
Speech Communication 48 (2006) 598–615

www.elsevier.com/locate/specom
A comparison of acoustic coding models for
speech-driven facial animation

Praveen Kakumanu a, Anna Esposito b,
Oscar N. Garcia c, Ricardo Gutierrez-Osuna d,*

a Department of Computer Science and Engineering, 358 Russ Engineering Center, Wright State University,

3640 Colonel Glenn Hwy, Dayton, OH 45435-0001, United States
b Department of Psychology at the Second University of Naples, Italy

c College of Engineering, University of North Texas, United States
d Department of Computer Science, Texas A&M University, College Station, TX 77843, United States

Received 23 January 2004; received in revised form 21 July 2005; accepted 21 September 2005
Abstract

This article presents a thorough experimental comparison of several acoustic modeling techniques by their ability to
capture information related to orofacial motion. These models include (1) Linear Predictive Coding and Linear Spectral
Frequencies, which model the dynamics of the speech production system, (2) Mel Frequency Cepstral Coefficients and
Perceptual Critical Feature Bands, which encode perceptual cues of speech, (3) spectral energy and fundamental frequency,
which capture prosodic aspects, and (4) two hybrid methods that combine information from the previous models. We also
consider a novel supervised procedure based on Fisher�s Linear Discriminants to project acoustic information onto a low-
dimensional subspace that best discriminates different orofacial configurations. Prediction of orofacial motion from speech
acoustics is performed using a non-parametric k-nearest-neighbors procedure. The sensitivity of this audio–visual mapping
to coarticulation effects and spatial locality is thoroughly investigated. Our results indicate that the hybrid use of articu-
latory, perceptual and prosodic features of speech, combined with a supervised dimensionality-reduction procedure, is able
to outperform any individual acoustic model for speech-driven facial animation. These results are validated on the 450
sentences of the TIMIT compact dataset.
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1. Introduction

Lip reading plays a significant role in spoken lan-
guage communication. It is not only essential for the
hearing impaired but also used by normal listeners as
an aid to improve the intelligibility of speech in
noisy environments. Summerfield (1979) has shown
.
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experimentally that using only lip movements it is
possible to raise the word intelligibility in noisy con-
ditions from 22.7% to 54% on average, and up to a
maximum of 74%. In addition, lip movements are
useful for understanding expressions and developing
tools for human–machine communication (Bernstein
and Benoit, 1996). Jourlin et al. (1997) has shown
that lip trajectories contain information about a per-
son�s identity, and that they can be used to improve
the performance of speaker verification systems.
Moreover, the integration of lip trajectory informa-
tion when added to automatic speech recognition
for text-to-speech systems improves system perfor-
mance and enhances the intelligibility of synthetic
speech (Benoit and Le Goff, 1998; Massaro, 1997;
Rogozan and Deléglise, 1998). Central to any of
these applications is the development of robust and
accurate models of lip movements, audio–visual
sampling at a reasonable rate and, most importantly,
a careful synchronization with the produced speech.

A number of lip modeling techniques have been
proposed in the past two decades. Several of these
models have been developed for the purpose of joint
audio–visual speech recognition, and are based
directly on images or statistics of lip motion (Bregler
and Omohundro, 1995; Coianiz et al., 1995; Kass
et al., 1988). Since they use static images, changes
in lip poses have to be accomplished by interpola-
tion, missing important dynamic features. Few
models are based on the anatomy of the lips,
attempting to simulate the muscles in the mouth
region (Essa, 1995; Waters and Frisbie, 1995). Yet,
the muscles surrounding the lips are extremely com-
plex, and have proved to be difficult to model and
subsequently control accurately. Finally, when
embedded in more complex systems for synthesis
and facial animation, lip movements are often mod-
eled by static articulatory parameters which are then
converted into dynamic coefficients by an active
lip-shape model or by hand (Abry et al., 1989;
Caldognetto et al., 1989; Leps¢y and Curinga,
1998; Luttin et al., 1996; Beskow, 1995; Goldschen,
1993; Parke, 1982; Lee et al., 1995). Some of these
models do not accurately reproduce the dynamics
and the synchronism between utterances and the
corresponding synthesized facial movements since
the oral trajectories are not estimated directly from
the corresponding sampled speech signal.

