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Abstract

Pronunciations in spontaneous speech differ significantly from citation form and pronunciation mod-

eling for automatic speech recognition has received considerable attention in the last few years. Most

methods describe alternate pronunciations of a word using multiple entries in a dictionary or using a

network of phones, assuming implicitly that a deviation from the canonical pronunciation results in a

‘‘complete’’ change as described by the alternate pronunciation. We investigate this implicit assumption
about pronunciation change in conversational speech and demonstrate here that in most cases, the change

is only partial; a phone is not completely deleted or substituted by another phone but is modified only

partially. Evidence supporting this conclusion comes from the three-way analysis of features extracted from

the acoustic signal for use in a speech recognition system, canonical pronunciations from a dictionary, and

careful phonetic transcriptions produced by human labelers. Most often, when a deviation from the ca-

nonical pronunciation is marked, neither the canonical nor the manually labeled phones represent the

actual acoustics adequately. Further analysis of the manual phonetic transcription reveals a significant

number (>20%) of instances where even human labelers disagree on the identity of the surface-form. In
light of this evidence, two methods are suggested for accommodating such partial pronunciation change in

the automatic recognition of spontaneous speech and experimental results are presented for each method.
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1. Introduction

Most state of the art systems for automatic speech recognition (ASR), especially those for large
vocabulary spontaneous speech, use acoustic models of phone-sized segments of speech as their
building blocks. The phonetic representation of a word is usually obtained by looking it up in a
hand-crafted pronunciation dictionary or deriving it from some set of rules, e.g., those written for
a text to speech system. Having obtained such a canonical pronunciation, the acoustic model for
the word is then composed by ‘‘stringing together’’ the (usually context-dependent) acoustic
models of the corresponding phones. It therefore should not come as a surprise that such systems
encounter considerable difficulties in recognizing spontaneous speech, where pronunciations of
words often do not conform to citation form.

Recent speech recognition literature has seen numerous efforts aimed at addressing this
problem under the banner of pronunciation modeling. Most of the proposed solutions aim one way
or another to hypothesize plausible alternate pronunciations of a word, i.e., pronunciations not
encountered in a dictionary, which are then used for (compositionally) creating alternate acoustic
models for the word. These acoustic models therefore implicitly rely on the existence of accurate
phonemic representations of the alternate pronunciations of words. Examples of such efforts
include Finke and Waibel (1997), Ma et al. (1998), Fosler-Lussier (1999), Stolcke et al. (2000),
Jurafsky et al. (2001), etc.

We show in this paper that for spontaneous speech in particular, and perhaps more generally,
the degree of deviation from the canonical pronunciation varies on a continuum. Most of the time
the deviation is not large enough to be clearly identifiable at the symbolic (phonemic) level. In
other words, a phone is not completely deleted or substituted by another phone, but it is modified
only partially and the effects of this modification can be found in its acoustic environment. Ev-
idence supporting this conclusion is presented here via a three-way analysis of
1. acoustic features extracted from the speech signal for use in an ASR system,
2. the canonical pronunciations derived from a dictionary, and
3. an actual phonetic transcription produced by human labelers.

It is shown that most often, when a deviation from the canonical pronunciation is marked by
the labelers, neither the canonical nor the manually labeled phones represent the acoustics well.

Corroborating evidence for these partial deviations is also found in the manual phonetic
transcriptions alone. An analysis of a portion of the Switchboard corpus labeled independently by
two transcribers at the phonetic level reveals that the disagreement between human labelers is
quite high. We suggest that when the deviation from the canonical pronunciation is neither small
nor large, but at an intermediate level, the transcribers, who are forced to use a categorical label
from the limited phonetic inventory at their disposal, may end up choosing different labels for a
surface-form. These points of inter-labeler disagreement, which correlate very well with the dif-
ficulty of automatic phonetic transcription, are consistent with partial pronunciation change.

The degree of deviation from the canonical pronunciation, of course, has implications for the
strategy to be used to model pronunciation variation in ASR. If the deviations are small enough,
then they can be absorbed within the acoustic model. If the deviations are large enough that they
can be identified at the symbolic level as the standard realization of a different phoneme, then
pronunciation modeling at the phone level, as traditionally done, may be adequate. If, on the
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other hand, a majority of the deviations are at an intermediate level, then alternate techniques
need to be developed. This paper discusses two such techniques.

The rest of this paper is organized as follows. In Section 2, we present acoustic evidence for
partial pronunciation change in conversational speech and further characterize the resulting
acoustic realization as spectrally (Section 2.1) or temporally (Section 2.3) intermediate between
the canonical and an ‘‘alternate’’ phonetic realization. The impact or consequence of this partial
change in the task of manual and automatic phonetic transcription is presented in Section 3,
where we demonstrate an automatic phonetic transcription procedure whose accuracy rivals that
of human labelers. Pronunciation modeling techniques that take cognizance of this phenomenon
of partial pronunciation change are presented in Section 4, along with experimental ASR results.
We conclude with a summary of the main points in Section 5.

1.1. The Switchboard corpus

We use the Switchboard corpus (cf Godfrey et al., 1992), a collection of spontaneous telephone
conversations between American English speakers, to study the nature of pronunciation change.
Switchboard contains a large amount of orthographically transcribed speech, and is a well-studied
corpus for automatic speech recognition, making it possible to assess the impact of pronunciation
modeling ideas in a large vocabulary speech recognition system. We use a subset of approximately
60 h of speech from this corpus to train acoustic models for the ASR system, and a disjoint subset
of approximately 2 h to measure the accuracy of the ASR system. There are no common speakers
between the two parts.

A portion of Switchboard (approximately 4 h, comprising �100K phones) has been phoneti-
cally labeled with great care by Greenberg (1998), and this is what makes our investigation
possible. Approximately 30 min of this phonetically transcribed material falls within our test
partition of Switchboard, making it possible to also measure the phonetic recognition accuracy of
various acoustic models, and provides an important diagnostic tool.

