is small and
statistically unreliable.

Another way of viewing the selective bigram and trigram caches isasregular (i.e. hon-selective) caches,
which arelater interpolated using weightsthat depend on the count of their context. Then, zero context-counts
force respective zero weights.

6.3.3 Combiningthe Components

To maximize adaptive performance, the Maximum Entropy model was supplemented with the unigram and
bigram caches described above. A conventiona trigram (the one used as a basgline) was aso added. This
was especialy important for the 38MW system, since it employed high cutoffs on N-gram constraints. These
cutoffs effectively made the ME model “blind” to information from N-gram events that occurred eight or
fewer times. The conventional trigram reintroduced some of that information.

The combined model was achieved by consulting an appropriate subset of the above four models. At any
one time, the four component model s were combined linearly. But the weights used were not fixed, nor did
they follow alinear pattern over time.

Since the Maximum Entropy model incorporated information fromtrigger pairs, itsrelative weight should
be increased with the length of the history. But since it also incorporated new information from distance-2
N-grams, it isuseful even at the very beginning of a document, and its weight should not start at zero.

The Maximum Entropy model was therefore started with aweight of ~0.3, whichwas gradually increased
over the first 60 words of the document, to ~0.7. The conventional trigram started with a weight of ~0.7,
and was decreased concurrently to ~0.3. The conditiona bigram cache had a non-zero weight only during
a cache hit, which allowed for a relatively high weight of ~0.09. The selective unigram cache had a weight
proportional to the size of the cache, saturating at ~0.05. Thus, in aformula

min[0.3+0.4-[|h|/60] , 0.7]
max[0.7 — 0.4 - [|h|/60] , 0.3]
min[0.001 - |selective_unigram_cache| , 0.050]

AME

/\trigram

A unigram_cache

_ 0.09 if last wordinhaso occurred earlier inh
)\bigram_cache - 0 otherwise (40)
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Thethreshold for wordsto enter the sel ective unigram cache was a static unigram probability of at least 0.001.
The weightswere always normalized to sumto 1.

Whilethe genera wei ghting scheme was chosen based on the consi derati ons discussed above, the specific
values of the weights were chosen by minimizing perplexity of unseen data.

6.3.4 Resultsand Analysis

Table 14 summarizes perplexity (PP) performance of variouscombinationsof thetrigrammodel, the M aximum
Entropy model (ME), and the unigram and bigram caches, as follows:

vocabulary top 20,000 words of WSJ corpus
test set 325KW
training set IMW 5MW 38MW

PP  %change | PP %change | PP %change
trigram (baseline) 269 — 173 — 105 —
trigram + caches 193 -28% 133 -23% 88 -17%
Maximum Entropy (ME): | 203 -24% 123 -29% 86 -18%
ME + trigram: 191 -29% 118 -32% 75 -28%
ME + trigram + caches: 163 -39% 108 -38% 71 -32%

Table 14: Best within domain adaptation perplexity (PP) results. Note that the adaptive model trained on 5
million wordsis almost as good as the baseline model trained on 38 million words.

trigram: Thisisthe static perplexity, which serves as the baseline.

trigram + caches: These experiments represent the best adaptation achievable without the Maximum En-
tropy formalism (using a non-sel ective unigram cache resultsin aslightly higher perplexity). Note that
improvement dueto the caches isgreater with lessdata. This can be explained asfollows: The amount
of information provided by the caches is independent of the amount of training data, and is therefore
fixed across the three systems. However, the IMW system has higher perplexity, and therefore the
relative improvement provided by the caches is greater. Put another way, models based on more data
are better, and therefore harder to improve on.

Maximum Entropy: These numbers are reproduced from table 12. The relative advantage of the “pure”
Maximum Entropy model seems greater with more training data (except that the 38MW system is
penalized by its high cutoffs). Thisis because ME uses constraint functions to capture correlationsin
the training data. The more data, the more N-gram and trigger correlations exist that are statistically
reliable, and the more constraints are employed. This is aso true with regard to the conventional
N-gramsinthe basdlinetrigram moddl. The differenceisthusinthe number of distance-2 N-gramsand
trigger pairs.

ME + trigram: When the Maximum Entropy mode is interpolated with the conventional trigram, the most
significant perplexity reduction occurs in the 38BMW system. This is because the 38MW ME model
employed high N-gram cutoffs, and was thus “blind” to low count N-gram events. Interpolation with
the conventional trigram reintroduced some of that information, although not in an optimal form (since
linear interpolationis suboptimal) and not for the distance-2 N-grams.