Previous work on predicting lip trajectories from
speech can be grouped into two major approaches.
The first of these essentially associates the acoustic
parameters with lip parameters by exploiting key
lip positions (e.g., visemes, action units, codewords,
control parameters) or phonetic segmentation
(Nakamura and Yamamoto, 2001; Ezzat and Pog-
gio, 2000; Pelachaud et al., 1996; Waters and Lever-
good, 1993; Cohen and Massaro, 1993; Morishima
and Harashima, 1991; Arslan and Talkin, 1999;
Yamamoto et al., 1998). There is, however, no uni-
formly predictable simple correspondence between
phonetic-level acoustics and the commonly used
visual units because of coarticulatory effects and
the non-linear relationship between the phonetics
of the produced speech and the perceived orofacial
movements often influenced by prosody or mood.
Therefore, the mapping from purely acoustic
sequences to visual-phonetic units introduces addi-
tional uncertainty, producing a loss of information
(similar to that generated by unaccounted prosody)
and resulting in a less natural lip motion modeling.
An alternative more recent approach is to construct
a direct mapping from sub-phonemic speech acous-
tics onto orofacial trajectories, using either three-
dimensional coordinates of facial points or dynamic
articulatory parameters (Massaro et al., 1999; Hong
et al., 2002; Brand, 1999; Tekalp and Ostermann,
2000). McAllister et al. (1998) were able to predict
the position of the mouth for English vowels by
transforming the fundamental frequency (F0) con-
tour into a probability density function, and using
the first and second moments as inputs to a bivari-
ate predictor function. Since the method uses F0
as the basic source of information, it cannot be
extended to the articulation of voiceless sounds.
Lavagetto (1995) synthesized lip parameters from
Linear Prediction Coefficients (LPC) using a Time
Delay Neural Network (TDNN) to capture the
temporal relationship between acoustics and lip
movements. Massaro et al. (1999) predicted facial
parameters from Mel Frequency Cepstral Coeffi-
cients by training a Multilayer Perceptron and using
a certain number of past and future frames to model
coarticulatory effects. Hong et al. (2002) used a fam-
ily of multilayer perceptrons, each trained on a spe-
cific phoneme, and a seven-tap delay line to capture
coarticulation. Brand (1999) predicted the trajecto-
ries of 3D facial points using a combination of
LPC and RASTA–PLP coefficients, along with an
entropy-minimizing algorithm that learned simulta-
neously both the structure and the parameters of a
Hidden Markov Model (HMM). However, methods
based on TDNNs or HMMs rely on an iterative
estimation of non-linear relationships that result in
computationally intensive training phases.
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At this juncture, we evaluate quantitatively vari-
ous acoustic models and learning approaches by
their ability to predict lip trajectories. Several signif-
icant questions are addressed in this paper: To what
extent can lip motion be predicted from speech
acoustics for a given measured accuracy? Which
are the acoustic features that encode better the rela-
tionships between speech and lip dynamics? Does
acceptable realism require either articulatory- and/
or perceptually based acoustic features, or both?
And the central question is: Which speech acoustics
model, among those frequently used, is most suit-
able to represent these features? To address these
questions, four acoustic modeling algorithms were
considered for the purpose of feature extraction:
Linear Prediction Coefficients, Perceptual Critical
Band Features, Mel Frequency Ceptrum Coeffi-
cients, and Linear Spectral Frequencies (Markel
and Gray, 1976; Aversano et al., 2001; Duttweiler
and Messerschmitt, 1976; Itakura, 1975). Our
approach predicts lip movements directly from these
acoustic features, without any intermediate trans-
formation, using a simple and effective k-nearest-
neighbor (KNN) procedure (Duda et al., 2001, pp.
177–186). This approach helps to put the models
in an equal basic footing for comparison. To include
coarticulation effects, context is explicitly taken into
account by means of a tapped-delay line. In addi-
tion, some prosodic information is also considered
by adding energy and F0 to the aforementioned
acoustic features (Parsons, 1986).

2. System overview

The audio–visual system employed in this
research consists of two color cameras (Kodak
Fig. 1. (a) Neutral face of the subject with visual markers. (b) The 27 M
(Tekalp and Ostermann, 2000).
ES310), two dedicated PCs and frame grabbers
capable of acquiring two 648 · 484 video streams
to a hard drive at 60 frames per second (fps). Speech
is captured on one of the PCs using a shotgun
microphone (Sennheiser K6/M66 with Symetrix
302 preamplifier) and saved to disk using a proprie-
tary file format that interleaves 1/60 s of the corre-
sponding audio between video frames to ensure
accurate synchronization. Once the data has been
saved to disk, the 3D coordinates of various facial
points are tracked using stereo correspondence,
from which the corresponding MPEG-4 Facial
Animation Parameters (FAP) are subsequently
extracted (Tekalp and Ostermann, 2000). A number
of acoustic features are then extracted from each
1/60 s window of the audio track. These procedures
are described in the following subsections.

2.1. Video processing

To facilitate accurate tracking of the facial
dynamics, 27 markers are placed on the face of a
subject at various facial key positions defined by
the MPEG-4 standard (Tekalp and Ostermann,
2000), as shown in Fig. 1. Each marker position is
independently tracked by finding the maximum of
the average cross-correlation across the three color
planes. This search is performed in a local region
of interest centered on the marker position in the
preceding frame. The initial position of each marker
is manually entered by means of a graphical user
interface. This process is performed independently
on each of the two stereo sequences. To obtain the
3D coordinates of the MPEG-4 facial points from
two stereo images, we apply a calibration procedure
comprising a prism with fiduciary markers and a
PEG-4 feature points used in this work (denoted by cross-marks)
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calibration tool to establish the calibration corre-
spondences and calibration matrix (Bryll et al.,
1999). The algorithm is based on Tsai�s stereo cali-
bration algorithm that takes radial lens distortion
into consideration (Tsai, 1987). Although the sub-
ject is asked to stand still during data collection,
head motion is unavoidable due to the speaker�s
natural tendency to move her head during speech.
Hence, the 3D coordinates of the tracked points
also contain movements due to head translations
and rotations. Head motion is removed by estimat-
ing head pose from eight MPEG-4 facial points
(points 5.3, 5.4, 9.3, 9.12, 3.7, 3.8, 3.11 and 3.12)
(Arun et al., 1987). Finally, the coordinates of the
neutral face in the first frame of each sequence are
subtracted from the remaining frames to yield a vec-
tor of 81 (27 · 3) relative displacements following
the MPEG-4 Facial Animation Parameters (FAP).

