
“Industrial Robot, An International Journal”, Emerald Group Publishing Limited, Volume 32, Number 6, 2005

Robot-by-voice: Experiments on commanding an
industrial robot using the human voice

J. Norberto Pires
Mechanical Engineering Department

and Mechanical Engineering Research Center
(a research center from the Portuguese Foundation for Science and Technology)

University of Coimbra, Portugal

1. Structured Abstract

Purpose
This paper reports a few results of an ongoing research project that aims to
explore ways to command an industrial robot using the human voice. This feature
can be interesting with several industrial, laboratory and clean-room applications,
where a close cooperation between robots and humans is desirable.

Methodology / approach
A demonstration is presented using two industrial robots and a personal computer
(PC) equipped with a sound board and a headset microphone. The demonstration
was coded using the Microsoft Visual Basic and C# .NET 2003 and associated with
two simple robot applications: one capable of picking-and-placing objects and
going to predefined positions, and the other capable of performing a simple linear
weld on a work-piece. The speech recognition grammar is specified using the
grammar builder from the Microsoft Speech SDK 5.1.

The paper also introduces the concepts of text-to-speech translation and voice
recognition, and shows how these features can be used with applications built
using the Microsoft .NET framework.

Findings
Two simple examples designed to operate with a state-of-the-art industrial robot
manipulator are then built to demonstrate the applicability to laboratory and
industrial applications. The paper is very detailed in showing implementation
aspects enabling the reader to explore immediately from the presented concepts
and tools. Namely, the connection between the PC and the robot is explained in
detail since it was built using a RPC socket mechanism completely developed from
the scratch.

Practical implications
Finally, the paper discusses application to industrial cases where close
cooperation between humans and robots is necessary.

Originality / value of the paper
The presented code and examples, along with the fairly interesting and reliable
results, indicate clearly that the technology is suitable for industrial utilization.

Keywords: Speech recognition, industrial robotics, distributed software.

“Industrial Robot, An International Journal”, Emerald Group Publishing Limited, Volume 32, Number 6, 2005

2. Introduction
Talking to machines is a thing normally associated with science fiction movies and
cartoons and less with current industrial manufacturing systems. In fact, most of
the papers about speech recognition start with something related with artificial
intelligence, or a science fiction movie, or a robot used in a movie, etc., where
machines talk like humans, understand the complex human speech without
problems. Nevertheless, industrial manufacturing systems would benefit very
much from speech recognition for human-machine interface (HMI) even if the
technology is not so advanced. Gains in terms of autonomy, efficiency and agility
seem evident. The modern world requires better products at lower prices,
requiring even more efficient manufacturing plants because the focus is in
achieving better quality products, using faster and cheaper procedures. This
means autonomy, having systems that require less operator intervention to
operate normally, better human-machine interfaces and cooperation between
humans and machines sharing the same workspace as real co-workers.

The final objective is to achieve, in some cases, semi-autonomous systems [1],
i.e., highly automated systems that require only minor operator intervention. In
many industries, production is closed tracked in any part of the manufacturing
cycle, which is composed by several in-line manufacturing systems that perform
the necessary operations, transforming the raw materials in a final product. In
many cases, if properly designed, those individual manufacturing systems require
simple parameterization to execute the tasks they are designed to execute. If
that parameterization can be commanded remotely by automatic means from
where it is available, then the system becomes almost autonomous in the sense
that operator intervention is reduced to the minimum and essentially related with
small adjustments, error and maintenance situations [1]. In other cases, a close
cooperation between humans and machines is desirable although very difficult to
achieve, due to limitations of the actual robotic and automation systems.

The above described scenario puts focus on HMI, where speech interfaces play a
very important role because the manufacturing systems efficiency will increase if
the interface is more natural or similar to the human way of commanding things.
Nevertheless, speech recognition is not a common feature among industrial
applications, namely because:

1. The technologies of speech recognition and text-to-speech are relatively
new, although they are already robust enough to be used with industrial
applications;

2. The industrial environment is very noisy which puts enormous difficulties
to automatic speech recognition systems;

3. The industrial systems weren’t design to incorporate these types of
features, and usually don’t have powerful computers especially dedicated
to HMI.

Automatic Speech Recognition (ASR) is commonly described as converting speech
to text. The reverse process, in which text is converted to speech (TTS), is known
as speech synthesis. Speech synthesizers often produce results that are not very
natural sounding. Speech synthesis is different from voice processing, which
involves digitizing, compressing (not always), recording, and then playing back
snippets of speech. Voice processing results are very natural sounding, but the
technology is limited in flexibility and is disk storage-space-intensive compared to
speech synthesis.