Unless mentioned otherwise, all word error rate (WER) results in this paper are on the 2-h test
set mentioned above, and all phone error rates (PERs) are on the phonetically transcribed 30-min
subset of the 2-h test set. An important exception is a 3-min portion of the phonetically labeled
corpus (�2000 phones) that has been phonetically labeled independently by two transcribers. This
doubly labeled portion makes it possible, as is done in Section 3, to measure interlabeler agree-
ment on this task, and to further characterize the phonetic accuracy of the acoustic models used
by the ASR system.
2. Acoustic analysis of pronunciation variation

We begin by presenting evidence that pronunciation variation leads to surface-form realiza-
tions of a phoneme which span a continuum. One end of this continuum is the canonical re-
alization of the phoneme while the other end is what may uncontroversially be called a complete

pronunciation change – to a realization which is reliably identified by a human labeler. We
demonstrate that there are several realizations which lie between these extremes and the cate-
gorical label the transcriber ought to ascribe to them is unclear. In order to understand the
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nature of this kind of variation, we need to investigate the three-way relationship between the
acoustics, the canonical pronunciation or base-form, and the surface-form representation
whenever a pronunciation change occurs.

Consider an occurrence of the word HAD which has the base-form /hh ae dd/ and is manually
labeled as having been realized as the surface-form [hh eh dd]. In this example, /ae/ is realized
as [eh] forming the base-form/surface-form pair (ae:eh). We use the notation /b/ to denote
base-form phonemes, [s] to denote surface-form phones, and (b:s) to denote base-form/sur-
face-form pairs.

What do the acoustics of this pair look like?
If the acoustics are sufficiently similar to those of an /eh/ realized elsewhere as an [eh] (i.e.,

to those of (eh:eh), according to our notation), this can be considered an instance of complete
pronunciation change, otherwise this is a case of partial pronunciation change.

How should this pair be modeled in an ASR system?
Complete pronunciation change may perhaps be dealt with by traditional models of pronun-

ciation variation, e.g., by adding /hh eh dd/ as a second dictionary entry 1 for HAD, whereas
partial pronunciation change requires other solutions.

In order to answer these questions we treat the base-form/surface-form pair, e.g., (ae:eh), as a
unit and analyze the acoustics of such units. We begin our analysis by studying the phonetically
labeled portion of our acoustic training set.
• The speech signal is processed using a standard acoustic ‘‘front-end’’ used by our ASR system

(cf., e.g., Young et al., 1995, for details). This results in the extraction of 13 MF-PLP coeffi-
cients every 10 ms, each covering a 25 ms analysis window. First and second order differences
(D and DD) are appended, yielding a 39-dimensional ‘‘observation.’’ The mean-value of the ob-
servations over an entire conversation-side is subtracted from each observation, a procedure
sometimes referred to as cepstral mean removal. The resulting sequence of 39-dimensional
acoustic observations is denoted by A.

• The base-form transcriptions B̂B, obtained by dictionary lookup, and the surface-form transcrip-
tions ŜS, i.e., the manual phonetic labels, are aligned to obtain ‘‘pair transcriptions’’ cBSBS of the
acoustics A.

• Three sets of context independent acoustic phonetic models, as listed below, are then estimated
from these sets of transcriptions via standard techniques.
1. PBðAjB̂BÞ: estimated from the base-form transcriptions B̂B.
2. PSðAjŜSÞ: estimated from the surface-form transcriptions ŜS.
3. PB:SðAjcBSBSÞ: estimated from the pair transcriptions cBSBS.

Note that PBð�j�Þ and PSð�j�Þ have about 50 hidden Markov models (HMMs), one for each pho-
neme or phone, whereas PB:Sð�j�Þ has roughly 500 HMMs, out of the 2500 possible phoneme–
phone pairs, since not all possible pairs are seen in our phonetically labeled corpus.

In each of the three acoustic models, a phoneme, phone or phone-pair is represented by a three-
state left-to-right HMM. The probability density function (pdf) of the acoustics ‘‘emitted’’ by each
HMM state is assumed to be a single 39-variate Gaussian with a diagonal covariance matrix. The
mean of the Gaussian pdf corresponding to each state of a particular phone is therefore repre-
1 Note that this adds confusion at the lexical level: the word HEAD also has the pronunciation /hh eh dd/.
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sentative of the acoustics of that segment of that phone. These are the models used throughout the
investigation of the nature of pronunciation variation reported in Sections 2.1–2.3.

2.1. Acoustics of the alternate realizations

Our analysis begins by visualizing how the average acoustic features corresponding to an in-
stance of a base-form phoneme /b/ that is realized as a surface-form phone [s] compare to the
average of
(i) all realizations of the base-form phoneme /b/, no matter what their realized surface-forms

are, and
(ii) all base-form phonemes that are realized as the surface-form phone [s], no matter what the

base-form phoneme is.
Note that since we estimate single Gaussian output pdfs for our acoustic models PB:SðAjðb : sÞÞ,

the model-mean lB:Sððb : sÞÞ may also be interpreted as a ‘‘typical’’ acoustic frame when a
phoneme /b/ is realized as a phone [s]. Similarly, lBð=b=Þ may be considered the average of
item (i) above, and lSð½s�Þ that of item (ii). We therefore focus attention on the relative location of
lB:Sððb : sÞÞ with respect to lBð=b=Þ, the model-mean for a canonical /b/, and lSð½s�Þ, the model-
mean for a realization [s].

More precisely, since we use three-state HMMs for each phoneme /b/, phone [s] or pair
(b:s), the model-mean of the first HMM state represents the acoustics of the initial part of the
phoneme, phone or pair, that of the second state the acoustics of the central part, and the model-
mean of the third state captures the final part of the phoneme, phone or pair. Any comparison
between lBð=b=Þ, lSð½s�Þ and lB:Sððb : sÞÞ in the following will imply a set of three comparisons,
one each between the model-means of the corresponding states of the three-state models.

These model-means are 39-dimensional vectors, which makes visualization somewhat chal-
lenging. However, since any three points in Euclidean space lie on a 2-dimensional plane, we can
plot the relative locations of the three model-means in a standard x–y plane.