2.2. Data collection

The database used in this study consists of 450
phonetically balanced sentences (TIMIT compact
set, Garofolo et al., 1988), spoken by a female
American English speaker born and raised in Ohio.
On each recording session, the speaker is given a list
of sentences, and asked to produce them in series of
five sentences. To reduce intra-speaker variations,
each sequence of five sentences is recorded starting
from a neutral facial expression, such as that of
Fig. 1(a), which serves as a baseline for each take.

This dataset is divided into three separate collec-
tions of sentences: a training set with 316 (70%) sen-
tences, a validation set with 67 (15%) sentences, and
a test set with 67 (15%) sentences, for a total of over
97000 frames. The training set is used to create a
lookup table for the KNN algorithm, whereas the
validation set is used to indicate appropriate struc-
tural parameters for each acoustic model. The
performance of the final models is evaluated on
the independent test set.

2.3. Speech processing

The audio signal is sampled at 16 kHz and fil-
tered with a spectral subtraction algorithm to
reduce electrical noise, mostly 60 Hz (Boll, 1979).
Spectral subtraction operates by estimating the
frequency spectrum of the background noise and
subtracting it from the noisy speech spectrum. The
filtered signal is then processed in blocks of 1/60 s
with a 33% overlap between consecutive blocks.
Each block is pre-emphasized with an FIR filter
(H(z) = 1 � az�1; a = 0.97) and weighted with a
Hamming window to avoid spectral distortions
(Rabiner and Schafer, 1978). Four different acoustic
models (see Section 3) are used to extract informa-
tion from each frame. In addition, F0 and signal
energy, which capture some prosodic information,
are also considered as a separate acoustic model.
This prosodic model will be denoted by PP (for
power and pitch) in what follows. F0 is computed
using the cube clipping method (Parsons, 1986).

2.4. Audio–visual mapping

To account for coarticulation, context is included
by associating each video frame v(t), where t denotes
the frame index, with an acoustic vector an(t)
containing n past and future audio frames:

anðtÞ ¼ ½aðt � nÞ; . . . ; aðt � 2Þ; aðt � 1Þ;
aðtÞ; aðt þ 1Þ; aðt þ 2Þ . . . ; aðt þ nÞ� ð1Þ

The audio–visual pairs [an,v](t) form the training
database (i.e., a lookup table.) For k = 1 neighbors,
the KNN audio–visual mapping is used as follows.
To synthesize a new animation frame v̂ðtÞ from an
audio vector ânðtÞ, the procedure finds the example
in the audio–visual lookup table whose audio vector
an(j) is closest to ânðtÞ in Euclidean distance, and
uses its video vector v(j) as the prediction:

v̂ðtÞ ¼ fvðtÞ; t ¼ arg min
j
kân � anðjÞkg ð2Þ

The absence of a training phase in the KNN proce-
dure allows us to perform a systematic comparison
of the different acoustic models, as well as study the
effect of the context duration n, which would be
impractical if a training-intensive iterative learner
(e.g., a time-delay neural network) were used. The
performance of the KNN mapping is measured by
the Mean Square Error (MSE) and Correlation
Coefficient (CC) between the predicted and original
video trajectories, defined as:

MSE ¼ 1

r2
v

1

N

XN

t¼1

ðv̂ðtÞ � vðtÞÞ2;

CC ¼ 1

N

XN

t¼1

ðv̂ðtÞ � lv̂ÞðvðtÞ � lvÞ
rv̂rv

ð3Þ

where N is the total number of frames in the dataset,
and l and r are the mean and standard devia-
tion of the video parameters. These measures of
performance are not computed on the predicted
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3D trajectories, but rather on the following three
articulatory parameters, which have been shown
to contain the most important features for auto-
matic visual phones (visemes) recognition (Mont-
gomery and Jackson, 1983; Finn, 1986): mouth
height (MH = 8.1y � 8.2y in the MPEG-4 stan-
dard), mouth width (MW = 8.3x � 8.4x) and chin
height (CH = 9.3y � 2.10y).

2.5. Animation

To verify the accuracy of our tracking and
the resulting predictions, we have developed an
MPEG-4 compliant player capable of rendering a
facial animation at 60 fps on mid-range performance
computers with minimal OpenGL acceleration. The
player is based on a one-layer pseudo-muscle model
consisting of a mesh with 876 triangles, 28 pseudo-
muscles to allow facial expressions and movement,
and an underlying non-penetrable ellipsoidal struc-
ture that approximates the skull and the jaw. This
novel ellipsoidal structure is used to detect and pre-
Fig. 2. Speech-driven facial
vent penetration of the skull/jaw by facial points,
thereby giving a sense of volume and a more realistic
dynamic behavior. The details of this model have
been presented elsewhere (Gutierrez-Osuna et al.,
2002, 2005). The complete audio–visual capture,
tracking, and prediction procedure are depicted in
Fig. 2.

3. Speech coding models

In using speech to predict lip motion, it is essen-
tial to identify a technique that efficiently captures
information correlated to the lip motion, since the
prediction will rely strongly on context surrounding
this information. For this purpose, five individual
acoustic models are selected for evaluation: two that
model articulatory parameters of speech produc-
tion, two that model perceptual cues related to the
human auditory system, and a prosodic model. In
addition, two hybrid vectors models that combine
information from the previous models are also
considered.
animation procedure.
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3.1. Articulatory models

The rationale for using an acoustic model of the
speech production dynamics is that the model may
also be able to capture the visual articulatory move-
ments associated with these dynamics. For this rea-
son, two articulatory models are considered in this
work: Linear Predictive Coding and Linear Spec-
trum Frequencies, a brief overview of which is
presented next.

