
COMPUTER

ARTICLE IN PRESS
SPEECH AND
Computer Speech and Language 18 (2004) 315–333
LANGUAGE

www.elsevier.com/locate/csl
Probabilistic word sense disambiguation

Judita Preiss

Computer Laboratory, University of Cambridge, Cambridge CB3 OFD, UK

Received 2 October 2003; received in revised form 18 May 2004; accepted 18 May 2004
Abstract

We present a theoretically motivated method for creating probabilistic word sense disambiguation

(WSD) systems. The method works by composing multiple probabilistic components: such modularity is

made possible by an application of Bayesian statistics and Lidstone’s smoothing method. We show that a

probabilistic WSD system created along these lines is a strong competitor to state-of-the-art WSD sys-

tems.

� 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Word sense disambiguation (WSD) is the task of automatically assigning a sense to a word
from a given inventory of senses. In this paper, we present a theoretically motivated method for
creating probabilistic WSD systems, and illustrate it with a system we created using these tech-
niques. We show that probabilistic WSD is a strong competitor to state-of-the-art WSD systems.
The main feature of our system is that it is composed of multiple probabilistic components: such
modularity is made possible by an application of Bayesian statistics and Lidstone’s smoothing
method.

It has been observed that sense assignments are usually more accurate when multiple infor-
mation sources are combined (Stevenson and Wilks, 2001). For example, it is useful to know both
the part of speech of the word bank (this word has both noun and verb senses) and the co-oc-
currence information with the word money. However, nobody has yet found a provably-optimal
method for combining information sources. For example, Stevenson and Wilks (1999) initially
used majority voting to combine their information sources, whereas Yarowsky (2000) used hi-
E-mail address: judita.preiss@cl.cam.ac.uk.

0885-2308/$ - see front matter � 2004 Elsevier Ltd. All rights reserved.

doi:10.1016/j.csl.2004.05.003

mail to: judita.preiss@cl.cam.ac.uk


316 J. Preiss / Computer Speech and Language 18 (2004) 315–333

ARTICLE IN PRESS
erarchical decision lists. We use Bayesian statistics to combine information sources, generating a
probability distribution on senses, which we now motivate.

Many systems generate a single (forced) sense assignment for each word, and it is not clear that
this is always optimal: even in a human sense annotation there are words for which the annotators
cannot choose just one sense. For example, the word peculiar can be assigned either of the two
senses specific or characteristic in the following sentence (from the English all-words task in
SENSEVALENSEVAL-2):

The art of change-ringing is peculiar to the English. . .

In this case, generating a probability distribution over the available senses may be more useful.
Such a distribution can also be used in other applications of WSD: for example, the back-off
estimates in subcategorization acquisition can be adjusted according to each word’s distribution
of senses in the corpus (Korhonen and Preiss, 2003). A forced choice, single sense assignment can
be easily obtained from a probability distribution, so there is no loss of information in producing
a probability distribution.

Each of our information sources produces a probability distribution on senses of the target
word, which is smoothed according to our confidence in the given information source. An overall
probability distribution on senses is given by a repeated application of Bayes Rule to all the in-
formation sources’ probability distributions. Bayesian statistics provide a theoretically sound
method for combining probabilistic information as opposed to an ad hoc solution such as
weighted linear interpolation of probability distributions.

Section 2 describes the origins of the information sources used, and the modifications required
to make them probabilistic. The vital topic of smoothing is discussed in Section 3, and Section 4
presents the theoretical background for our method of combining modules. The results obtained
on the SENSEVALENSEVAL-2 English all words task are discussed in Section 5, and the paper closes with a
summary of its contributions and avenues for future work (Section 6).
2. Information sources

Our probabilistic WSD system is implemented within a modular framework. It is composed of
a number of information sources which are probabilistic WSD modules, each producing a
probability distribution. The main advantage of this design is its flexibility: it is possible to add or
remove modules very easily. A modular setup allows a systematic exploration of combinations of
modules to optimize performance.

Our modules are based on parts of known WSD algorithms, which we reimplement. Each
module is modified to be self-contained and to produce a probability distribution. 1 We draw
from the work of Yarowsky (2000), Mihalcea and Moldovan (2002) and Pedersen (2002), and we
also implement a number of baseline modules.
1 A probability distribution is created over WordNet senses, as well as an extra sense ‘none’, not present in WordNet.

Without the extra sense, each word present in WordNet would have to be assigned a WordNet sense. However,

WordNet only covers nouns, verbs, adjectives and adverbs. So a word like no could never take the ‘negation’ sense

(which does not appear in WordNet) rather than the less frequent ‘number’ sense (which is listed in WordNet).



J. Preiss / Computer Speech and Language 18 (2004) 315–333 317

ARTICLE IN PRESS
2.1. Unsupervised modules

We use two types of modules in our WSD system: unsupervised and super vised. In this work,
an unsupervised module is a module which our system does not need to train.

2.1.1. Frequency module

It has been observed that it is quite difficult for WSD systems to beat the most frequent sense
baseline (a system selecting for each word its most frequent sense). We reason that the most
frequent sense provides a good default value for words which do not obviously (from another
module) have another sense, and thus a most frequent sense module forms a part of our system.
As a side effect, with this module in place, it is trivial to evaluate the performance of the baseline
on each of the data sets.

Usually a most frequent sense baseline returns the most frequent sense (derived from some
other corpus) given the word’s (known or guessed) part of speech. So if we know that in our text
the word dog is being used as a noun, the most frequent sense baseline will return the domestic dog
sense of the word (rather than e.g., the unpleasant woman sense).

We require all of our modules to produce a probability distribution. WordNet, the dictionary
we employ in this work, contains two types of information we could use for this purpose: a
manual ranking of senses created on the basis of their perceived frequency in English, and the
frequency of occurrence of each sense within the genre balanced SEMCORSEMCOR corpus. Each infor-
mation type can be converted into a probability distribution.