Some normalization of inter-point distances is desirable in order to extend this idea from
viewing a single triple, e.g., {lBð=ae=Þ, lB:Sððae : ehÞÞ, lSð½eh�Þ}, to simultaneously viewing
many triples. To this end, we map two points of each triple to two fixed points in the x-y plane and
scale the coordinates for the third point such that the three relative distances between the three
means are preserved. In particular, lBð=b=Þ is mapped to the origin (0,0), lSð½s�Þ is mapped to
(1,0) on the x-axis, and lB:Sððb : sÞÞ to the positive-y half-plane while preserving relative distances.
Details of this procedure are relegated to Appendix A.

Fig. 1 displays the results of projecting the model-means for all triples on to a common 2-di-
mensional plane in this manner – one triple for each state of every (b:s) pair for which we have
sufficient data. The plot in the center shows the location of lB:Sððb : sÞÞ, normalized for
lBð=b=Þ¼ (0,0) and lSð½s�Þ ¼ (1,0).

To help interpret the results of the plot in the center, we also replace lB:Sððb : sÞÞ in the triple
{lBð=b=Þ, lB:Sððb : sÞÞ, lSð½s�Þ} with lB:Sððb : bÞÞ for each state of each pair (b:s), while pre-
serving the scaling factor jlSð½s�Þ � lBð=b=Þj, and obtain the plot to the left in Fig. 1. This plot
corresponds to the location of the average acoustics of a /b/ realized as a [b]. Similarly we
obtain the location of the average acoustics lB:Sððs;sÞÞ of an /s/ realized as an [s]. These are
plotted on the right in Fig. 1.
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• The plot on the left shows that the acoustics of a /b/ realized as a [b] are all crowded around
the model-mean, which is at (0,0), and similarly for an /s/ realized as an [s] around (1,0), as
shown by the plot on the right in Fig. 1.

• Compared to these canonical pronunciations, things are much more variable when a pronun-
ciation change occurs. Even when a realization is labeled as an [s] by a human labeler, the
acoustics are widely scattered around the model-mean for an [s]. Furthermore, note that
the spread is not isotropic around [s]: there is a distinct bias in the surface acoustics towards
the acoustics of the canonical phoneme /b/. In many instances the observed acoustics when a
phoneme /b/ is labeled 2 to have been realized as a phone [s] are actually closer to those of a
/b/ realized as a [b] than to those of an /s/ realized as an [s]!
The conclusions supported by these plots are that

1. the acoustics of a phoneme /b/, when realized as a phone [s], lie somewhere between the av-
erage realization of the phoneme /b/ and the average realization of the phone [s];

2. neither the phoneme /b/ nor the phone [s] provide a good fit for these realizations; and
3. pronunciation change is spectrally partial.

The last conclusion is justified by the nature of the acoustic front-end of the ASR system which,
loosely speaking, extracts the speech energy in specific spectral bands, and performs some linear
(or monotonic) transformations in order to produce the observations A.

2.2. Acoustic likelihood of alternate realizations

It is clear from the previous section that pronunciation change is often partial. A natural
question to ask is whether traditional pronunciation modeling techniques are able to accom-
modate this phenomenon.
2 We dogmatically avoid designating an instance a labeling error even if the acoustics indeed locally resemble those of

an /ae/ realized as an [ae], partly because the labelers listen to a wider context while labeling.
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In order to understand how best to model the acoustics of a (b:s) pair in an ASR system, we
compare the likelihood assigned to the acoustics by the three HMMs PB, PS and PB:S discussed
above. For each segment of the acoustics, both in the training set and the phonetically labeled 30
min of test data, we have the canonical phonemic transcription B̂B, the manual phonetic labels ŜS,
and their alignment (pair labels cBSBS). The phonetic inventories used for the canonical and manual
transcriptions are the same, 3 allowing us to compute likelihoods with four model+transcription
combinations:
• PBðAjB̂BÞ � the case when canonical pronunciations are used for both HMM training and test-

likelihood computation, and no pronunciation modeling is performed whatsoever;
• PBðAjŜSÞ � the case when canonical pronunciations are used for HMM training, but manual

phonetic labels for test-likelihood computation, providing insight into methods in which no
change is made to the conventional acoustic model training procedure, but elaborate new dic-
tionary entries are created for alternate pronunciations and used during recognition;

• PSðAjŜSÞ � the case when manual phonetic labels are used for both HMM training and test-like-
lihood computation, providing insight into methods in which a rich set of pronunciations is
used both during training and recognition; and

• PB:SðAjcBSBSÞ � the non-standard case when base-form/surface-form pairs are used for both
HMM training and test-likelihood computation.
Concentrating our attention on the subset of acoustic frames that align with locations of

pronunciation change, as determined by comparing the canonical phonemic transcription B̂B and
the manual phonetic labels ŜS, we find the total likelihoods to be ordered as
3 Th

dictio

set. T
PB:SðAjcBSBSÞ > PSðAjŜSÞ > PBðAjŜSÞ > PBðAjB̂BÞ:

Fig. 2 summarizes the results of computing these likelihoods, averaged over instances in the

training data and, separately, the test data when a base-form phoneme is marked to have been
realized as a different phone.

First of all, we see that PBðAjŜSÞ, is higher than PBðAjB̂BÞ, although not by much, which helps to
explain the moderate gains obtained when pronunciation models are applied during recognition
of spontaneous speech by an ASR system, even when the acoustic models are trained only on
canonical pronunciations.

More importantly, PSðAjŜSÞ is considerably higher than PBðAjB̂BÞ. This shows that using surface-
form transcription for acoustic model training is advisable, especially if they are to be subse-
quently employed in an ASR system with a rich model of alternate pronunciations.