Speech recognition developers are still searching for the perfect human-machine
interface, a recognition engine which understands any speaker, interprets natural
speech patterns, remains impervious to background noise, and has an infinite

“Industrial Robot, An International Journal”, Emerald Group Publishing Limited, Volume 32, Number 6, 2005

vocabulary with contextual understanding. However, practical product designers,
OEMs, and VARs can indeed use today's speech recognition engines to make
major improvements to today's markets and applications. Selecting such an
engine for any product requires understanding how the speech technologies
impact performance and cost factors, and how these factors fit in with the
intended application.

That is the approach used in this technical paper. An automatic speech
recognition system is selected and used for the purpose of commanding a generic
industrial manufacturing cell. The concepts are explained in detail and two test
case examples are presented and discussed in a way to show that if certain
measures are taken, ASR can be used with great success even with industrial
applications. Noise is still a problem, but using a short command structure with a
specific word as pre-command string it is possible to reduce enormously the noise
effects. The system presented in this paper uses this strategy and was tested
with a simple noiseless pick-and-place example, but also with a simple welding
application where considerable noise is present.

3. Automatic speech recognition system and strategy
From the several continuous speech ASR technologies available, based on
personal computers, the Microsoft Speech Engine [2] was selected because it
integrates very well with the operating systems we use for HMI, manufacturing
cell control and supervision (Windows XP/NT/2000). The Microsoft Speech
Application Programming Interface (SAPI) was also selected, along with the
Microsoft’s Speech SDK (version 5.1), to develop the speech and text to voice
software applications [2]. This API provides a nice collection of methods and data
structures that integrate very well in the .NET 2003 framework [11], providing a
very interesting developing platform that takes advantage of the computing
power available from actual personal computers. Finally, the Microsoft’s SAPI 5.1
works with several ASR engines, which gives some freedom to developers to
choose the technology and the speech engine to use.

Grammars define the way the ASR recognizes the speech from the user. When a
sequence included in the grammar is recognized, the engine originates an event
that can be handled by the application to perform the planned actions. The SAPI
provides the necessary methods and data structures to extract the relevant
information from the generated event, so that proper identification and details are
obtained. There are three ways to define grammars: using XML files, using binary
configuration files (CFG) or using the grammar builder methods and data
structures. XML files are a good idea to define grammars if a compiler and
converter is available like in the SDK 5.1. In the examples provided in this paper,
the grammar builder methods were used to programmatically construct and
modify the grammar.

The strategy used here takes in consideration that there should be several robots
in the network, running different applications. In that scenario, the user needs to
identify the robot first, before sending the command. The following strategy is
used,

1. All commands start with the word “Robot”;
2. The second word identifies the robot by a number: one, two, etc.
3. The following words constitute the command and the parameters

associated with a specific command.

Consequently, the grammar used is composed by a “TopLevelRule” with a
predetermined initial state, i.e., the ASR system looks for the pre-command word

“Industrial Robot, An International Journal”, Emerald Group Publishing Limited, Volume 32, Number 6, 2005

“Robot” as a pre-condition to any recognizable command string. The above
mentioned sequence of words constitutes the second level rules, i.e, they are
used by the TopLevelRule and aren’t directly recognizable. A rule is defined for
each planned action. As a result, the following represents the defined syntax of
commands:

Robot number command parameter_i

where “robot” is the pre-command word, number represents the robot number,
command is the word representing the command to send to the robot, and
parameter_i are i words representing the parameters associated with the
command.

Another thing considered was safety. Each robot responds to “hello” commands,
and when asked to “initialize” the robots require voice identification of username
and password to be able to give to the user the proper access rights. Since the
robots are connected to the calling PC using a RPC sockets [3-5] mechanism, the
user must “initialize” the robot to start using its remote services, which means
that an RPC connection is open, and must “terminate” the connection when no
more actions are needed. A typical session would look like,

User: Robot one hello.
Robot: I am listening my friend.
User: Robot one initialize.
Robot: You need to identify to access my functions.
Robot: Your username please?
User: Robot one <username>.
Robot: Correct.
Robot: Your password please?
User: Robot one <password>.
Robot: Correct.
Robot: Welcome again <username>. I am robot one. Long time no see.

Sequence of commands here. Robot is under user control.

User: Robot one terminate.
Robot: See you soon <username>.