The manual ranking of senses could be used in conjunction with Zipf’s law to yield a
distribution on senses (given the part of speech). Zipf’s law (Zipf, 1949) tells us that frequency
fr of the rth ranked sense is given by a power law (i.e. resulting in a zeta distribution over
senses):
fr ¼ ar�b
for some positive a, b, such that
X
i2fsensesg

ffr:r rank of sense ig ¼ 1:
The fr would be normalized to produce a probability distribution over senses. However, some
words are exceptions to Zipf’s law; the SEMCOR frequency of their topmost senses is quite close
(e.g., bear which has 15 senses, and the top three verb senses have frequencies 25, 17, and 13). In
this case, the probability distribution arising from Zipf’s frequencies would be very different to the
observed one, and so this method is insufficient.

Making use purely of the SEMCORSEMCOR frequency counts is also not sufficient. A probability dis-
tribution in this case would be obtained by normalising the SEMCORSEMCOR frequencies within each PoS.
However, it is possible for multiple senses to have identical SEMCORSEMCOR frequency (often zero). The
frequency module would then not distinguish between such senses.

We would therefore like to take into account both the frequency counts and the manual
ranking. We achieve this by smoothing the frequency counts of the word w with n senses s1; . . . ; sn
by the inverted rank (ir) as follows:
f ðsiÞ ¼ oðsiÞ þ irðsiÞ;



318 J. Preiss / Computer Speech and Language 18 (2004) 315–333

ARTICLE IN PRESS
where oðsiÞ is the observed SEMCOR frequency count and irðsiÞ ¼ nþ 1� rðsiÞ, with rðsiÞ being
the rank of the sense si. This is illustrated in Table 1: the word abbey appeared once in its most
frequent sense and neither of its other senses were seen. After smoothing, no two frequencies are
the same.

Additionally, in the case of the frequency module, it only makes sense to consider the proba-
bility of a sense si given w’s part of speech (pos(w)). Thus, the probability of the sense si, of the
word w is given by
Table

Word

Sen

Ori

abb

abb

abb

Mo

abb

abb

abb
P ðsijposðwÞ ¼ posðsiÞÞ ¼
f ðsiÞP

fj:posðsjÞ¼posðsiÞg f ðsjÞ
;

where f ðsiÞ is the smoothed SEMCORSEMCOR frequency of the sense si. In our example, this corresponds to
the sense frequencies being divided by 4þ 2þ 1 ¼ 7.

2.1.2. Basic part of speech module

WSD systems often make use of the part of speech (PoS) information of words; even the
frequency module requires information about each word’s PoS to work effectively. This is usually
obtained from a tagger, which is run as a pre-processing stage of a WSD system. Often, the tagger
is used as a filter: all senses not compatible with the chosen PoS are entirely removed from
consideration. However, this means that if a word is assigned a wrong PoS, there is no scope for
recovering from the error. We instead use the HMM tagger due to Elworthy (1994), which
produces a probability distribution on CLAWS-II PoS tags.

There are 166 tags in the CLAWS-II tagset; it contains tags such as NN1 (singular commons
nouns), NP (noun proper, neutral for number), or VB0 (to, base form), VVZ (-s form of a lexical
verb). For each word w, the tagger returns a probability distribution on these tags. However,
WordNet senses are only divided up into four categories: noun, verb, adjective, and adverb. We
therefore sum the probabilities obtained over all the noun PoS tags to obtain a probability of the
word w being used as a noun, the probabilities of the verb PoS tags make up the probability of w
being used as a verb, and so on. The CLAWS-II tagset also contains tags which do not describe
nouns, verbs, adjectives or adverbs, such as II (general preposition). The probabilities of these
‘other’ tags make up the probability of the word w having a non-WordNet PoS (and so being used
1

Net frequency distribution

se Rank Frequency

ginal entry

ey%l:06:02:: 1 1

ey%l:06:01:: 2 0

ey%l:06:00:: 3 0

dified entry

ey%l:06:02:: 1 1þ 3 ¼ 4

ey%l:06:01:: 2 0þ 2 ¼ 2

ey%l:06:00:: 3 0þ 1 ¼ 1



J. Preiss / Computer Speech and Language 18 (2004) 315–333 319

ARTICLE IN PRESS
in the extra ‘none’ sense). The full 166 tag tagset is used in some of the subsequent modules
(Sections 2.2.1 and 2.2.3).

We illustrate the module on the sentence She danced with abandon, where the PoS tagger assigns
a high probability to the NN1 tag of the word abandon. The original PoS distribution obtained
from the tagger can be seen in Table 2. The simplified PoS probabilities over the WordNet (noun,
verb, adjective, adverb and other) classes are shown in Table 3. In this table, the verb tag
probabilities of the word danced (VVD and VVN) have been merged into a verb probability.
Smoothing (Section 3) is applied to all PoS categories containing at least one sense of the word
(for example, to the noun and verb categories for the word danced), as well as to the ‘other’
category (to allow for senses not in WordNet).

Note that in this module, the probability distribution generated is over parts of speech. If we
had instead generated the distribution over senses, this would have had the effect of penalizing
senses in the more common parts of speech for the word. For example, consider a word with four
noun senses and one verb sense. If the noun part of speech is assigned a probability of 3/4 by the
tagger and the verb PoS is given 1/4, our system will assign the probability of 3/4 to all the noun
senses, rather than producing a probability distribution on senses and thus assigning each noun
sense 3/16 (<1/4).