ME + trigram + caches. These experiments represent the best adaptive scheme we achieved. As before,
improvement due to the caches is smaller with more data. Compared with the trigram+caches experi-
ment, the addition of the ME component improves perplexity by arelative 16% for the IMW system,
and by areative 19% for the 5SMW and 38MW systems.
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Toillustratethe success of our within-domain adaptati on scheme, notethat the best adaptive model trained
on 1 million words is better than the baseline model trained on 5 million words, and the best adaptive model
trained on 5 million words is amost as good as the baseline model trained on 38 million words. Thisis
particularly noteworthy because the amount of training data available in various domainsis often limited. In
such cases, adaptation provides handy compensation.

6.4 Cross-Domain Adaptation
6.4.1 TheNeed for Cross-Domain Adaptation

Under the cross-domain adaptation paradigm, the training and test data are assumed to come from different
sources. When this happens, the result is a significant degradation in language modeling quality. The further
apart the two language sources are, the bigger the degradation. This effect can be quite strong even when the
two sources are supposedly similar. Consider the examplein table 15. Training data consists of articles from
the Wall Street Journal (1987-1989). Test data is made of AP wire stories from the same period. The two
sources can be considered very similar (especially relative to other sources such as technical literature, fine
literature, broadcast etc.). And yet, perplexity of the AP dataistwicethat of WSJ data.

vocabulary top 20,000 words of WSJ corpus

training set WSJ (38MW)

test set WSJ (325KW) | AP (420KW)
OQV rate 2.2% 3.9%
trigram hit rate 60% 50%
trigram perplexity 105 206

Table 15: Degradation in quality of language modeling when the test dataisfrom a different domain than the
training data. The trigram hit ratio isrelativeto a*“compact” trigram .

A related phenomenon in cross-domain modeling is the increased rate of Out-Of-Vocabulary words. In
the WSJ-AP example, cross-domain OOV rateisamost doublethewithin-domainrate. Similarly, the rate of
new bigrams and trigrams al so increases (here reported by the complement measure, trigram hit rate, relative
to a“compact” trigram, where training-set singletonswere excluded).

Given these phenomena, it follows that the relative importance of caches is greater in cross-domain
adaptation. This is because here one must rely less on correlations in the training-data, and more on
correlationsthat are assumed to be universal (mostly self-correlations).

Table 16 shows the improvement achieved by the ME model and by the interpolated model under the
cross-domain paradigm. As was predicted, the contribution of the ME component is dightly smaller than in
the within-domain case, and the contribution of the caches is greater.

A note about triggers and adaptation: Triggers are generally more suitable for within-domain adaptation,
because they rely on training-set correlations. But classtriggerscan still be used for cross domain adaptation.
This is possible if correlations among classes is similar between the training and testing domains. If so,
membership in the classes can be modified to better match the test domain. For example, (CEASEFIRE —
SARAJEVO) may be a good trigger pair in 1995 data, whereas (CEASEFIRE — IRAQ) may be useful in
1991. Therefore, (CEASEFIRE — [embattled region]) can be adjusted appropriately and used for both. The
same construct can be used for N-gram constraints ([Rudnicky 94]). Automatically defining useful concepts
such as [embattled region] is, of course, a difficult and open problem.

6.5 Limited-Data Domain Adaptation

Under the limited-data domain adaptation paradigm, moderate amounts of training data are available from
the test domain. Larger amounts of data may be available from other, “outside’, domains. This situationis
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vocabulary top 20,000 words of WSJ corpus
training data 38MW (WSJ)
test data 420KW (AP)
trigram (baseline)

perplexity 206
Maximum Entropy

perplexity 170

perplexity reduction 17%
ME + trigram + caches

perplexity 130

perplexity reduction 37%

Table 16: Perplexity improvement of Maximum Entropy and interpol ated adaptive models under the cross-
domain adaptation paradigm. Compared to the within-domain adaptation experiment, the impact of the ME
component is dightly smaller, while that of the caches is greater.

often encountered in real-world applications.

How best to integrate the more detailed knowledge from the outside domain with the less detailed
knowledge in the test domain is still an open question. Some form of interpolation seems reasonable. Other
ideas are a so being pursued ([Rudnicky 94]. Here wewould only liketo establish abasdine for futurework.
In the following model, the only information to come from the outside domain (WSJ) isthe list of triggers.
This is the same list used in all the ME models reported above. All training, including training of these
triggers, was done using 5 million words of AP wire data.