Finally, PB:SðAjcBSBSÞ, the likelihood assigned by models based on phone-pairs, is much higher
than all the others. If it were only on the training set, this dramatic increase in likelihood could be
explained away by the fact that there are many more parameters (HMMs) in PB:S than either PB or
PS. However, the considerable gain in the test-set likelihood belies this fear of over-fitting. This
strongly suggests the investigation of joint acoustic models of frequently observed base-form/
surface-form pairs, a topic addressed in Section 4.
e symbol set used by the transcribers is very slightly different from the PronLex phone set used in our base-form

nary. However, since all our acoustic models use the PronLex phone set, we map the actual manual labels to this

his mapping does not significantly affect any results or conclusions of this paper.
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2.3. Temporal characteristics of alternate realizations

So far we have intentionally ignored the fact that the acoustics of a realization of a phone are
actually represented by a temporal sequence of feature vectors A. In this section, we focus on the
sequential or temporal properties of the acoustic realizations during pronunciation change. In
order to see why the temporal characteristics are important in terms of partial pronunciation
change, consider an example where the word HAD which has the base-form /hh ae dd/ is labeled
as [hh ae dd] by one human transcriber, i.e., no pronunciation change is noted, but as [hh eh

dd] by another human transcriber, noting a pronunciation change (ae:eh). In this case the
surface-form representation of the base-form /ae/ is unclear. Now assume that the first half of
the acoustic realization of the base-form /ae/ actually sounds like [ae] but the second half
sounds like [eh]. This could explain why the two transcribers disagree. This kind of partial
change would be better modeled in ASR if the surface-form representation of the alternate
pronunciation of /ae/ permitted a finer temporal resolution than the entire span of the vowel.

Do such realizations exist in real speech?
If they do, how frequent are they?
In order to answer these questions we conduct an experiment using the acoustic models esti-

mated from the base-form transcriptions, PB, together with the canonical pronunciations B̂B and
the manual phone labels ŜS. Recall that we are using three state left-to-right HMMs and each state
can produce one or more consecutive frames of acoustic observations A. We investigate pro-
nunciation changes at a temporal granularity finer than the entire phone by adding new transi-
tions to the graph topology of the original HMM structure.

We continue to use the context independent acoustic models with single Gaussian pdfs trained as
described above. We again focus only on instances in the test data when a phoneme is substituted
with another phone. For each such instance we investigate whether allowing partial pronunciation
change from the canonical to the labeled alternate realization at a subphonetic level, rather thanonly
allowing a change in the entire phonetic realization,would result in higher likelihood. To accomplish
this, two additional HMMs are constructed from a combination of states of the base-form and
surface-form trained HMMs PB and PS, respectively, as illustrated in Fig. 3.
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Note that the first model in Fig. 3 allows only paths corresponding to a change in pronunci-
ation of the entire phoneme, the second allows a change in the pronunciation of any of the initial,
central or final segments of a phoneme, and the third allows every 10 ms acoustic frame in A to be
‘‘pronounced’’ in one of the two ways, respecting only the sequential ordering of the three sub-
phonetic segments. We align the acoustic realization of a phone against each of these three models
and compute the most likely HMM state sequence for the realization. The exact HMM transition
probabilities, which are not available for the newly added transitions but which do not contribute
significantly to the acoustic likelihood in any event, are ignored in this likelihood calculation, and
it is instead assumed that all the permissible transitions have equal probabilities.

By construction, all models permit paths corresponding to a pronunciation change in the entire
phonetic segment; this corresponds to the null hypothesis, as manually labeled, that the pro-
nunciation of the entire phoneme has been changed. Having obtained the most likely path, we
then count the number of times (i.e., the number of test tokens for which) this best path consists of
a sequence of HMM states corresponding entirely to the manually marked surface-form (s1s2s3),
entirely to the base-form (b1b2b3), and to some temporal patchwork of the two, e.g., s1b2b3 or
b1s2b3. The relative frequency of the three outcomes, computed over all instances in the test corpus
that were manually labeled as containing a phone-substitution, is reported in Table 1.

The results of Table 1 indicate that



Table 1

Distribution of the best state sequence when a canonical phoneme /b/ is realized as a surface phone [s]

Model Best path

b1b2b3 Others s1s2s3

Model 1 41% – 59%

Model 2 20% 50% 30%

Model 3 15% 62% 23%
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1. the pronunciation change is indeed partial, since even when a change from /b/ to [s] is marked
by a labeler, a significant minority (41%) of tokens align better with the model for /b/ when
b1b2b3 and s1s2s3 are the only two possible paths;

2. in a large majority of instances of pronunciation change (50–62%), the highest-likelihood path
corresponds to a temporal switching between the base-form and the surface-form.
Therefore pronunciation change is temporally partial and increasing the temporal resolution of

the acoustic–phonetic model may be needed to effectively model partial changes in an ASR
system. Section 4 discusses such a pronunciation model.

Note from the last row of Table 1 that 15% of the tokens marked by human labelers to have
undergone a change from their canonical pronunciation /b/ to a realization [s] actually align
better with the model for /b/ than that for [s], providing further evidence of partial pronun-
ciation change. Statistics of interlabeler agreement, discussed in Section 3, will further support this
argument.

A possible criticism of the experiment of Table 1 is that the two HMM topologies corre-
sponding to temporally partial changes in pronunciation, shown in Fig. 3, simply admit additional
state sequences not permitted by the HMM topology at the top of the figure. One may suspect
that the statistics in Table 1, where the most likely path is something other than b1b2b3 or s1s2s3,
are merely a matter of chance given the additional degrees of freedom in the alternate HMM
topologies. We attempt to alleviate this concern, and reassert that the pronunciation change is
indeed temporally partial, by conducting the following two experiments.
1. We reuse the model topology of the third HMM (Model 3) of Fig. 3, but instead of choosing

s1s2s3 to be the HMM states of the marked alternate pronunciation [s] of the phoneme /b/,
whose HMM states are b1b2b3, we randomly pick another phone, say [z], and choose its
HMM states z1z2z3 to construct Model 3 of Fig. 3. We align the acoustics against this composite
HMM and collect the same statistics as the third line of Table 1, namely, the fraction of tokens
in which the best path is made up entirely of b1b2b3 or z1z2z3 and the fraction of tokens in which
it corresponds to some temporal patchwork of /b/ and [z]. We repeat this exercise, each time
with a different phone in the role of [z], average the statistics thus obtained, and present them
on the second row of Table 2.