2.2. Supervised modules

The frequency and the basic part of speech modules do not need to be trained (at least, not by
the WSD system). The remaining modules all require training data and produce probability
distributions on senses of the type
Table

Origin

Wo

She

dan

with

aba

Table

Simpl

Wo

She

dan

with

aba
Pðobserved training datajsenseÞ:

The form of the distribution produced is dictated by Bayes Rule, which is used to combine

modules together (Section 4). We now present the trained modules, many of which are based on
known successful WSD approaches.
2

al PoS distribution

rd Tag Prob Tag Prob

PPHS1 1 – –

ced VVD 0.98 VVN 0.02

II 0.05 IW 0.95

ndon NN1 0.96 VV0 0.04

3

ified PoS distribution

rd Noun Verb Adjective Adverb Other

– – – – –

ced 0.00 1.00 0.00 0.00 0.00

– – – – –

ndon 0.96 0.04 0.00 0.00 0.00



Table 4

Part of speech distributions for the word shirt

Sense id PoS (t) f ðsense \ posÞ f (sense) PðtjsiÞ
shirt%l:06:00:: NN1 8 9 8

9

shirt%2:29:00:: NN1 0 1 0

shirt%l:06:00:: NN2 1 9 1
9

shirt%2:29:00:: NN2 0 1 0

shirt%l:06:00:: VVD 0 9 0

shirt%2:29:00:: VVD 1 1 1

320 J. Preiss / Computer Speech and Language 18 (2004) 315–333

ARTICLE IN PRESS
2.2.1. PoS context modules

The part of speech modules work on the principle that PoS tags of words in the context of the
target word are informative. Attention needs to be paid to the size of the tagset for this module: if
it is too small, it will not be very informative, if it is too large, it will require too many examples to
train. We use the 166 tag CLAWS-II tagset to create five part of speech modules: part of speech
tag of the words one and two to the left (pos-1, pos-2) and right (pos1, pos2) of the target word and
the word’s own tag (pos0). In the case of the pos0 module, the probability of the tag being t given
that the sense of the word w is si is:
2 No

sense,
P ðtjsiÞ ¼
no: of occurrences of w in sense si when the PoS tag of w is t

no: of occurrences of w sense si
:

For the pos1 module we would consider the tag of the word immediately following w. We present
three frequency distributions from the pos0 module for the word shirt
(P ðpos0 ¼ NN1jshirtiÞ; Pðpos0 ¼ NN2jshirtiÞ; and P ðpos0 ¼ VVDjshirtiÞ) in Table 4. In this
table, f ðsense \ posÞ denotes the number of occurrences of w in the given sense with the given PoS
tag, and f (sense) is the number of occurrences of shirt in the given sense.

2.2.2. Window module
Words in the context of the target word have been shown to have disambiguating power (Gale

et al., 1992). For example, if the noun bank is seen in the context of the word money, it is much
more likely to have its financial institution noun sense. It is therefore informative to look for
certain sense indicative words occurring in a window around the target word. Gale et al. use a �50
word context in their disambiguation system.

In the training phase of this module, frequencies of words up to 50 positions to the left and
right of each target word (100 words in total) are stored along with the sense of the target word.
After removing stoplist words, each of the context words is treated as ‘indicating’ the given sense
of the target word. 2 For each target word w, the training phase results in a number of probability
distributions given each sense si arising from each of the context words c, as follows:
P ðcjsiÞ ¼
no: of occurrences of c in the context of w in sense si

no: of occurrences of w in sense si
:

te that removing stoplist words is only done for efficiency reasons – since they do not indicate any particular

they would be found to be uninformative in disambiguation.



J. Preiss / Computer Speech and Language 18 (2004) 315–333 321

ARTICLE IN PRESS
2.2.3. PoS trigram module
The trigram module is very similar to the window module described in the preceding section. It

is also based on co-occurrence information, this time looking at a group of three adjacent words.
A number of studies (e.g., Choueka and Lusignan, 1985) have shown that humans only require a
very small context of two or three words for disambiguation, justifying the small window size.
Using trigrams for WSD has been successfully employed by Pedersen (2002). The main defect of
the method is its sparse data problem, which is even worse than in the window module as we are
now concerned with co-occurrences of three words, not just the presence of one word in the vi-
cinity of another.

Using the N-gram Software Package created by Pedersen, 3 we implemented a trigram module
based on part of speech tags. We use PoS tags to abstract away from the more usual word form
trigrams, which suffer from sparse data problems. In this module, each sense tagged word w from
the training corpus is a part of three trigrams:

Position )1: w is the first word of the trigram.
Position 0: w is the middle word.
Position 1: w is the last word of the trigram.
Table 5 contains an example for the word Algerian in the sentence (the relevant PoS tags follow

an underscore):
3 NS
4 No
. . . to II the ATAlgerian JJ rebels NN2 entails VVZ . . .
The probability of a trigram t given the sense si, of the word w if given by:
PðtjsiÞ ¼
no: of occurrences of w in sense si in trigram t

no: of occurrences of w in sense si

In our example, all three trigrams, positions )1, 0, and 1, will give rise to higher probabilities

for the adjectival sense (indicated by %3 in its sense id) of the word Algerian.

2.2.4. Lemma co-occurrence modules
Although we do not have enough data to train trigrams on surrounding lemmas, bigrams (two

adjacent words) have also been found useful in WSD. Bigrams represent a large part of the local
context which was found sufficient by human annotators (Choueka and Lusignan, 1985), and in
certain cases may be more informative than the window module. For example, the fact that the
word to occurs within the �50 word window of the target word is uninformative, whereas if we
know that it immediately precedes the target word, the target word is likely to take its verb
senses. 4

We therefore create a co-occurrence module by extracting lemmas surrounding our target word
(we focus at words one and two to the left, lemma-1, lemma-2, and right, lemma1, lemma2, of the
target word). We use the frequencies of co-occurrence to produce a probability distribution; for
lemma-1 this is a probability of the target word wt being preceded by the lemma lp given that wt

has sense si:
P is available from http://www.d-umn.edu/~tpederse/code.html.

te that in the case of the lemma modules, the stoplist is not applied.