Table 17 shows the results. Compared with the within-domain case, the impact of the ME component is
somewhat diminished, although it is still strong.

vocabulary top 20,000 words of WSJ corpus
trigger derivation data 38MW (WSJ)
training data 5MW (AP)
test data 420KW (AP)
trigram (baseline)

perplexity 170
Maximum Entropy

perplexity 135

perplexity reduction 21%
ME + trigram + caches

perplexity 114

perplexity reduction 33%

Table 17: Perplexity improvement of Maximum Entropy and interpol ated adaptive model s under the limited-
data domain adaptation paradigm. Compared with the within-domain case, the impact of the ME component
is somewhat diminished.

7 Adaptive Modeling and Speech Recognition Accuracy

Perhaps the most prominent use of language modeling is in automatic speech recognition. In this section, we
report on the effect of our improved models on the performance of SPHINX-II, Carnegie Mellon’s speech
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recognition system. A more detailed exposition, including a discussion of LM interface issues, can be found
in [Rosenfeld 94b, chapter 7].

7.1 Within-Domain Adaptation

To evaluate recognition error rate reduction under the within-domain adaptation paradigm, we used the
ARPA CSR (Continuous Speech Recognition) S1 evaluation set of November 1993 ([Kubaaet al. 94],
[Pellet et al. 94], [Hwang et al. 94]). It consisted of 424 utterances produced in the context of complete long
documents by two male and two female speakers. The version of SPHINX-II ([Huang et al. 93]) used for
this experiment had gender-dependent 10K senone acoustic models (see [Huang et al. 93c]). In addition to
the ~20,000 words in the standard WSJ lexicon, 178 out-of-vocabulary words and their correct phonetic
transcriptionswere added in order to create closed vocabulary conditions. The forward and backward passes
of SPHINX Il were first run to create word lattices, which were then used by three independent best-first
passes. The first such pass used the 38MW gtatic trigram language model, and served as the baseline. The
other two passes used the interpolated adaptive language model, which was based on the same 38 million
words of training data. The first of these two adaptive runs was for unsupervised word-by-word adaptation,
in which the recognizer’s output was used to update the language model. The other run used supervised
adaptation, in which the recognizer’'s output was used for within-sentence adaptation, while the correct
sentence transcription was used for across-sentence adaptation. Results are summarized in table 18.

language model word error rate | % change
trigram (baseline) 19.9% —
unsupervised adaptation 17.9% -10%
supervised adaptation 17.1% -14%

Table 18: Word error rate reduction of the adaptive language model over a conventional trigram model.

7.2 Cross-Domain Adaptation

To test error rate reduction under the cross-domain adaptation paradigm, we used the cross-domain system
reported in section 6.4. 206 sentences, recorded by 3 male and 3 female speakers, were used as test data
Results are reported in table 19. As was expected from the perplexity experiments, relative improvement is
smaller than that achieved under the within-domain adaptation paradigm.

training data 38MW (WSJ)

test data 206 sentences (AP)
language model word error rate | % change
trigram (baseline) 22.1% —
supervised adaptation 19.8% -10%

Table 19: Word error rate reduction of the adaptive language model over aconventional trigram model, under
the cross-domain adaptation paradigm.

For a more detailed discussion of recognition experiments, see [Rosenfeld 94b].
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7.3 Perplexity and Recognition Error Rate

The ME-based adaptive language model that was trained on the full WSJ corpus (38 million words) reduced
perplexity by 32% over the basdlinetrigram. The associated reductionin recognitionword error rate was 14%
under themost favorable circumstances. This doesindeed conform to the empirically observed “square-root”
law, which states that improvement in error rate is often approximately the square root of theimprovement in
perplexity (+/0.68 = 0.82 =~ 0.86). Still, why istheimpact on error rate not any greater?

Perplexity does not take into account acoustic confusability, and does not pay specia attention to outliers
(tails of the distribution), where more recognition errors occur. But in addition to these deficiencies another
factor isto blame. A language modd affects recognition error rate through its discriminative power, namely
its ability to assign higher scores to hypotheses that are more likely, and lower scores to those that are less
likely. But perplexity is affected only by the scores assigned by the language model to likely hypotheses —
those that are part of a test set, which typicaly consists of “trug” sentences. Thus a language model that
overestimates probabilitiesof unlikely hypothesesisnot directly penalized by perplexity. The only penaty is
indirect, since assigning high probabilitiesto some hypotheses means a commensurate reduction in the total
probability assigned to al other hypotheses. If overestimationis confined to asmall portion of the probability
space, the effect on perplexity would be negligible. Yet such amode can giveriseto significant recognition
errors, because the high scores it assign to some unlikely hypotheses may cause the latter to be selected by
the recognizer.
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A The ARPA WSJ Language Cor pus