3.1.1. Linear Prediction Coding (LPC)
Linear Predictive Coding models speech as a

two-source/filter system excited at the glottis (the
signal source) by noise (voiceless sounds) and by a
periodic impulse train (voiced sounds). This model
is articulated through a frequency dependent trans-
formation representing the vocal tract configuration
(the filter). Since the vocal tract configuration
changes as a function of the speech sound being
produced, the filter parameters are computed over
a short window of usually no more than 20–30 ms
approximating a static filter over this short period.
The computation of assumed time-invariant filter
parameters (in our case on a 16.6 ms window) is
performed such as to minimize the error between
the real signal and the one predicted from the model
using the autocorrelation method (Markel and
Gray, 1976). Since lip and tongue positions affect
vocal tract configuration and the LPC coefficients
are designed to encode articulatory movements,
they can be expected to provide good estimates for
lip-syncing graphic models driven by speech.

3.1.2. Linear Spectrum Frequencies (LSF)

The Linear Spectrum Frequencies model, also
known as Line Spectrum Pairs (LSP), was intro-
duced by Itakura (1975) as an alternative paramet-
ric model to LPC. The LSF parameters are
computed through two polynomials, P(z) =
A(z) + z�(p+1)A(z�1) and Q(z) = A(z) � z�(p+1)�
A(z�1), where AðzÞ ¼ 1�

Pp
k¼1akz�k is the inverse

filter transformation of the LPC filter. The roots
of these two polynomials determine the line spectral
frequencies of A(z). Soong and Juang (1993) have
shown that if A(z) is the minimum phase, then the
zeros of P(z) and Q(z) are on the unit circle and they
are interlaced with each other. The LSFs corre-
spond to the frequencies wi of these zeros, which
are in ascending order, 0 < wi < p, 1 6 i 6 p (p is
the order of the prediction), ensuring thus the stabil-
ity of the LP filter, which is an important pre-
requirement for speech coding applications. In our
case, the LSF parameters are calculated from P(z)
and Q(z) by applying a discrete cosine transforma-
tion (DCT) (Soong and Juang, 1993). LSF has a
number of advantages compared to the LPC repre-
sentation, including a bounded range, a sequential
ordering of the parameters, and a simple check for
the filter stability. In addition, the temporal evolu-
tion of the LSF coefficients has been proven to
follow the formant frequency trajectories from one
phone to another (Kim and Lee, 1999).

3.2. Perceptual models

A rationale for the use of perceptually related
transformations of the signal, such as a logarithmic
frequency scale, is the fact that speech is a learned
skill which is affected not only by the production
mechanism of the vocal tract but also by the manner
in which speech has been perceived by the human
learners who reproduce the learned sequences.
According to this rationale, the production of
speech would be a fortiori biased by the fact that
speech production is learned through the human
perception mechanism. This mechanism was mod-
eled by Seneff (1988). This powerful hypothesis
strongly relates recognition of speech to the human
perception mechanisms.

Moreover, the previously described articulatory
models are based on the assumption that formant
frequency values and their trajectories are the cues
for a speech production model. Therefore, they
extract features that are based on the unambiguous
identification of important peaks in the spectral
envelope, and require a robust method for disam-
biguating these from additional peaks that may
occur for a variety of reasons. However, it has been
proven (Klatt, 1982) that neither the overall level,
nor the exact location of the pattern in the fre-
quency domain or the overall tilt of the spectrum
are important for phonetic perception. Rather, it
is the changes in the shapes and relative locations
of the major spectral features that are of greater
import (Klatt, 1982). In light of these consider-
ations, it is also important to consider two perceptu-
ally based processing techniques, using concepts
from the psychophysics of hearing in order to
obtain an estimate of the auditory spectrum.

3.2.1. Perceptual Critical Band Features (PCBF)

The first perceptually based model consists of
processing the speech signals through a critical-band
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resolution of the Fourier spectrum described
by Bark ¼ 13tan�1 0:76f

1000

� �
þ 3:5tan�1 f 2

75002

� �
, where

the acoustic frequency f is mapped onto a perceptual
frequency scale referred to as critical band rate or
Bark. This approximate perceptually modified spec-
trum is used to capture dynamic aspects of the spec-
tral envelope patterns, resulting in a vector of
Perceptual Critical Band Features (Aversano et al.,
2001). Note that RASTA–PLP also contains a per-
ceptual component, but then the signal is further
processed by including a predictive modeling (PLP)
and a temporal filtering (RASTA) process to make
the extracted features closer to the formant trajec-
tory (Hermansky and Morgan, 1994).

3.2.2. Mel Frequency Cepstral Coefficients

(MFCC)

Another perceptually based alternative to PCBF
is to use MFCC (Duttweiler and Messerschmitt,
1976). In this case, an LPC or a DFT spectrum
of the signal is frequency warped through a Mel-
scale transformation Mel ¼ 2595log10 1þ f

700

� �
, and

amplitude-warped using a logarithmic transforma-
tion. This is done using a bank of N band-pass
filters arranged linearly along the Mel scale. The
bandwidth of each filter is chosen equal to the
Mel-scale bandwidth of the corresponding filter cen-
ter frequency. The log-energy output of these N
filters Xk, is then used to compute a given number
Fig. 3. Result of the six pre
M of MFCC coefficients Cn ¼
PN

k¼1X K cos n�½
k � 1

2

� �
p
20
�; for n ¼ 1; . . . ;M .