http://www.d-umn.edu/~tpederse/code.html


Table 6

Lemma co-occurrence data for burrow

Prec. Word (wp) Sense id f ðsense \ wpÞ f (sense) PðwpjsiÞ
to burrow%2:38:00:: 1 1 1

to burrow%l:17:00:: 0 1 0

the burrow%2:38:00:: 0 1 0

the burrow%l:17:00:: 1 1 1

5 Th

Table 5

Frequency trigram data for Algerian

Sense id Trigram f ðsense \ triÞ f (sense) PðtjsiÞ
Position: )1
algerian%3:01:00:: JJ NN2 VVZ 1 3 1

3

algerian%l:18:00:: JJ NN2 VVZ 0 0 0

Position: 0

algerian%3:01:00:: AT JJ NN2 1 3 1
3

algerian% 1:18:00:: AT JJ NN2 0 0 0

Position: 1

algerian%3:01:00:: II AT JJ 1 3 1
3

algerian%l:18:00:: II AT JJ 0 0 0

322 J. Preiss / Computer Speech and Language 18 (2004) 315–333

ARTICLE IN PRESS
P ðlpjsiÞ ¼
no: of occurrences of wt in sense si preceded by lp

no: of occurrences of wt in sense si

An example for the word burrow and its preceding word can be found in Table 6. We can see

that if the preceding word is to, the word burrow is more likely to have its verb sense (denoted by
the %2 in its sense id), whereas if the preceding word is the, the noun sense (%1) is more likely.

2.2.5. Head module
Information can also be gained from the distance to the nearest phrasal head and its type (we

only consider noun and verb phrases in this work). We use the Briscoe and Carroll (2002) RASP
parser 5 to obtain grammatical relations (GRs) between words in each sentence. The GRs pro-
duced include subject, object, modifier, etc. See Fig. 1 for an example of the sentence
The school grounds are large.

The head of the noun phrase ‘‘The school grounds’’ can be discovered to be grounds because it
does not modify another word in an ncmod relation (unlike the word school), and is also modified
by a determiner (the detmod) relation.

The usefulness of the head module is easiest to observe if the following word is the head of a
phrase. An example for the word Anglican followed by a noun phrase head is shown in Table 7.
The probability that word w in sense si is followed by a head of an NP is given by:
e RASP parser is available from http://www.cogs.susx.ac.uk/lab/nlp/rasp/.

http://www.cogs.susx.ac.uk/lab/nlp/rasp/


Table

Gram

Sen

1:04

1:09

Table 7

Head data for Anglican+NP head

Sense id f ðsense \NPÞ f (sense) PðNPjsiÞ
anglican%3:01:00:: 0 0 0

anglican%l:18:00:: 6 6 1

Fig. 1. GRs for The school grounds are large.

J. Preiss / Computer Speech and Language 18 (2004) 315–333 323

ARTICLE IN PRESS
PðNPjsiÞ ¼
no: of occurrences of w in sense si followed by an NP head

no: of occurrences of w in sense si
:

We can see that the adjective sense (sense id containing %3) is more likely than the noun sense;
this is intuitively plausible since the head of a noun phrase must be a noun, and we are more likely
to have an adjective preceding a noun. This module trains probabilities based on the word one
and two to the left and right of the target word being a head of a noun or a verb phrase.

2.2.6. Grammatical relation module

Our last module exploits noun-verb relations obtained from the RASP parser, along the lines of
Hindle (1990) and Resnik (1992). In the training phase, the GRs of each noun target word are
examined and information about it being a subject, direct or indirect object are stored together
with the relevant verb. An example is shown in Table 8, for the word attitude. The table shows the
definition of two of the senses of the word along with the WordNet example sentences. The last
column shows the information which we would acquire from the sentence.

This module is smoothed, but unlike Resnik’s work, we do not group together ‘similar’ verbs.
Resnik observed that in its basic form, this approach suffered from the sparse data problem. This
is to be expected, the amount of sense tagged training data is limited, and we are reducing it to the
sentences that our parser can parse as well as only focusing on the words filling the grammatical
roles we are interested in. He therefore grouped together similar verbs (verbs in the same
WordNet class) and used the training data for each verb in a group as training data for the whole
8

matical relation for attitude

se Definition Example sentence GR

:00 a theatrical pose created for effect the actor struck just the

right attitude

struck dobj

:00 a complex mental state involving beliefs and feelings

and values and dispositions to act in certain ways

he had the attitude that

work was fun

have dobj



324 J. Preiss / Computer Speech and Language 18 (2004) 315–333

ARTICLE IN PRESS
group. Since this is not the only module used in our approach, we do not carry out this gener-
alization and the module returns a uniform distribution on senses when there is no training data
for a particular word.
3. Smoothing

It is necessary to smooth the probability distributions produced by all the modules – if we
only observed a word once in the training corpus, this will give probability one to all the
observed patterns of that occurrence. This would mean that we could never assign a different
sense to this word. However, we do not want to discard the one instance. In the case of in-
frequent words, this may be the only context the word is ever used in. We therefore need to
smooth the frequency counts obtained to allow all possible senses, but to still favour the
observed patterns.

The chosen method of smoothing needs to satisfy the following requirements:
(1) The smoothing value for each module should reflect the confidence we have in that module.
(2) It needs to be possible to make smoothing word specific: it is possible that a module is very

good at resolving particular words, but not others.
(3) The less confident we are in a module, the more the output probability distribution should

resemble a uniform distribution, so as not to affect the combination of the modules (see Sec-
tion 4).

(4) The probability distribution generated by trained modules for words not seen in the training
corpus should be uniform.

The points above illustrate that we are intentionally not smoothing with a Zipfian (zeta) dis-
tribution; a Zipfian distribution would favour the more frequent senses (for which there is an
explicit frequency module), thus making senses other than the most frequent sense extremely
unlikely to be favoured. 6 The method for combining modules which we employ allows us to add
in a module which produces a uniform distribution without the new, uninformative module
having any effect on the resulting probability distribution on senses. Therefore the requirement for
approximating a uniform distribution in points 3 and 4, when the modules do not provide very
reliable information, suggests that the best smoothing method is based on a linear interpolation
with a uniform prior.