In the following sections, two simple examples are given to demonstrate how this
voice command mechanism is implemented, and how the robot controller
software is designed to allow these features.

4. Pick-and-place and robotic welding examples
The following examples take advantage of developments done in the Industrial
Robotics Laboratory, of the Mechanical Engineering Department of the University
of Coimbra around robot remote access for command and supervision [5-8].
Briefly, two industrial robots connected to an Ethernet network are used. The
robot controllers (ABB S4CPlus) are equipped with RPC servers that enable user
access from the network, offering several interesting services like variable access
services, IO access services, programs and files access services and system
status services [9]. The new versions of the ABB controller, named IRC5, are
equipped with a TCP/IP sockets API [9], enabling users to program and setup
TCP/IP sockets servers in the controller. For that reason, the ideas presented
here can be easily transported to the new IRC5 controller with no major change.

“Industrial Robot, An International Journal”, Emerald Group Publishing Limited, Volume 32, Number 6, 2005

If calls to those services are implemented in the client PC, it is fairly easy to
develop new services. The examples presented here include the ActiveX
PCROBNET2003 [5] that implement the necessary methods and data structures
(see Table 1) to access all the services available from the robot controller.

The basic idea is simple and not very different from the concept used when
implementing any remote server. If the system designer can access robot
program variables, then he can design his own services and offer them to the
remote clients. A simple SWITCH-CASE-DO cycle, driven by a variable controlled
from the calling client, would do the job:

switch (decision_1)
{

case 0: call service_0; break;
case 1: call service_1; break;
case 2: call service_2; break;
…
case n: call service_n; break;

}

Table 1. Methods and properties of the software component PCROB NET2003
[10]
Function Brief Description
open Opens a communication line with a robot (RPC client)
close Closes a communication line.
motor_on Go to Run State
motor_off Go to Standby State
prog_stop Stop running program
prog_run Start loaded program
prog_load Load named program
prog_del Delete loaded program
prog_set_mode Set program mode
prog_get_mode Read actual program mode
prog_prep Prepare Program to Run (Program Counter to begin)
pgmstate Get Program Controller State
ctlstate Get Controller State
oprstate Get Operational State
sysstate Get System State
ctlvers Get Controller Version
ctlid Get Controller ID
robpos Get current robot position
read_xxxx Read variable of type xxxx (there are calls for each type of

variable defined in RAPID [10])
read_xdata Read user defined variables
write_xxx Write variable of type xxxx (there are calls for each type of

variable defined in RAPID [10])
write_xdata Write user defined variables
digin Read digital input
digout Set digital output
anain Read analog input
anaout Set analog output

4.1. Pick-and-place example
For example, consider a simple pick-and-place application. The robot, equipped
with a two finger pneumatic gripper, is able to pick a piece from one position

“Industrial Robot, An International Journal”, Emerald Group Publishing Limited, Volume 32, Number 6, 2005

(called origin) and deliver it to other position (called final). Both positions are
placed on top of a working table (Figure 1).

Figure 1: Working table for the simple pick-and-place application.

The robot can be commanded to open/close the gripper, approach origin/final
position (positions 100 mm above of origin/final position, respectively), move to
origin/final position, and move to “home” (safe position away from the table.).
This is a very simple example, but sufficient to demonstrate the voice interface.
Figure 2 shows a simplified version of the server software running on the robot
controller.

To be able to send any of those commands using the human voice, the following
grammar was implemented:

TopLevelRule = “Robot” pre-command word
Rule 0 = “one hello” check if robot is there
Rule 1 = “one initialize” ask robot to initialize (open client)
Rule 2 = “one master” rule defining username “master”
Rule 3 = “one masterxyz” password of username “master”
Rule 4 = “one open” open the gripper
Rule 5 = “one close” close the gripper
Rule 6 = “one motor on” put robot in run state
Rule 7 = “one motor off” put robot stand-by state
Rule 8 = “one program run” start program
Rule 9 = “one program stopt” stop program
Rule 10 = “one approach origin” call service 94
Rule 11 = “one approach final” call service 93
Rule 12 = “one origin” call service 91
Rule 13 = “one final” call service 92
Rule 14 = “one home” call service 90
Rule 14 = “one terminate” release robot access (close client)

Final position

Origin position

ABB IRB2400

“Industrial Robot, An International Journal”, Emerald Group Publishing Limited, Volume 32, Number 6, 2005

PROC main()

TPErase; TPWrite "Example Server ...";
p1:=CRobT(\Tool:=trj_tool\WObj:=trj_wobj);
MoveJ p1,v100,fine,trj_tool\WObj:=trj_wobj;
decision1:=123;
WHILE TRUE DO