Fig. 3 illustrates the results of each of the six indi-
vidual speech coding models for the TIMIT sen-
tence ‘‘She had your dark suit in greasy wash water

all year’’. Each result is shown as an image, where
each column represents a time step, each row repre-
sents the trajectory of a coefficient over time, and
pixel intensities represent the feature values. These
images show that each model uses a different encod-
ing to characterize the information embedded in the
speech signal. In addition, the dynamic range of the
coefficients (not shown in the figure) is also unique
to each model, suggesting that the acoustic features
are also weighted differently. These images are, in
general, difficult to interpret by an untrained eye.
Note, however, how the PCBF spectrogram shares
a close resemblance to a short-time FFT spectro-
gram. The average cross-correlation coefficients
between every pair of features EbCC(Xi,Yj)c"i,j,
where X and Y are the individual acoustic models
(LPC, LSF, MFCC, PCBF), are shown in Table 1.
Note that the diagonal elements need not be equal
to one, since they are the average cross-correlation
between pairs of features from the same acoustic
model. These figures are indicative of the degree of
redundancy that exists between the different acous-
tic features. PCBF and LSF, in particular, appear
to have highly correlated features, an observation
processing algorithms.



Table 1
Average cross-correlation coefficients among pairs of features

LPC LSF MFCC PCBF PP

LPC 0.3132 0.3120 0.1052 0.2817 0.2819
LSF 0.5809 0.1948 0.5247 0.3926
MFCC 0.1962 0.2460 0.1883
PCBF 0.8965 0.6810
PP 0.8126
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that is consistent with the images in Fig. 3. These
cross-correlation coefficients drop when we consider
pairs of features from different models, which
suggests that a combined feature vector with infor-
mation from multiple models may be able to
outperform the individual models. This issue is
investigated next.
4. Combining coding models

The use of hybrid vectors with features from mul-
tiple acoustic models is common practice in speech
recognition, speaker verification, and speech-driven
facial animation problems (Tibrewala and Herman-
sky, 1997; Sharma et al., 1998; Brand, 1999; McAll-
ister et al., 1998). For this reason, we also explore
possible enhancement of the audio–visual predic-
tions by combining information from the previously
mentioned speech models. In a first instance this is
accomplished by concatenating the individual fea-
ture vectors as a 150-dimensional1 hybrid vector, a
model that we will refer to as COMB (for combina-
tion). However, KNN procedures are notoriously
sensitive to dimensionality. To address this issue, a
novel supervised dimensionality-reduction proce-
dure is used.

Given that our objective is to find audio features
that are discriminative of orofacial configurations
and their dynamics, we use a signal classification cri-
terion such as Fisher�s Linear Discriminant Analysis
(LDA) to project the hybrid vector onto a lower-
dimensional subspace (Duda et al., 2001; pp. 117–
124). In order to obtain a LDA transformation of
the input space (audio), the audio–visual vectors
must first be assigned to distinct output classes.
Since the output space (video) is not categorical,
we cluster training data into groups with similar
1 (12 features/frame · 3 frames/model · 4 models) + (1 F0 + 1
Energy) · 3 frames.
orofacial configurations by means of vector quanti-
zation (VQ) (Duda et al., 2001; pp. 526–528). Our
VQ implementation uses a standard recursive bin-
ary splitting procedure: starting from one cluster
containing all the samples, VQ recursively splits
each cluster into two sub-clusters (along the direc-
tion of largest variance) until a desired number of
codewords is obtained. Once a codeword index
has been assigned to each audio–visual pair, an
LDA projection matrix is computed to project the
audio vector into a subspace that maximizes the sep-
aration of the different video clusters. Section 6.3
will report on the performance of the resulting
vector (COMB–LDA) as a function of both the
number of video codewords and of the number of
LDA eigenvectors preserved for the projection.

5. Principal component analysis of orofacial

motion

The video processing procedure described in Sec-
tion 2.1 yields an 81-dimensional vector containing
3D coordinates of 27 facial points for each frame.
This representation is clearly redundant since the
motion of these facial points is highly coupled and
also contains noise inherent to the video capture
procedure. Therefore, we seek to form a low dimen-
sional projection that captures the principal direc-
tions of orofacial motion, and also filters out some
of the experimental noise in the process. This is
accomplished through Principal Component Analy-
sis (PCA) (Duda et al., 2001; pp. 568). The PCA
procedure accepts an 81-dimensional video vectors
(on the 316 training sentences), and produces a
series of eigenvectors (81-dimensional vectors) that
are aligned with the principal components (PC) or
directions of variance. A subset of these PCs is then
selected as the new representation for the video. To
synthesize a new animation, the KNN audio–visual
mapping is used to predict these selected PCs from
the audio. The predicted PCs are then projected
back into the original 81-dimensional space through
the inverse Karhunen-Loéve transform in order to
reconstruct the 3D orofacial trajectories. The details
of this procedure can be found in (Gutierrez-Osuna
et al., 2002, 2005).