2. We repeat the experiment above, but now we keep [s] fixed and replace /b/ in turn with each
permissible phoneme, say /p/, and collect statistics on the fraction of times the best path is not
one of p1p2p3 or s1s2s3. These figures are presented on the third row of Table 2.
It is clear from Table 2 that the fraction of state sequences consisting of a temporal patchwork

of base-form and surface-form states is much higher (62%) when the HMM is made up of the
correct base-form and surface-form combination, namely /b/ and [s], than for another HMM



Table 2

Average distribution of the best state sequence for Model 3 when a phoneme /b/ is realized as a phone [s]

Model 3, Base-form

states

Model 3, Surface-

form states

b1 b2 b3 or p1 p2 p3 Others s1 s2 s3 or z1 z2 z3

b1 b2 b3 s1 s2 s3 15% 62% 23%

b1 b2 b3 z1 z2 z3 58% 37% 5%

p1 p2 p3 s1 s2 s3 3% 32% 65%

/p/ denotes any other phoneme and [z] any other phone which replaces /b/ and [s], respectively, in the model.
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with the same topological freedom but with a random alternate phone – [z] instead of [s] or
/p/ instead of /b/.
3. Automatic phonetic transcription of acoustic data

Modern speech recognition systems are often trained with tens if not hundreds of hours of
speech from a multitude of speakers recorded under varying acoustic conditions. Producing the
orthographic transcriptions of the speech and a dictionary of canonical pronunciations to cover
all the spoken words already entails considerable cost. While the results of the preceding section
clearly demonstrate the greater accuracy of acoustic models of base-form/surface-form pairs
compared to models of base-forms alone, an obvious limitation in putting this idea into practice is
the unacceptably high cost, not to mention the delay in the system development cycle, of manually
producing phonetic transcriptions of tens or hundreds of hours of spontaneous speech. Thus it is
natural to seek means for automatic phonetic transcription.

Several methods have been proposed (cf., e.g., Sarac�lar et al., 2000) for automatically gener-
ating a large corpus of phonetically transcribed speech, particularly when the orthographic
transcriptions of the speech, a dictionary of canonical pronunciations, and a modest amount of
phonetically transcribed speech are available. The usual bootstrapping procedure is to
1. train context-independent acoustic–phonetic models PS based on phonetic transcriptions from

the (small) manually transcribed portion of the speech corpus;
2. align the canonical and the actual pronunciations in the phonetically transcribed portion, getcBSBS, and obtain a pronunciation model that captures all frequent phoneme-to-phone changes;
3. apply the pronunciation model of the previous step to the canonical pronunciations in the large

corpus, producing a network of locally alternate pronunciations for all words in all the utter-
ances in the large corpus;

4. use the previously obtained acoustic models to align the speech with this phonetic-network and
extract the most likely phonetic (surface-form) transcription of the utterances.
This entire 4-step procedure of training acoustic models on the surface-form transcriptions,

building the pronunciation model, creating pronunciation networks and retranscribing the speech
may then be iterated on the large speech corpus in the hope of incremental improvement.

To test the effectiveness of this procedure, we trained context-independent HMMs with a
4-Gaussian mixture density for each HMM state on the phonetically transcribed portion of our
training set. We also estimated a decision tree pronunciation model, as described by Sarac�lar et
al., 2000, and used these two to phonetically transcribe the 30-min portion of our test set with
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manual phonetic transcriptions. The phone error rate (PER) of the automatic transcription rel-
ative to the manual transcription, including substitution-, deletion- and insertion-errors, was
26.6%.

It seems natural to ask, particularly given the partial nature of pronunciation change dem-
onstrated in the preceding section, if the accuracy of this transcription can be improved any
further. Furthermore, since this accuracy is being measured against a gold standard provided by a
human labeler, it seems natural to ask about the rate of interlabeler agreement on this task. As it
happens, a small set of utterances (�2000 phones) in the phonetically labeled corpus has been
independently labeled by two human transcribers, and we use this portion in an attempt to answer
these two questions.

Interlabeler agreement of ‘‘ca. 75–80%’’ has been reported on this task Greenberg (1998). Since
this is quite comparable to the agreement between our automatic phonetic transcription and the
manual transcription (26.6% PER), we undertook a 3-way supervised alignment between our
automatic transcription and the two manual transcriptions of the 2000-phone subset. An actual
example of this alignment for the word PARENTS, and the overall proportion of each type of
(dis)agreement in the 2000-phone subset is given in Table 3.

As these results indicate, the automatic transcriptions fare almost as well as the human tran-
scribers in terms of overall PER. If the gold standard is taken to be the transcriptions produced by
the first transcriber (T1) the PER of the automatic transcriptions on this (albeit small) set is 25.7%
whereas the mismatch between the two human transcribers is 24.7%.

If one focuses on the (75.3%) cases where the human transcribers T1 and T2 agree, the PER of
automatic transcription is still 14.5%, which shows that there is some room for further im-
provement of the automatic transcription process described here. It shows that errors in the
automatic phonetic transcription, no matter which human transcriber is used as the gold stan-
dard, are not confined to the (24.7%) instances in which there is disagreement between the human
transcribers. More remarkably, however, the PER between the automatic and either human
transcription jumps to over 60% in the regions of pronunciation ambiguity, i.e., in the instances
where the two human transcribers disagree.
Table 3

Example alignment segment and proportions of agreement of each type among the two human labelers (Tl and T2) and

the automatic transcription (A)

Labeler Agreement Type Overall

proportionT1 T2 A T1 vs T2 A vs T1 A vs T2

p p p U U U 64.4%

eh ae ae U 8.0%

r r r U U U

ax – ih 6.4%

n en n U 10.3%

t t – U 10.9%

S S S U U U

Total agreement 75.3% 74.3% 72.4%
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From a modeling point of view, the genuine ambiguity about the correct transcription in the
latter cases is a good motivation for modeling the surface-form representation as a latent variable,
instead of seeking its explicit realization, during HMM parameter estimation and speech recog-
nition.
4. Speech recognition experiments

Two sets of speech recognition experiments have been conducted to evaluate the performance
of the acoustic models designed to handle partial pronunciation change of the sort described in
Section 2 above. The Switchboard corpus is used in our experiments. A vocabulary of approxi-
mately 20,000 words provides adequate coverage for the corpus. We use 60 h of speech (about
100,000 utterances or a million words) selected from about 2000 conversations for acoustic model
training purposes. There are 383 different speakers in the training corpus. A speaker-disjoint set of
about 2 h of speech (19 entire conversations, 2427 utterances, 18,100 words) is set aside, as
mentioned earlier, for testing the ASR system. A 30-min subset of the test set (451 utterances,
18,000 phones) is phonetically labeled.