TEST decision1
CASE 90:

MoveJ home,v200,fine,tool0;
decision1:=123;

CASE 91:
MoveL final,v200,fine,tool0;
decision1:=123;

CASE 92:
MoveL origin,v200,fine,tool0;
decision1:=123;

CASE 93:
MoveJ Offs(final, 0,0,100),v200,fine,tool0;
decision1:=123;

CASE 94:
MoveJ Offs(origin, 0,0,100),v200,fine,tool0;
decision1:=123;

ENDTEST
ENDWHILE

ENDPROC

Figure 2: Simple pick-an-place server implemented in RAPID [10].

The presented rules were introduced into a new grammar using the grammar
builder included in the Microsoft Speech API (SAPI) [2]. The following (Figure 3)
shows how that can be done, using the Microsoft Visual Basic .NET2003 compiler.

TopRule = Grammar.Rules.Add("TopLevelRule", SpeechLib.SpeechRuleAttributes.SRATopLevel Or
SpeechLib.SpeechRuleAttributes.SRADynamic, 1)
ListItemsRule = Grammar.Rules.Add("ListItemsRule", SpeechLib.SpeechRuleAttributes.SRADynamic,
2)
AfterCmdState = TopRule.AddState
m_PreCommandString = "Robot"
TopRule.InitialState.AddWordTransition(AfterCmdState, m_PreCommandString, " ", , "", 0, 0)
AfterCmdState.AddRuleTransition(Nothing, ListItemsRule, "", 1, 1)
ListItemsRule.Clear()

ListItemsRule.InitialState.AddWordTransition(Nothing, "one hello", " ", , "one hello", 0, 0)
…
Grammar.Rules.Commit()
Grammar.CmdSetRuleState("TopLevelRule",SpeechLib.SpeechRuleState.SGDSActive)
RecoContext.State() = SpeechLib.SpeechRecoContextState.SRCS_Enabled

Figure 3: Adding grammar rules and compiling the grammar using SAPI in Visual
Basic .NET2003.

After committing and activating the grammar, the ASR listens for voice
commands and generates speech recognition events when a programmed
command is recognized. The correspondent event service routines execute the
commanded strings. Figure 4 shows the shell of the application built in Visual
Basic .NET 2003 to implement the voice interface for this simple example. Two
robots are listed in the interface. The robot executing the simple pick-and-place
example is robot one (named Rita).

“Industrial Robot, An International Journal”, Emerald Group Publishing Limited, Volume 32, Number 6, 2005

Figure 4: Shell of the voice interface application used to command the robot.

With this interface activated the following sequence of commands (admitting that
the logging procedure was already executed) will take the robot from the “home”
position, pick the work object at the origin position, deliver it to the final position,
return to “home” and release the robot control.

User: Robot one approach origin.
Robot: Near origin, master.
User: Robot one open.
Robot: Tool open master.
User: Robot one origin.
Robot: In origin position master.
User: Robot one close.
Robot: Tool close master.
User: Robot one approach origin.
Robot: Near origin, master.
User: Robot one approach final.
Robot: Near final, master.
User: Robot one final.
Robot: In final position, master.
User: Robot one approach final.
Robot: Near final, master.
User: Robot one home.
Robot: In home position, master.
User: Robot one terminate.
Robot: See you soon master.

The speech event routine, running on the voice interface application is called
when any of the rules defined in the working grammar is recognized. For
example, when the “motor on” rule is identified the following routine is executed,

 If ok_command_1 = 1 And (strText = "Robot one motor on") Then
 result1 = Pcrobnet2003.MotorON2(1)
 If result1 >= 0 Then
 Voice.Speak("Motor on, master.")

“Industrial Robot, An International Journal”, Emerald Group Publishing Limited, Volume 32, Number 6, 2005

 ans_robot_1.Text() = "Motor ON, master."
 Else
 Voice.Speak("Error executing, master.")
 ans_robot_1.Text() = "Error executing, master."
 End If
 End If

To give another example, when the move to “origin” rule is recognized the
following routine is executed,

 If ok_command_1 = 1 And (strText = "Robot one origin") Then
 Dim valor As Integer
 valor = 92
 result1 = Pcrobnet2003.WriteNum2("decision1", valor, 1)
 If result1 >= 0 Then
 Voice.Speak("In origin position, master.")
 ans_robot_1.Text() = "In origin position, master."
 Else
 Voice.Speak("Error executing, master.")
 ans_robot_1.Text() = "Error executing, master."
 End If
 End If