Smoothing methods based on discounting, which decrease the frequency of data observed in
the training phase by a small amount and distribute the discounted frequency between the unseen
events (e.g. Good (1953)), would not allow us to approximate a uniform distribution when we are
not confident in a particular module. Treating point 2 above, we specialize to a particular word w,
and use Lidstone’s smoothing (e.g., Manning and Sch€utze (1999)):
6 No

freque
P ðcontextjsiÞ ¼
Cðcontext \ siÞ þ k

CðsiÞ þ kN
;

te that the modules produce P ðcontextjsiÞ probabilities, which (unlike the P ðsijcontextÞ probability) factor out the
ncy bias which is present in the training corpus.



J. Preiss / Computer Speech and Language 18 (2004) 315–333 325

ARTICLE IN PRESS
where w is a word with a sense si, and for which there are N possible contexts. The C function
represents the frequency function and k is the smoothing value. This is equivalent to a linear
interpolation method:
7 Fig

to be
8 If a

distrib
PðcontextjsiÞ ¼ l
Cðcontext \ siÞ

CðsiÞ
þ ð1� lÞ 1

N
;

where
l ¼ CðsiÞ
CðsiÞ þ kN

:

This smoothing method is frequently criticized for assigning too much probability mass to
unseen events. This occurs when N is much greater than CðsiÞ. However, we have argued above
that our combination method is sensitive to deviations from the uniform distribution, and
therefore that an interpolation method involving a uniform prior (as frequency is a separate
module) is the most suitable. There are two possible methods for addressing the potential diffi-
culty:
• To decrease N , it may be possible to merge contexts; for example, Resnik (1992) grouped to-

gether ‘similar’ verbs in a grammatical relation-like module.
• A larger corpus could be used to increase the frequency CðsiÞ of senses; for example, automat-

ically building a sense annotated corpus along the lines of Mihalcea and Moldovan (1999).
To satisfy point 1 above, that each module should be smoothed according to our confidence in it,
we want to select smoothing values such that the performance of the system is maximized. As the
modules perform with different accuracies on individual words, different smoothing values are
found for the most frequent words in the test corpus. We split our training corpus (SEMCORSEMCOR, and
the English lexical-sample data) into two parts: 9

10
for training from which we acquire the fre-

quency counts (such as Cðcontext \ siÞ); 1
10
, the development corpus, for setting the smoothing

values (Chen and Goodman, 1996).
Fig. 2 shows the typical shape of a performance against smoothing value graph. As the

smoothing value increases, the performance rises sharply reaching a maximum, after which it
decreases steadily. 7 However, it is infeasible to exhaustively search all possible smoothing values.
We therefore start with a high smoothing value, which we repeatedly halve until performance on
the development corpus starts decreasing. The smoothing value which yielded the highest per-
formance is then used in the testing phase.

We also need smoothing values for words which are not present in the development corpus.
These are obtained by finding the optimal smoothing value (the one yielding the highest per-
formance) on all ambiguous words which have not been trained individually. If a word did not
appear in the training corpus, its probability distribution becomes the uniform distribution, thus
not affecting the choice of sense (see Section 4). 8
. 2 was obtained using the F-measure as an indication of performance. However, we expect the shape of the graph

the same whether the performance is taken to be precision, recall, or F-measure.

word does not appear in the training corpus at all, all the trained modules will produce a uniform probability

ution and we will be relying on the frequency and basic part of speech modules to carry out a sense annotation.



pe
rf

or
m

an
ce

smoothing

Fig. 2. Performance against smoothing value.

326 J. Preiss / Computer Speech and Language 18 (2004) 315–333

ARTICLE IN PRESS
4. Combining modules

WSD systems based on multiple approaches usually fail to use a theoretically motivated
method for their combination. We present a method for combining our modules based on Bayes
Rule:
P ðAjBÞ ¼ PðA \ BÞ
P ðBÞ :
As a consequence of Bayes Rule, the probability distributions for individual modules are
multiplied together to yield a final probability distribution on senses, which can be later converted
into a single sense assignment or used directly in an application.

Suppose we have n modules and the ith module observes context Ciki around the target word w.
The probability that the word w has the sense Sj can be calculated as:
Pðsjjc1k1 \ � � � \ cnknÞ ¼
Pðsj \ c1k1 \ � � � \ cnknÞ
P ðc1k1 \ � � � \ cnknÞ

¼ Pðc1k1 \ � � � \ cnknjsjÞP ðsjÞ
Pðc1k1 \ � � � \ cnknÞ

Bayes Rule

¼
Q

i P ðcikijsjÞPðsjÞ
Pðc1k1 \ � � � \ cnknÞ

Independence
where P ðsjÞ is obtained by combining the frequency module with the basic part of speech module,
i.e.
P ðsjÞ ¼ P ðsjjposðwÞ ¼ posðsjÞÞP ðposðsjÞ ¼ posðwÞÞ:

Note that we assume independence between modules – an assumption which does not hold in

general. However, factoring out dependencies in general is extremely difficult as they are usually
hidden. In the special case of the frequency information, Bayes Rule helps us remove the fre-
quency bias from the supervised modules, as we are considering the probability that a particular



Table 9

Combination of modules for the word admirable

Sense si P ðsiÞ Lemma-1 Lemma1 P ðsijl1 \ l2Þ
l1 P ðl1jsiÞ l2 P ðl2jsiÞ

estimable 5/7 most 2/3 american 2/3 5/9

type 1/3 5/18

pleasing 2/7 most 1/3 american 1/3 1/18

type 2/3 1/9

J. Preiss / Computer Speech and Language 18 (2004) 315–333 327

ARTICLE IN PRESS
context is employed with the given sense, rather than the probability that the given sense is
employed with a particular context. This makes the supervised modules independent from the
frequency module. Removing dependencies between the supervised modules would require an
enormous amount of training data and storage space. For example, to work out the dependencies
between the lemma1 and the lemma 1 modules we would need to store information about the
preceding and following word for every target word. This would not be feasible given the amount
of training data and the number of modules we are considering.