Our baseline acoustic models are state clustered cross-word triphone HMMs having 6700
shared states, each with 12 Gaussian densities per state. The PronLex dictionary, which has a
single pronunciation for approximately 94% of the words in the test vocabulary, two pronunci-
ations for a little over 5% of the words and three or four pronunciations for the remaining (less
than 0.5%) words, is used in the baseline system. Bigram and trigram models trained on 2.2
million words of transcribed Switchboard conversations are used as language models.

For speech recognition experiments, we first generate word lattices using the baseline system
with a bigram language model. These lattices are then used as a word graph to constrain a second
recognition pass in which a trigram language model is used. We chose to use this lattice rescoring
paradigm for fast experimentation.

Acoustic model training and lattice rescoring is carried out using the HTK HMM toolkit
developed by Young et al. (1995). The AT&TWeighted Finite State Transducer tools provided by
Mohri et al. (2000) are used to manipulate word and phone lattices.

Without any pronunciation modeling, the ASR output following trigram rescoring has a WER
of 39.4%. The 30-min subset, for which manual phonetic transcriptions are available, has a WER
of 49.1%. These are our baseline figures for further comparisons.

We could not find a systematic cause for the WER on the 30-min subset being significantly
higher than the remainder of the test set. Utterances for phonetic transcription were selected a
priori by Greenberg (1998), using criteria not known to us, and this resulted in many conversa-
tions containing a few phonetically labeled utterances each, including the conversations in our test
set. No further characterization of these utterances that may explain the difference in WER is
obvious.

4.1. Explicit pronunciation models

In the first set of experiments, we use as a pronunciation model an explicit listing of the ca-
nonical and alternate pronunciations of words in the recognition dictionary (see Riley et al.,
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1999). We compare via lattice rescoring the three acoustic models described in Section 2: PB and
PS, which differ in the transcriptions on which they were trained but which use the same phonetic
inventory, and PB:S, which is trained on the pair transcriptions.

Acoustic model training using the pair transcriptions is not entirely straightforward, especially
since we are using decision tree based state clustered triphones. We build individual decision trees
for each surface-form phone, allowing questions about its own base-form phoneme and its
context during clustering. In order to limit complexity, we only include the base-form phoneme
identity of the neighboring pairs in the context. We explored many alternative strategies –
building individual decision trees for each base-form phoneme as well as building a single decision
tree – but found them to be less effective. Interested readers are referred to the doctoral disser-
tation of Sarac�lar (2000) for details.

Incorporating alternate pronunciations during rescoring: For example, if the word HAD is hy-
pothesized on a link in the lattice, and HAD happens to have two pronunciations /hh ae dd/ and
[hh eh dd] in the dictionary, the former being the canonical pronunciation, then
• in case of PB and PS, we replace the word-link for HAD with two parallel paths, with the phone

sequence hh ae dd on one path and hh eh dd on the other, and appropriate triphone HMMs
for the four phone(me)s – hh, ae, eh and dd – are used to compute acoustic scores on the two
paths, whereas

• in case of PB:S, the symbol sequences on the two paths are (hh:hh) (ae:ae) (dd:dd) and (hh:hh)
(ae:eh) (dd:dd), and appropriate triphone HMMs for the four base-form/surface-form pairs –
(hh:hh), (ae:ae), (ae:eh) and (dd:dd) – are used to calculate acoustic scores.
Such operation are carried out on all lattice links by finite-state operations and the resulting

phone-graph is rescored using the appropriate acoustic models.
The word error rate (WER) measured against the word level transcriptions for the phonetically

annotated 30 min portion of the test set are presented in Table 4. For illustration, we also present
in the same table the phone error rate (PER) of the same ASR output measured against either (i)
the base-form transcription B̂B or (ii) the hand-labeled surface-form transcription ŜS as the gold
standard.
1. Note that on the first line of Table 4 the PER of the ASR output measured against B̂B is much

lower than the PER of the same output measured against ŜS – 34.7% vs 48.1%. We conjecture
that this is because the acoustic models PB are trained on the canonical transcriptions B.

2. What is perhaps quite surprising is that the models PS trained on the more phonetic transcrip-
tions ŜS result in a higher word error rate, while considerably lowering the PER relative to the
manual transcription ŜS – from 48.1% to 43.6%. This is perhaps because of the increased conf-
usability caused by adding alternate pronunciations to the dictionary. Table 5 illustrates how
the word HAD may now be confusable with HEAD, and error reduction from more accurate rec-
ognition of the phonemes may yet be undone by their incorrect mapping to words.
Table 4

Recognition performance of acoustic models with a rich pronunciation dictionary

Acoustic model PER wrt B̂B PER wrt ŜS WER

PB 34.7% 48.1% 49.0%

PS 42.9% 43.6% 50.6%

PB:S 33.8% 43.9% 47.8%



Table 5

Dictionary for S has an increased number of homophones

Word exemplars Dictionary Pronunciations

B S B : S

HAD hh ae dd hh ae dd hh:hh ae:ae dd:dd

HAD – hh eh dd hh:hh ae:eh dd:dd

HEAD hh eh dd hh eh dd hh:hh eh:eh dd:dd
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3. We note that acoustic models trained on the pair-transcription cBSBS achieve the ideal compro-
mise – the PER of the base-form-side of the ASR output with respect to the canonical tran-
scription is lower than that for PB, the PER of the surface-form-side of the ASR output is
about as good as that for PS, and the WER is lower than that of either of the other two models.
In this case, the increased phonetic accuracy of the acoustic models is not undone by increased
lexical confusability, as shown by the sample dictionary entries in Table 5.
4.2. Implicit pronunciation models

In the second set of experiments, we use a more recent method for pronunciation modeling
called state level pronunciation model or SLPM (Sarac�lar et al., 2000), which accommodates al-
ternate surface-form realizations of a phoneme by allowing the HMM states of the model of a
base-form phoneme /b/ to share output densities with models of its alternate surface-form
realizations [s]. This ‘‘merging’’ of the two acoustic models therefore captures both spectrally
partial changes and temporally subphonetic changes in pronunciation. For the sake of
completeness, we briefly summarize the SLPM construction procedure from Sarac�lar et al.
(2000).