4.2. Robotic welding example
The welding example presented here extends slightly the functionality of the
simple server presented in Figure 2, just by adding another service and the
necessary routines to control the welding power source. The system used for this
demonstration is composed by an industrial robot ABB IRB1400 equipped with the
robot controller ABB S4CPlus, and a MIG/MAG welding power source (ESAB LUA
315A). The work-piece is placed on top of a welding table, and the robot must
approach point 1 (called origin) and perform a linear weld from that point until
point 2 (called final). The system is presented in Figure 5. The user is able to
command the robot to,

1. Approach and reach the point origin (P1);
2. Approach and reach the point final (P2);
3. Move to “home” position;
4. Perform a linear weld from point P1 (origin) to point P2 (final);
5. Adjust and read the value of the welding velocity.

These actions are only demonstration actions selected to show further details
about the voice interface to industrial robots. To implement the simple welding
server it is enough to add the following welding service to the simple server
presented in Figure 2,

CASE 94:
weld_on;
MoveL final,v200,fine,tool0;
weld_off;
decision1:=123;

where the routine “weld_on” makes the necessary actions to initiate the welding
arc [8], and the routine “weld_off” performs the post welding actions to finish the
welding and terminate the welding arc [8].

“Industrial Robot, An International Journal”, Emerald Group Publishing Limited, Volume 32, Number 6, 2005

The welding server is running in robot 2 (named babylon), and is addressed by
that number from the voice interface application (Figure 6). To execute a linear
weld from P1 to P2, at 10mm/s, the user must command the following actions
(after logging to access the robot, and editing the velocity value in the voice
interface application – Figure 6) using the human voice:

User: Robot 2 approach origin.
Robot: Near origin master.
User: Robot 2 origin.
Robot: In origin position master.
User: Robot 2 velocity.
Robot: Velocity changed master.
User: Robot 2 weld.
Robot: I am welding master.
User: Robot 2 approach final.
Robot: Near final master.

Figure 5 shows the voice interface when robot 2 is actually welding along with a
user equipped with a handset microphone to send voice commands to the robot.
The code associated with the welding command is,

 If ok_command_2 = 1 And (strText = "Robot two weld") Then
 Dim valor As Integer
 valor = 95
 result1 = Pcrobnet2003.WriteNum2("decision1", valor, 2)
 If result1 >= 0 Then
 Voice.Speak("I am welding, master.")
 ans_robot_2.Text() = "I am welding, master."
 Else
 Voice.Speak("Error executing, master.")
 ans_robot_2.Text() = "Error executing, master."
 End If
 End If

The code above writes the value 95 to the variable “decision1”, which means that
the service “weld” is executed (check Figure 2).

“Industrial Robot, An International Journal”, Emerald Group Publishing Limited, Volume 32, Number 6, 2005

Figure 5: Simple welding application used for demonstration.

“Industrial Robot, An International Journal”, Emerald Group Publishing Limited, Volume 32, Number 6, 2005

Figure 6: Shell of the voice interface application showing the welding operation,
and a user (author of this paper) commanding the robot using a headset
microphone.

“Industrial Robot, An International Journal”, Emerald Group Publishing Limited, Volume 32, Number 6, 2005

4.2.1 Adjusting Process Variables
During the welding process it may be needed to adjust process variables like the
welding velocity, welding current, the welding points, etc. This means that the
voice interface must allow users to command numerical values that are difficult to
recognize with high accuracy. Furthermore, it is not practical to define fixed rules
for each possible number to recognize, which means that dictation capabilities
must be active when the user wants to command numbers. To avoid noise
effects, and consequently erroneous recognition, a set of rules were added to
enable dictation only when necessary, having the rule strategy defined above
always active. Consequently, the following rules were added for robot 2 (the one
executing the welding example):

Rule V1 = “two variables” enables access to variables
Rule V2 = “two variables out” terminates access to variables
Rule V3 = “two <variable_name>” enables access to <variable_name>
Rule V4 = “two <variable_name> lock” terminates access to
<variable_name>
Rule V5 = “two <variable_name> read” reads from <variable_name>
Rule V6 = “two <variable_name> write” writes to <variable_name>

Rules V1 and V2 are used to activate/deactivate the dictation capabilities, which
will enable the easy recognition of numbers in decimal format (when the feature
is activated, a white dot appears in the program shell – Figure 7). Rules V3 and
V4 are used to access a specific variable. When activated, each number correctly
recognized is added to the text box associated with the variable (a blinking led
appears in the program shell – Figure 7). Deactivating the access, the value is
locked and can be written to the robot program variable under consideration. The
rules V5 and V6 are used to read/write the actual value of the selected variable
from/to the robot controller.