We illustrate our combination method on two trained modules lemma-1 and lemma-2. Consider
the word admirable, which has two adjectival senses estimable and pleasing. The probability
combination is presented in Table 9; the table contains values for the component probabilities
P ðsiÞ obtained from the frequency module and P ðljsiÞ, the probability of lemma l given the sense si
from the lemma modules. The combination is simply implemented by multiplying the probability
distributions together and normalizing the result. In our example, the estimable sense of admirable

in the fragment most admirable american has the probability:
9 A m

perfor
5
7
� 2

3
� 2

3
5
7
� 2

3
� 2

3
þ 5

7
� 2

3
� 1

3
þ 2

7
� 1

3
� 1

3
þ 2

7
� 1

3
� 2

3

¼ 5

9
:

5. Results

5.1. SENSEVALENSEVAL evaluation

Until the creation of the SENSEVALENSEVAL evaluation exercise in 1998, there was no consensus on
evaluation methods for WSD, which made comparing published system performance results
impossible. First, systems differed in the number of words they were designed to attempt (e.g.,
Bruce and Wiebe (1994) evaluated their system on the single word interest, whereas the system of
Stevenson (1999) was evaluated on all labelled words in the SEMCORSEMCOR corpus). Secondly, systems
used different evaluation corpora which can lead to large performance differences. Thirdly, sys-
tems were based on different sense inventories. 9 To enable the WSD community to compare
systems directly, the SENSEVALENSEVAL WSD evaluation exercise was created (Kilgarriff and Palmer,
2000).
ore fine-grained sense inventory will mean that the WSD task is more difficult and therefore will lead to lower

mance.



328 J. Preiss / Computer Speech and Language 18 (2004) 315–333

ARTICLE IN PRESS
We evaluate the system on the English all words task from SENSEVALENSEVAL-2 (Palmer et al., 2002),
see Section 5.2 for a discussion of why the English lexical sample task is not suitable. In the
English all words task in SENSEVALENSEVAL-2, nouns, verbs, adjectives and adverbs in three given texts
(taken from the Wall Street Journal) were manually annotated to create a gold standard. This
resulted in 1082 distinct words in the texts, corresponding to 2473 instances to be labelled 10 with
senses by participating systems. Twenty-one systems sense-annotated the given texts, and sub-
mitted their answers for a calculation of precision and recall against the gold standard. The results
for these systems are presented in Table 10. The table contains a tick in the second column, if the
given system incorporates modules trained on annotated data. It also includes results for the
correct file (which is a copy of the gold standard) and for two baselines (most frequent sense and
random sense). 11

The most frequent sense baseline in the table is a ‘perfect’ baseline: it has access to perfect part
of speech information and the correct lemmas (and so knows about multiwords). 12 Although this
baseline will be higher than the most frequent sense baseline found by a genuine system employing
a real tagger and multiword detecting component, it is useful since it is independent of any
participating system.
5.2. Amount of training data required

We have investigated the effect of increasing the amount of training data on performance of
our WSD system. We used the line corpus (Leacock et al., 1993), which contains 4148 in-
stances of the word line each annotated with one of six senses. The line corpus was divided
into three corpora: a test corpus, a development corpus (used for acquiring smoothing values),
and a training corpus. With 18 training corpus increments, the average performance (F-
measure) was found to rise sharply up to 200 training instances after which the gradient begun
to level off. A performance plateau for the six sense word line was reached at about 500
instances.

In the SENSEVALENSEVAL-2 English lexical sample task, the number of instances tagged for each
word was 75 + 15n where n is the number of senses a word has within the chosen part of
speech (Kilgarriff, 2002), (Palmer et al., 2002). Two thirds of the total annotated data for each
word was used for training. The average number of training instances in the English lexical
sample task training corpus is 121, and 93% of the words have fewer than 200 instances.
Given that we found that 200 instances were necessary for a six sense word, and that the
average polysemy for the English lexical sample task was 9.1 (rather than the 5.4 average
for the English all words task), we believe that the English lexical sample is not suitable
for evaluating the true training power of our WSD system (without additional training
data).
10 This includes 86 instances labelled with the ‘‘U’’ tag. This label was assigned when the correct sense of a word did

not appear in WordNet 1.7 pre-release.
11 Precision for the two baselines was only evaluated on words not labelled with ‘‘U’’. If these were included, the

precision of the most frequent sense would be 64.62% and that of the random choice would be 34.26%.
12 The perfect part of speech and lemma information was obtained directly from the gold standard.



Table 10

Precision, recall, and F-measure for all systems

System T Precision (%) Recall (%) F-measure (%)

BCU-ehu-dlist-all
p

57.2 29.1 38.5

CNTS-Antwerp
p

63.5 63.5 63.5

DIMAP � 45.1 45.1 45.1

IIT1 � 28.7 3.3 6.0

IIT2 � 32.8 3.8 6.8

IIT3 � 29.4 3.4 6.1

IRST
p

74.7 35.7 48.3

SMUaw
p

68.9 68.9 68.9

Sheffield � 44.5 20.0 27.6

Sinequa-LIA-HMM
p

61.8 61.8 61.8

Sussex-sel � 59.8 14.0 22.6

Sussex-sel-ospd � 56.6 16.9 26.1

Sussex-sel-ospd-ana � 54.5 16.9 25.8

UCLA-gchao
p

50.8 44.4 47.4

UCLA-gchao2
p

48.3 45.3 46.7

UCLA-gchao3
p

48.1 45.1 46.6

UNED-AW-T � 57.4 56.8 57.1

UNED-AW-U � 55.5 54.9 55.2

USM1 � 34.2 31.6 32.8

USM2 � 36.0 36.0 36.0

USM3 � 33.6 33.6 33.6

correct – 100.0 100.0 100.0

frequency – 66.9 64.6 65.7

random – 35.5 34.2 34.9

J. Preiss / Computer Speech and Language 18 (2004) 315–333 329

ARTICLE IN PRESS
5.3. Probabilistic modular WSD

We present the results of our probabilistic modular WSD system in Table 11. The table con-
tains the precision (number of correct answers divided by the number of words attempted) and
recall (number of correct answers divided by the total number of test instances), as well as the F-
measure:
Table