4.2.1. State level pronunciation models

To recapitulate the mechanism of state level pronunciation modeling via an example, we
suppose that the word HAD has a canonical pronunciation /hh ae dd/ but it may sometimes be
realized as [hh eh dd], which happens to be the canonical pronunciation of the word HEAD.
The sketch at the top of Fig. 4 illustrates how the two alternate pronunciations for HAD will be
represented at the phone level, and the sketch in the middle shows how a context-independent
HMM system utilizing explicit pronunciation modeling could permit these alternatives in a rec-
ognition network.

The SLPM instead performs implicit pronunciation modeling as illustrated by the sketch at the
bottom of Fig. 4. Rather than letting the phoneme /ae/ be realized as an alternate phone [eh],
the HMM states of the acoustic model of the phoneme /ae/ are instead allowed to mix-in the
output densities of the HMM states of the acoustic model of the alternate realization [eh]. Thus
the acoustic model of a phoneme /ae/ has the canonical and alternate realizations (/ae/ and
[eh]) represented by different sets of mixture components in one set of HMM states. In a system
that uses context-dependent phone models, a pronunciation change (/ae/![eh]) also affects
the HMMs selected for the neighboring phones.



Phone Level PM

(HMMs)

Phone Level PM

(phones)

State Level PM

(HMMs)

d

eh

ae

hh

hh

eh

ae

d

d
ae+eh

hh

Fig. 4. The effect of allowing phoneme /ae/ to be realized as phone [eh], context independent models.
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In our system, we use three-state left-to-right HMMs to model triphones. To reduce model
complexity, all triphone states of a phone are clustered into a manageable number of states using a
top-down decision tree procedure (Young et al., 1995). A separate clustering tree is grown for
each of the three states in an HMM. The detailed effect of the SLPM on such a system is illus-
trated in Fig. 5. Each HMM state of the triphone hh-ae+d shares output densities with the
corresponding HMM state of the triphone hh-eh+d to accommodate a pronunciation change
/ae/![eh] in the phoneme, as illustrated by the sketch on the left in Fig. 5. Similarly, each
HMM state of the triphone ae-d+sil shares output densities with the corresponding HMM
state of the triphone eh-d+sil to accommodate a pronunciation change /ae/![eh] in the left
context of the phoneme /d/. This is illustrated by the sketch on the right in Fig. 5.

Note that each HMM state of each triphone, say of phoneme x, shares output densities with
two kinds of states: (i) corresponding states of a phoneme y, caused by a pronunciation change
x ! y, and (ii) corresponding states of other triphones of the phoneme x, caused by pronunciation
changes in the triphone context CðxÞ of x. This overall effect of the SLPM on an HMM state is
illustrated in Fig. 6.

The HMMs used for modeling the alternate realization in the SLPM may either be the same as
the set of baseline HMMs PB, or a different set of HMMs PS trained on the surface-form tran-
scriptions ŜS. Both alternatives have been investigated by Sarac�lar et al. (2000), with the aid of an
automatic boot-strapping procedure for generating the surface-form transcriptions ŜS for the
entire 60-h acoustic training corpus.



{...,hh-eh+d, ...
...,b-eh+d, ...}

{...,hh-ae+d, ...
...,hh-ae+t, ...}

SLPM : 

{...,ae-d+sil, ...
...,aa-d+sil, ...}

{...,eh-d+sil, ...
...,ih-d+sil, ...}

...,hh-ae+t, ...}

eh ae d

{...,hh-ae+d, ...

SLPM : 
{...,ae-d+sil, ...

...,aa-d+sil, ...}

Fig. 5. Sharing Gaussian mixtures among different HMM states to accommodate the pronunciation change /ae/

![eh].

pronunciation change
in phoneme

canonical pronunciation
of phoneme and context

pronunciation change
in context

xy

C(y)=z C(x)=z

C(x)=z’

SLPM : 

Fig. 6. Overall effect of sharing Gaussian mixtures among different tree-clustered HMM states to accommodate pro-

nunciation changes x ! y and z ! z0 where z and z0 are ‘‘contexts’’ of x.
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Table 6

Performance of the SLPM on the phonetically annotated subset and the entire test set

Acoustic models combined during

SLPM construction

PER wrt B̂B PER wrt ŜS WER (Subset) WER (Full)

Riley et al. (1999) (Baseline) – – – 38.9%

PB with itself 34.6% 50.1% 49.0% 39.0%

PB and PS 33.1% 48.5% 47.9% 38.2%

PB and PB:S 32.8% 49.4% 47.2% 37.7%

18 M. Sarac�lar, S. Khudanpur / Computer Speech and Language xxx (2003) xxx–xxx

ARTICLE IN PRESS
Key insight. It was shown by Sarac�lar et al. (2000) that acoustic models PB estimated from the
base-form transcriptions can be effectively combined with acoustic models PS estimated from the
surface-form transcriptions in the SLPM framework. We hope the reader is convinced following
the analysis of Sections 2 and 3 that the considerable success of their method is due to the fact that
the SLPM is able to model partial pronunciation change. We further believe that the same
phenomenon is also being modeled by the pronunciation modeling technique proposed by Hain
and Woodland (1999). We call them implicit pronunciation modeling techniques for obvious
reasons.