Thefirst ARPA CSR Wall Street Journal corpus consists of articles published inthe Wall Street Journal from
December 1986 through November 1989. The original data was obtained, conditioned and processed for
linguistic research by the Association for Computationa Linguistics' Data Collection Initiative (ACL/DCI).
The corpus was chosen by the ARPA speech recognition community to be the basis for its CSR (Continuous
Speech Recognition) common eva uation project. Subsequently, most of the data was further processed by
Doug Paul at MIT’s Lincoln Labs [Paul and Baker 92], and conditioned for use in speech recognition. This
included transforming many common text constructs to the way they are likely to be said when read aoud
(e.g. “$123.45" might be transformed into “A hundred and twenty three dollars and forty five cents’), some
quality filtering, preparation of various standard vocabul aries, and much more. Werefer to thisdataset asthe
“WSJ corpus.

The version of this corpus used in the experiments described in this paper is the one where punctuation
marks were assumed not to be verbalized, and were thusremoved from the data. Thiswasknown asthe*nvp”
(non-verbalized-punctuation) condition. In thisform, the WSJ corpus contained some 41.5 million words.

All our experiments (except where stated otherwise) used the 200’ vocabulary, which was derived as
the most frequent 19,979 non-vp words in the data. It includes al words that occurred at least 60 timesin
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that corpus (and 5 that occurred 59 times). All other words were mapped to a unique symbol, “<UNK>",
which was made part of the vocabulary, and had a frequency of about 2.2%. The pseudo word “</s>"
was added to the vocabulary to designate end-of-sentence. The pseudo word “<s>" was used to designate
beginning-of -sentence, but was not made part of the vocabulary. Following are the top and bottom of the
vocabulary, in order of descending frequency, together with the words' count in the corpus:

THE 2322098
</s> 1842029
OF 1096268
TO 1060667
A 962706
AND 870573
I'N 801787
THAT 415956
FOR 408726
ONE 335366
IS 318271

SAI D 301506
DOLLARS 271557
I T 256913

ARROW S 60
ARDUCUS 60
APPETI TES 60
ANNAPCLI S 60
ANGST 60
ANARCHY 60
ANMASS 60
ALTERATI ONS 60
AGCRAVATE 60
AGENDAS 60
ADAGE 60
ACQUAI NTED 60
ACCREDI TED 60
ACCELERATOR 60
ABUSERS 60
WRACKED 59
WOLTERS 59
W MP 59
VESTI NGHOUSE' S 59
WAl ST 59

A fraction of the WSJ corpus (about 10%), in paragraph units, was set aside for acoustic training and for
system development and evaluation. The rest of the data was designated for language model devel opment by
the ARPA sites. It consisted of some 38.5 million words.

From this set, we set aside about 0.5 million words for language model testing, taken from two separate
time periods well within the global time period (July 1987 and January-February 1988). The remaining data
are the 38 million words used in the large models. Smaller model s were trained on appropriate subsets.

Our language training set had the following statistics:

e ~ 87,000 article.
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e ~ 750,000 paragraphs.
e ~ 1.8 million sentences (only 2 sentences/paragraph, on average).

e ~ 38 million words (some 450 word</article, on average).

Most of the data were well-behaved, but there were some extremes:

e maximum number of paragraphs per article: 193.
e maximum number of sentences per paragraph: 51.
e maximum number of words per sentence: 257.

e maximum number of words per paragraph: 1483.

e maximum number of words per article: 6738.

Following are all the bigrams which occurred more than 65,535 timesin the corpus:

318432 <UNK> </ s>
669736 <UNK> <UNK>
83416 <UNK> A
192159 <UNK> AND
111521 <UNK> I N
174512 <UNK> OF
139056 <UNK> THE
119338 <UNK> TO
170200 <s> <UNK>
66212 <s> BUT
75614 <s> |IN
281852 <s> THE
161514 A <UNK>
148801 AND <UNK>
76187 FOR THE
72880 | N <UNK>
173797 I N THE
110289 M LLI ON DOLLARS
144923 MR <UNK>
83799 NI NETEEN EI GHTY
153740 OF <UNK>
217427 OF THE
65565 ON THE
366931 THE <UNK>
127259 TO <UNK>
72312 TO THE

89184 U. S.

The most frequent trigram in the training data occurred 14,283 times. It was:

<s> | N THE
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