Figure 7: Accessing variables in the robot controller.

As an example, to adjust the welding velocity the following code is executed after
the correspondent rule is recognized,

“Industrial Robot, An International Journal”, Emerald Group Publishing Limited, Volume 32, Number 6, 2005

 If ok_command_2 = 1 And (strText = "Robot two velocity write") Then
 Dim valor As Double
 Dim velocity as Integer
 valor = velocity.Text()
 result1 = Pcrobnet2003.WriteSpeed("velocity", valor, 2)
 If Result11 >= 0 Then
 Voice.Speak("Welding velocity changed, master.")
 ans_robot_2.Text() = "Welding velocity changed, master."
 Else
 Voice.Speak("Error executing, master.")
 ans_robot_2.Text() = "Error executing, master."
 End If
 End If

Since the voice interface was designed to operate with several robots, two in the
present case, the user may send commands to both robots using the same
interface which is potentially interesting.

Using speech interfaces is a big improvement to HMI systems, because of the
following reasons:

1. Speech is a natural interface, similar to the “interface” we share with other
humans, that is robust enough to be used with demanding applications.
That will change drastically the way humans interface with machines;

2. Speech makes robot control and supervision possible from simple multi-
robot interfaces. In the presented cases common PC’s were used, along
with a quite normal noise-suppressing headset microphone;

3. Speech reduces the amount and complexity of different HMI interfaces,
usually developed for each application. Since a PC platform is used, which
carry currently very good computing power, ASR systems become
affordable and very simple to use.

The experiments performed with this interface worked extremely well, even when
high noise was involved namely during welding applications, which indicates
clearly that the technology is suitable to use with industrial applications where
human-machine cooperation is necessary or where operator intervention is
minimal.

5. Conclusion
In this paper a voice interface to command robotic manufacturing cells was
designed and presented. The speech recognition interface strategy used was
briefly introduced and explained. Two selected industrial representative examples
were presented and fully demonstrated, with the objective of clarifying the
potential interest of these human-machine interfaces for industrial applications.

Details about implementation were presented in a way to enable the reader to
immediately explore from the discussed concepts and examples. Since a personal
computer platform is used, along with standard programming tools (Microsoft
Visual Studio .NET2003 and Speech SDK 5.1) and an ASR system freely available
(SAPI 5.1), the whole implementation is affordable even for SME utilization.

The presented code and examples, along with the fairly interesting and reliable
results, indicate clearly that the technology is suitable for industrial utilization.

“Industrial Robot, An International Journal”, Emerald Group Publishing Limited, Volume 32, Number 6, 2005

6. References

[1] Pires, JN, “Semi-autonomous manufacturing systems: the role of the HMI

software and of the manufacturing tracking software”, Elsevier and IFAC
Journal Mechatronics, to appear 2005.

[2] Microsoft Speech Application Programming Interface (API) and SDK, Version
5.1, Microsoft Corporation, http://www.microsoft.com/speech

[3] Bloomer J., "Power Programming with RPC", O'Reilly & Associates, Inc., 1992.
[4] RAP, Service Protocol Definition, ABB Flexible Automation, 1996 - 2004.
[5] Pires, JN, “PCROBNET2003, an ActiveX Control for ABB S4 Robots”, Internal

Report, Robotics and Control Laboratory, Mechanical Engineering Department,
University of Coimbra, April 2004.

[6] Pires, JN, “Complete Robotic Inspection Line using PC based Control,
Supervision and Parameterization Software”, Elsevier and IFAC Journal
Robotics and Computer Integrated Manufacturing, Vol. 21, Nº1, 2005

[7] Pires, JN, “Handling production changes on-line: example using a robotic
palletizing system for the automobile glass industry”, Assembly Automation
Journal, MCB University Press, Volume 24, Number 3, 2004.

[8] Pires JN, et al, “Welding Robots”, Springer-Verlag, UK, 2005.
[9] ABB IRC5 Documentation, ABB Flexible Automation, 2005.
[10] ABB RAPID Programming Manual, ABB Flexible Automation, 2005.
[11] Microsoft Studio .NET 2003, TechNet On-line Documentation, Microsoft

Corporation, http://www.microsoft.com, 2003.