An appropriate number of PCs for the video
vector was determined with a pilot perceptual test
involving nine human subjects, all members of our
research group not working on this project. Subjects
were asked to evaluate the perceptual realism of five
different animations containing the 2, 4, 6, 8 and 12



Table 2
Perceptual evaluation of the five PCA models

Pair-wise comparisons Model B (second)

1:2 1:4 1:6 1:8 1:12

Model A (first)
1:2 AAAABAAAA BABABBBBB ABABBBBAB BBAAABBBB ABBBABBAA
1:4 BAABAAAAA BABBBAABA BBBAABABA BBBAAABBB ABAAAABBB
1:6 ABABAAABA AAAABAABA BBBABBBBB BBAAABBBB AAAAAABBA
1:8 BAAABAABA ABBABAABA BABBBBABB BBAABBBBB BBAAAABBB
1:12 ABBAABAAA BBBABBABA BBAABBABA BBBBBBBAA BAAAABBBB

Each cell in the table represents a paired test, where model A (row) was presented first, followed by model B (column). The response of the
9 subjects (in order) is shown on each cell: an A indicates that the subject chose Model A.
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largest PCs, respectively. Each of the five anima-
tions consisted of four sentences from the validation
set. For each validation sentence, the 81 video coor-
dinates were projected onto a low-dimensional
space (i.e., 2, 4, 6, 8 and 12 dimensions) using the
PCA eigenvectors from the 316 training sentences,
and then back-projected onto the original 81 dimen-
sions. Therefore, this test evaluated the ability of
PCA to capture the perceptually relevant directions
of orofacial motion, not the prediction capabilities
of the KNN audio–visual mapping.

The evaluation was performed as a series of
paired tests, for a total of 25 comparisons (5 mod-
els · 5 models) per subject. For each paired test,
the subject was presented with the four bimodal sen-
tences from the first model (model A), followed by
the four sentences from the second model (model
B), and then asked to choose the more realistic of
the two animations. Note that each pair of models
was presented twice, including each model against
itself, in order to identify potential biases towards
the order of presentation. The results are summa-
rized in Table 2. Aggregating these results, the mod-
els with 2, 4, 6, 8, and 12 PCs received 32, 47, 55, 51
and 40 favorable votes, respectively. Though the
perceptual choice between 6 and 8 PCs was not sta-
tistically significant (t-test, a = 0.05), the distribu-
tion of votes indicates that a model with 6 PCs
provided the best perceptual realism. The perfor-
mance dropped for 2 and 4 PCs, indicating that
fewer eigenvectors cannot capture sufficient orofa-
cial motion. Similarly, the performance also
dropped for 8 and 12 PCs, which suggests that the
additional eigenvectors capture noise in the data.

6. Evaluation of the audio–visual models

Having presented the various acoustic coding
models, and having explored a perceptually based
representation of orofacial motion, we are now
ready to investigate the performance of the near-
est-neighbor audio–visual model as a function of
two parameters: (1) temporal context, defined by
the length and sampling rate of the coarticulation
window, and (2) spatial locality, defined by the
number of nearest neighbors in the audio–visual
mapping. In addition, we also analyze the perfor-
mance of the LDA–COMB hybrid model in terms
of visual codebook size and number of audio
LDA dimensions.

6.1. Sensitivity to temporal context

It is known that facial dynamics are strongly
influenced by backward and forward coarticulation
(Kühnert and Nolan, 1999) a phenomenon that is
incorporated in our model with a moving window
of fixed duration. This section investigates the
performance of the KNN audio–visual mapping
as a function of this temporal context, as captured
by the tapped-delay line in Eq. (1). Throughout
these experiments, a fixed number of k = 15 neigh-
bors is used (the sensitivity to this parameter is
analyzed in Section 6.2). Fig. 4(a) and (c) illus-
trates the performance of the different acoustic
models on the validation set. Context duration
was systematically increased until a global opti-
mum (min MSE or max CC) was found for all
models. Note that, for COMB and COMB–LDA,
results beyond n = 8 are not included. For these
two models, the dimensionality of the resulting
audio vector (e.g., 950 features for n = 9), com-
bined with the number of training samples (over
67 000 frames from 316 sentences), prevented the
dataset from even being loaded into main memory.
This limitation prompted us to consider alterna-
tives for reducing the initial dimensionality of the
acoustic vector.
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Fig. 4. Effect of context duration with 1:1 sampling and 5:1 subsampling (on validation data).

Table 3
Best context duration and spatial locality (on validation data)

Audio model Context duration (k = 15) Spatial
locality
(5:1, n = 5)

1:1 sampling 5:1 sampling

Max CC n Max CC n Max CC k

LPC 0.7256 7 0.7379 5 0.7379 15
LSF 0.7758 6 0.7797 5 0.7798 13
MFCC 0.7807 8 0.7887 5 0.7887 15
PCBF 0.7815 7 0.7812 5 0.7812 15
PP 0.7072 8 0.7043 10 0.6956 16
COMB 0.7819 7 0.7873 5 0.7911 20
COMB–LDA 0.8109 8 0.8110 10 0.8117 38

2 Interestingly, coarticulation effects seem to be language-
dependent. In English, forward coarticulation is more pro-
nounced, whereas in French or Italian backward coarticulation
is more dominant. In fact, unpublished results by our group
indicate that prediction of orofacial motion is more accurate with
forward than with backward coarticulation.
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6.1.1. Subsampling the coarticulation window

The logical solution to the dimensionality issue
was to establish a trade-off between context dura-
tion and temporal resolution. For a given context
duration n, the coarticulation window can be sub-
sampled by discarding all but the last of every T

consecutive frames (T:1 subsampling). For 1:1, the
scheme is equivalent to the acoustic vector in Eq.
(1). For higher values of T, a longer context dura-
tion can be employed at no cost in dimensionality.
A reasonable choice was experimentally found to
be a 5:1 ratio:

anðtÞ ¼ ½aðt � nÞ; . . . ; aðt � 5Þ; aðtÞ; aðt þ 5Þ;
. . . ; aðt þ nÞ�; n ¼ 0; 5; 10; . . . ð4Þ