Resul

Eva

For

Log

Bas
F -measure ¼ 2 � precision � recall
precisionþ recall

:

Results are shown for two types of evaluation: the forced choice evaluation, in which only one
sense tag is assigned to sense tagged words (the sense tag corresponding to the highest proba-
11

ts for the English all words task

luation Precision (%) Recall (%) F-measure (%)

ced 64.1 63.0 63.6

odds 64.1 63.1 63.6

eline 61.0 60.0 60.5



330 J. Preiss / Computer Speech and Language 18 (2004) 315–333

ARTICLE IN PRESS
bility), and the log odds ratio evaluation (Dagan and Itai, 1994), in which all the senses (with
probability p) satisfying
13 W
14 T

system
log
highest probability

p

� �
P T ;
(where T is a threshold value) are returned and their probabilities are normalized. The log odds
ratio allows us to return a number of senses if their probability is close to that of the most
probable sense. We investigated the value of T , by varying it between 0.002 and 0.4 in steps of
0.002. The optimal value was found to be 0.1, which generated the results in Table 11. However,
the results did not deviate much from those given with any of the tested thresholds (the lowest F-
measure was only 0.05% lower than the maximum, and occurred when senses with probability up
to 0.002 lower than the highest probability were getting included).

Given the evaluation method in SENSEVAL,ENSEVAL, it is not reasonable to score the full probability
distribution. Even when the system is very confident of the correct sense assignment, smoothing
will ensure that some probability mass will be assigned to the remaining senses. In some appli-
cations this may be considered a benefit, but with the current evaluation method it degrades
performance.

Table 11 also includes the performance of the baseline, which is lower than the perfect baseline
presented in Table 10. This is to be expected, as the baseline performance is dependent on the
performance of the tagger, correct identification of multiwords 13 and assignments of the ‘‘U’’ tag.

These results can be directly compared with the English all words task results in Table 10, to
give our system a ranking among current state-of-the-art systems. The full system containing 27
modules ranks second (when comparing F-measure). With an F-measure of 63.6%, it comes after
the SMUaw system.
5.3.1. Choosing the right modules
We investigated the performance of our system with a lower number of modules; there are a

number of successful systems using a subset of the information sources we exploit in our full
system. As an exhaustive search is not possible (27 modules give rise to 227 possible module
combinations), we must restrict their number in a different way. We can judge the usefulness of a
module using the smoothing value produced for it – the lower the smoothing value, the more
accurate (and therefore useful) a module is. For example, the smoothing value for the GRs module
is 267, and so this module is close to the uniform distribution.

For the optimization, the program was always invoked with the frequency and basic part of
speech modules. We selected the top seven modules: 14 head-1, trigrams0, lemma-3, lemma-2,
trigrams-1, pos-1, and pos-3. A graph depicting the F-measure when various module combinations
are invoked is shown in Fig. 3. The performance of the baseline (frequency and basic pos) is shown
in the column with no modules on the x-axis, any additional modules can be found on the x-axis.
e do not preprocess multiwords, as these did not appear to be consistently annotated in the gold standard.

he number of modules was chosen so that the whole optimization did not run for too long. Note that the WSD

program was not written with an emphasis on efficiency.



0.6

0.605

0.61

0.615

0.62

0.625

0.63

0.635

0.64

0.645

0.65

0.655

head-1
trigrams0
lemma-3

trigrams-1
pos-3

trigrams0
lemma-3

trigrams-1
pos-3

head-1
trigrams0
lemma-3

trigrams-1

trigrams0
lemma-3

trigrams-1

trigrams0
lemma-3
lemma-2

trigrams-1
pos-1
pos-3

head-1
trigrams0
lemma-3
lemma-2

trigrams-1
pos-1
pos-3

head-1
trigrams0
lemma-2

trigrams-1
pos-3

trigrams0
lemma-2

trigrams-1
pos-3

head-1
trigrams0
lemma-3
lemma-2

trigrams-1
pos-3

Fig. 3. Combination of modules for English all words task.

J. Preiss / Computer Speech and Language 18 (2004) 315–333 331

ARTICLE IN PRESS
The figure shows that it is possible for our system to improve on its performance (reaching the
F-measure of 65.3%). The increase in performance when modules are dropped may seem sur-
prising, however there are two possible reasons for this:
(1) Some modules encode very similar information (e.g., pos1 and head1 will both tell us if the

following word is a noun), which may be getting over emphasized (when wrong) when the
modules are invoked together so removing them from the combination may result in an in-
crease in performance.

(2) The smoothing value may be high for some modules, making the modules approximate the
uniform distribution, but the modules may still be having a deleterious effect.
6. Conclusion

We have presented a method for creating a theoretically motivated probabilistic WSD system,
based on Bayes’ Rule and Lidstone’s smoothing, and shown that it is a strong competitor to state-
of-the-art WSD systems. In its default form, our WSD system ranks second in the SENSEVALENSEVAL-2
English all words task. The system does not rely on any externally set thresholds or weights, and
can therefore be easily ported to other corpora.

The success of our probabilistic WSD system has demonstrated the effectiveness of probabilistic
methods in WSD; this trend can also be observed in other areas of NLP such as statistical parsing,
or Ge et al.’s (1998) anaphora resolution algorithm. To create our WSD system, we adapted a



332 J. Preiss / Computer Speech and Language 18 (2004) 315–333

ARTICLE IN PRESS
number of existing WSD approaches to function as probabilistic modules, and we have given a
precise description of these probabilistic modules for others to use in future systems.