A natural question that follows is whether the SLPM, which combines PB and PS, could be
improved upon by using PB:S. This is the subject of the following.

4.2.2. Additional ASR experiments with the SLPM

Here, we contrast merging the baseline models PB with the surface-form trained models PS,
which was described in Sarac�lar et al. (2000), against the alternative of merging PB with the models
PB:S, which were shown in Section 2 to better model the acoustics of partial pronunciation change.
Table 6 shows the results of these experiments where, in addition to the phonetically labeled 30
min portion, WER is also reported on the entire 2-h test set.

Under identical training and test conditions, Riley et al. (1999) report that techniques which
account for complete pronunciation change but not partial pronunciation change improve the
overall WER from 39.4% to 38.9%, and this may be considered an alternate baseline for our
experiments. Accounting further for the partial change using our techniques leads to more sig-
nificant improvements, as seen on the last two lines of the table.

In particular, augmenting the Gaussian densities of the HMM states of, say, /ae/ in PB
with Gaussian densities of the HMM states of [eh] in PS enables the new HMM to cover
realizations of /ae/ which undergo only a partial change of pronunciation (cf. middle-box of
Fig. 1). Alternately, augmenting the mixture for /ae/ in PB with Gaussian densities of the
HMM states of (ae:eh) in PB:S is even better, since the latter captures not just the surface
realizations of [eh], but specifically of [eh] whose canonical pronunciation would have been
/ae/.

The overall reduction in WER is statistically significant for both pronunciation modeling
techniques: WER reduction from 38.9% to 38.2% is significant at a p-value of 0.003 and to
37.7% at a p-value < 0.001. The difference between 38.2% and 37.7% is less significant, with a
p-value of 0.07. All significance tests were performed using standard methods described by
Pallett et al. (1990) and with software provided by the US National Institutes of Standards
and Technology.
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5. Concluding remarks

In summary, here are the main points of this article.
• We have presented acoustic evidence which demonstrates the prevalence of spectrally and tem-

porally partial pronunciation change in spontaneous conversational speech. We have shown
how these partial changes make the very notion of phonetic transcription, be it manual or au-
tomatic, a difficult one to define.

• We have presented means for automatically generating phonetic transcriptions whose accuracy
rivals interlabeler agreement, and hence may be considered almost as good as human phonetic
labeling.

• We have shown a method for using such automatically generated phonetic transcriptions of the
acoustic training data to train models which improve speech recognition accuracy by accom-
modating pronunciation ambiguity. A 1.7% (absolute) WER improvement over a system which
does not employ any pronunciation modeling is demonstrated on Switchboard (from 39.4%
baseline WER to 37.7%).
The improvement from the last method is greater than that of most previously known methods

for pronunciation modeling. The improvements in Hain (2002) are comparable to ours and on a
comparable test set.

Finally, our analysis provides an understanding of the reasons why implicit pronunciation
modeling techniques, which include the SLPM and those investigated by Hain (2002) and others,
are more successful than explicit modeling techniques for conversational speech. Kam et al. (2003)
have recently developed further extensions to the SLPM by using HMM adaptation techniques.
Appendix A. Mapping 39-dimensional means to 2-dimensional space

In this appendix, we define the procedure for mapping three points x; y; z in n-dimensional space
to points x0; y0; z0 in 2-dimensional Euclidean space, while preserving the relative distances between
the three points. We also want x0 and y0 to be mapped to fixed points in the plane, so we assume
x 6¼ y.

Let Dð�; �Þ denote the distance measure in the original n-dimensional space, and dð�; �Þ denote
the distance measure in the target 2-dimensional space. We define dð�; �Þ to be the Euclidean
distance and we will define Dð�; �Þ later. For non-trivial cases 4 preserving the relative distances
requires
4 As
Dðx; zÞ
Dðx; yÞ ¼

dðx0; z0Þ
dðx0; y0Þ ;

Dðy; zÞ
Dðx; yÞ ¼

dðy0; z0Þ
dðx0; y 0Þ ;

Dðy; zÞ
Dðx; zÞ ¼

dðy 0; z0Þ
dðx0; z0Þ :
Now let x0 ¼ ð0; 0Þ and y 0 ¼ ð1; 0Þ. This gives dðx0; y0Þ ¼ 1, and we only need to satisfy
dðð0; 0Þ; z0Þ ¼ Dðx; zÞ
Dðx; yÞ ; dðð1; 0Þ; z0Þ ¼ Dðy; zÞ

Dðx; yÞ :
suming z 6¼ x and z 6¼ y. Otherwise, if z ¼ x then z0 ¼ x0 and if z ¼ y then z0 ¼ y0.
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The general procedure is as follows:
1. Calculate the pairwise distances Dðx; yÞ;Dðx; zÞ;Dðy; zÞ.
2. Let x0 ¼ ð0; 0Þ and y0 ¼ ð1; 0Þ.
3. Solve the following equations to obtain z0 ¼ ðz1; z2Þ:
z21 þ z22 ¼
Dðx; zÞ
Dðx; yÞ

� �2
;

ð1� z1Þ2 þ z22 ¼
Dðy; zÞ
Dðx; yÞ

� �2
:

The solution is given by:
z1 ¼
1

2
1

 
þ Dðx; zÞ

Dðx; yÞ

� �2
� Dðy; zÞ

Dðx; yÞ

� �2!
;

z2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dðx; zÞ
Dðx; yÞ

� �2
� z21:

s

Note that this procedure does not depend on the actual definition of the distance Dð�; �Þ. In the
experiment described in Section 2.1 the points actually represent means of 39-dimensional
Gaussian distributions with parameters ðl; rÞ. In an attempt to use the variances for scale nor-
malization, we define si ¼ rðxÞ

i rðyÞ
i where rð�Þ is the variance of the Gaussian associated with each

point and use si to scale each dimension. The distances Dð�; �Þ are thus defined as:
ðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

ðxi � yiÞ2

si

s
;

Dðx; zÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

ðxi � ziÞ2

si

s
;

Dðy; zÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

ðyi � ziÞ2

si

s
:
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