With 5:1 subsampling and n = 5, the acoustic vector
is thus reduced to 3 frames: one at �83 ms (5 · 16.6
ms), one at 0 ms, and one at +83 ms. Similarly, with
5:1 subsampling and n = 10, the acoustic vector is
reduced to 5 frames: one at �167 ms, one at �83
ms, one at 0 ms, one at +83 ms, and one at +167
ms. The performance of the 5:1 subsampled audio
vector is shown in Fig. 4(b) and (d). The best con-
text length (using k = 15) for both 1:1 and 5:1
subsampling are summarized in Table 3. Several
conclusions can be extracted from these results:

• All models perform poorly for n = 0, since the
mapping does not incorporate coarticulatory
effects, and sharply increase their performance
with larger context durations until a global opti-
mum is reached. Performance degrades for
higher values of n as the mapping considers a
temporal window that is larger than the duration
of the coarticulatory effects and our stationary
parameter assumption may not hold. A maxi-
mum value is obtained for n = 10 frames, or
167 ms of both forward and backward coarticu-
lation.2 This result is consistent with the duration
of most of the stressed and unstressed canonical
syllable forms (V, VC, CV, CVC), as noted by
Greenberg et al. (2003).

• COMB–LDA consistently provides the best per-
formance (Table 3). The worst performers are
PP, as could be expected since it only captures
prosody, and LPC. The remaining acoustic mod-
els, LSF, MFCC, PCBF and COMB, perform
similarly.
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• 5:1 subsampling does not affect performance, as
compared to 1:1 sampling. In fact, with the
exception of PP and PCBF, all acoustic models
benefit from subsampling (Table 3). This suggests
that most of the coarticulatory effects are redun-

dantly spread during a syllable. This is an inter-
esting result worthy of further study.

6.1.2. Comparison with delta features

The proposed tapped-delay line in Eqs. (1) and
(4) represents an alternative to the more conven-
tional delta and delta–delta features. For validation
purposes, we compared the predictive accuracy of
the two approaches. Following Picone (1993), delta
features were computed as:

_aðtÞ ¼ d

dt
aðtÞ �

XF

n¼�F

n � aðt þ nÞ ð5Þ

Delta–delta feature were computed by reapplying
Eq. (5) to the previously computed delta features,
resulting in a new audio feature vector
addðtÞ ¼ ½aðtÞ; _aðtÞ; €aðtÞ�. Fig. 5 shows the results of
the comparison as a function of F, the window size
used to compute the derivative in Eq. (5). As a ref-
erence, the last sample on each curve corresponds to
the tapped-delay features vector in equation (4) for
n = 5. These results show that (i) our tapped-delay
subsampling technique clearly outperforms delta
and delta–delta features for every speech coding
model, and (ii) projection of delta and delta–delta
features onto an LDA subspace dramatically im-
proves the prediction of orofacial motion from
audio.
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Fig. 5. Performance of the proposed tapped-delay vector as compared
shown as a function of the window size of the derivative.
Based on these results, a 5:1 subsampling and
context duration of n = 5 will be used in the remain-
ing sections of this paper for all the acoustic models.
Although the optimum for COMB–LDA occurs at
n = 10, the marginal improvement in performance
with respect to n = 5 (Fig. 4(d)) does not warrant
a nearly two-fold increase in dimensionality for
the acoustic vector (3 frames for n = 5 vs. 5 frames
for n = 10).

6.2. Sensitivity to spatial locality

Having analyzed the impact of coarticulation on
audio–visual prediction, and having determined an
appropriate context duration, we turn our attention
to the spatial locality imposed by the KNN rule. A
value of k = 1 allows the KNN rule to produce a
highly localized mapping since only the nearest
example in audio space is used for the video predic-
tion. Larger values of k control the locality of the
mapping by averaging the prediction across a few
nearest neighbors, reducing the sensitivity of the
algorithm to noise (placement of markers, uncer-
tainty in different takes, etc.) and providing
smoother decision boundaries (Wilson and Marti-
nez, 2000). Extension of the KNN audio–visual
mapping in Eq. (2) to k neighbors is straightforward:

v̂ðtÞ ¼ 1

k

Xk

i¼1

vðkiÞ; ðk1 ¼ arg min
j
kânðtÞ � anðjÞkÞ

(

^ðkânðtÞ � anðkiÞk < kânðtÞ � anðkjÞk8j > iÞ
�
ð6Þ
1 2 3 4 5 # Frames

LPC
LSF
MFCC
PCBF
PP
COMB
COMB-LDA

[a, Δa, Δ2a] [an-5, a, an+5]

to delta and delta–delta features (on validation data). Results are
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where ki is the index of the ith nearest neighbor.
That is, the predicted orofacial parameters are esti-
mated as the average video over the k nearest audio
neighbors.

Fig. 6 illustrates the prediction results on the
validation set for different values of k. The relative
performance of the different models is the same as
in the previous section: COMB–LDA is the best
model, PP and LPC are the worst performers, and
the remaining models are nearly equivalent. The
performance of each model is lowest at k = 1 neigh-
bors, and increases steadily. Performance reaches a
plateau and/or begins to drop in the neighborhood
of k = 15, although the optimum for COMB–LDA
occurs at k = 38. Thus, these results indicate that all
the audio–visual models benefit from averaging
across video vectors in the training set that have
similar acoustic features. Based on these results, a
value of k = 15 is chosen for all models for the
remaining sections in the manuscript.