Our implementation of Lidstone’s smoothing provides a uniform mechanism for weighting
modules based on their accuracy, removing the need for an additional confidence weighting
scheme; and smoothing values are found for individual words where possible, giving an extra
degree of specialization.

We believe that it is possible for the probabilistic combination WSD system to exceed the
performance of the SMUaw system; the SMUaw system extracts patterns similar to those in our
modules, but it uses a much larger training corpus. In addition to SEMCORSEMCOR, the system trains on
WordNet examples and GENCORGENCOR, an automatically created corpus containing about 160,000
tagged words (Mihalcea and Moldovan, 1999). It is therefore possible that our system would
exceed the performance of the SMUaw system given the same training corpora, as the SMUaw
system does not appear to have a method for recovering from mistakes in patterns.
Acknowledgements

This work was supported by UK EPSRC project GR/N36462/93 ‘Robust Accurate Statistical
Parsing’. I would also like to thank my supervisor, Ted Briscoe, and Joe Hurd for reading through
previous drafts of this paper. Additionally, the three anonymous reviewers were very helpful in
providing many useful comments and suggestions for improvement.
References

Briscoe, E.J., Carroll, J., 2002. Robust accurate statistical annotation of general text. In: Proceedings of the 3rd

International Conference on Language Resources and Evaluation, pp. 1499–1504.

Bruce, R., Wiebe, J., 1994. Word-sense disambiguation using decomposable models. In: Proceedings of the 32nd

Annual Meeting of the Association for Computational Linguistics, pp. 139–145.

Chen, S.F., Goodman, J., 1996. An empirical study of smoothing techniques for language modeling. In: Proceedings of

the Thirty-Fourth Annual Meeting of the Association for Computational Linguistics, pp. 310–318.

Choueka, Y., Lusignan, S., 1985. Disambiguation by short contexts. Computer and the Humanities 19, 22–29.

Dagan, I., Itai, A., 1994. Word sense disambiguation using a second language monolingual corpus. Computational

Linguistics 20, 563–596.

Elworthy, D., 1994. Does Baum-Welch re-estimation help taggers? In: Proceedings of the 4th Conference on Applied

NLP, pp. 53–58.

Gale, W., Church, K., Yarowsky, D., 1992. One sense per discourse. In: Proceedings of the 4th DARPA Speech and

Natural Language Workshop, pp. 233–237.

Ge, N., Hale, J., Charniak, E., 1998. A statistical approach to anaphora resolution. In: Proceedings of the Sixth

Workshop on Very Large Corpora, pp. 161–170.

Good, I.J., 1953. The population frequencies of species and the distribution of population parameters. Biometrika 40

(3/4), 237–264.

Hindle, D., 1990. Noun classification from predicate-argument structures. In: Proceedings of the 28th Annual Meeting

of the ACL, pp. 268–75.

Kilgarriff, A., 2002. English lexical sample task description. In: Preiss and Yarowsky (2002), pp. 17–20.

Kilgarriff, A., Palmer, M., 2000. Introduction to the special issue on SENSE-VAL. Computers and the Humanities 34

(1–2), 1–13.



J. Preiss / Computer Speech and Language 18 (2004) 315–333 333

ARTICLE IN PRESS
Korhonen, A., Preiss, J., 2003. Improving subcategorization acquisition using word sense disambiguation. In:

Proceedings of ACL. pp. 48–55.

Leacock, C., Towell, G., Voorhees, E., 1993. Corpus-based statistical sense resolution. In: Proceedings of the ARPA

Workshop on Human Language Technology, pp. 260–265.

Manning, C.D., Sch€utze, H., 1999. Foundations of Statistical Natural Language Processing. MIT Press.

Mihalcea, R., Moldovan, D.I., 1999. An automatic method for generating sense tagged corpora. In: Proceedings of

AAAI-99. pp. 461–466.

Mihalcea, R., Moldovan, D.I., 2002. Pattern learning and active feature selection for word sense disambiguation. In:

Preiss and Yarowsky (2002), pp. 127–130.

Palmer, M., Fellbaum, C., Cotton, S., Delfs, L., Dang, H.T., 2002. English tasks: All-words and verb lexical sample. In:

Preiss and Yarowsky (2002), pp. 21–24.

Pedersen, T., 2002. Machine learning with lexical features: The Duluth approach to Senseval-2. In: Preiss and

Yarowsky (2002), pp. 139–142.

Preiss, J., Yarowsky, D. (Eds.), 2002. Proceedings of SENSEVAL-2: Second International Workshop on Evaluating

Word Sense Disambiguating Systems.

Resnik, P., 1992. Wordnet and distributional analysis: a class-based approach to lexical discovery. In: Worshop Notes,

Statistically-Based NLP Techniques AAAI, pp. 54–64.

Stevenson, M., 1999. Multiple knowledge sources for word sense disambiguation. Ph.D. thesis, University of Sheffield.

Stevenson, M., Wilks, Y., 1999. Combining weak knowledge sources for sense disambiguation. In: Proceedings of the

International Joint Conference for Artificial Intelligence (IJCAI-99), pp. 884–889.

Stevenson, M., Wilks, Y., 2001. The interaction of knowledge sources in word sense disambiguation. Computational

Linguistics 27 (3), 321–349.

Yarowsky, D., 2000. Hierarchical decision lists for word sense disambiguation. Computers and the Humanities 34 (1/2),

179–186.

Zipf, G.K., 1949. Human Behaviour and the Principle of Least-effort. Addison-Wesley, Cambridge, MA.


	Probabilistic word sense disambiguation
	Introduction
	Information sources
	Unsupervised modules
	Frequency module
	Basic part of speech module

	Supervised modules
	PoS context modules
	Window module
	PoS trigram module
	Lemma co-occurrence modules
	Head module
	Grammatical relation module


	Smoothing
	Combining modules
	Results
	Senseval evaluation
	Amount of training data required
	Probabilistic modular WSD
	Choosing the right modules


	Conclusion
	Acknowledgements
	References