6.3. Sensitivity to codebook size and LDA

eigenvectors

The success of the COMB–LDA acoustic model
lies in the supervised nature of the projection proce-
dure: the model finds a low-dimensional representa-
tion of the audio data that best discriminates a
subset of facial-configuration codewords. The per-
formance of the model depends on two parameters:
the codebook size Q, which controls the accuracy of
the video-quantization procedure, and the number
of LDA eigenvectors D, which controls the dimen-
sionality of the acoustic vector, or the amount
of audio variance preserved for the audio–visual
mapping. In previous sections, reasonable values
Q = 128 codewords and D = 13 eigenvectors were
used. This section explores the sensitivity of the
model to these two parameters.

Fig. 7(a) illustrates the relationship between Q

and D for six different codebooks (16, 32, 64, 128,
256 and 512 codewords), in terms of the percent
of total audio variance that is preserved in the
LDA projection. Note that the number of non-zero
LDA eigenvectors is limited by (1) the dimensional-
ity of the COMB audio space (150 dimensions for
5:1 subsampling and n = 5), and (2) by the number
of video codewords due to the rank of the between-
class scatter matrix (Duda et al., 2001; pp. 124)
(D 6 min[150, Q � 1]). This explains why, for
Q = 16 codewords, only 15 eigenvectors are needed
to capture 100% of the total audio variance. As the
codebook size increases, so does the number of
eigenvectors required to capture a given percentage
of the audio variance. These results also indicate
that, as expected, the COMB audio vector is highly
redundant, since a large percentage of the total var-
iance is contained in the first few eigenvectors (99%,
98%, 95%, 91% and 84% for Q = 32, 64, 128, 256
and 512, respectively, in the first 20 eigenvectors).

The behavior of the COMB–LDA model on the
validation set is shown in Fig. 7(b). The perfor-
mance increases with the first few LDA eigenvectors
in a very pronounced manner, and eventually satu-
rates since most of the discriminatory information is
contained within those first few eigenvectors. The
performance also increases with codebook size,
but only moderately, reaching a maximum at
Q = 128 codewords and D = 13 eigenvectors.
Hence, these values will be used in the next section
to evaluate the final performance of the models on
an independent test set.



5 10 15 20

60

70

80

90

100
%

 o
f 

 t
o

ta
l v

ar
ia

n
ce

# LDA eigenvectors 5 10 15 20

16
64

256

0.6 

0.7 

# LDA dims
Codebook

Size

C
C

16
32

512

256

128

64

16
32

512

256

128

64

(a) (b)

Fig. 7. (a) Percent of total acoustic variance as a function of video codebook size. (b) COMB–LDA performance vs. video codebook size
and audio LDA dimensionality (on validation data).

610 P. Kakumanu et al. / Speech Communication 48 (2006) 598–615
7. Objective and perceptual comparison across

acoustic models

The previous subsections have evaluated the
audio–visual predictions as a function of various
model parameters. Performance figures were
obtained by generating an audio–visual lookup
table from the 316 training sentences, and generat-
ing predictions for an independent validation set
with 67 sentences. Based on these performance fig-
ures on validation data, final parameter values were
chosen as follows: context duration n = 5 frames,
context subsampling 5:1, facial point coordinates
compression to six PCA eigenvectors, and k = 15
nearest neighbors. Model parameters for COMB–
LDA were Q = 128 codewords, and D = 13 audio
LDA eigenvectors. To evaluate the predictive accu-
racy and perceptual realism of these final models,
video predictions were generated on an independent
test with 67 sentences.

7.1. Predictive accuracy

The predictive accuracy of the models is summa-
rized in Table 4 in terms of the average CC plus/
Table 4
Final performance (CC) of each audio model on an independent test s

MH MW

LPC 0.8288 ± 0.0649 0.7066 ± 0.1372
LSF 0.8579 ± 0.0669 0.7601 ± 0.1381
MFCC 0.8699 ± 0.0625 0.7173 ± 0.1349
PCBF 0.8710 ± 0.0550 0.7075 ± 0.1652
PP 0.8305 ± 0.0552 0.5759 ± 0.1416
COMB 0.8761 ± 0.0606 0.7262 ± 0.1350
COMB–LDA 0.8817 ± 0.0588 0.7902 ± 0.1212
minus one standard deviation. To determine if these
differences in average performance were statistically
significant, a paired t-test (a = 0.05) was performed
between every two models. The test indicated that
all differences were statistically significant except
for the pairs (LSF, MFCC), (LSF, PCBF), (LSF,
COMB), (PCBF, COMB), and (PCBF, MFCC).
Based on these results, we can conclude that (1)
COMB–LDA provides the best predictive accuracy
of all models, (2) PP and (surprisingly) LPC provide
the worst performance, and (3) differences in perfor-
mance across the remaining models are, in general,
statistically not significant.

An important question is whether the differences
in performance can be attributed to the source of
the model (perceptual vs. articulatory) or are simply
due to the parameter encoding. This issue would be
critical if perceptually based models (MFCC and
PCBF) had consistently outperformed articula-
tory-based models (LSF and LPC), or vice versa.
However, since LSF performs similarly to MFCC
or PCBF, the only valid conclusion is that both per-
ceptual and articulatory information are necessary.
The very fact that LSF performs well is an indica-
tion that articulatory models contain important
et

CH AVG

0.8449 ± 0.0500 0.7901 ± 0.0623
0.8812 ± 0.0527 0.8330 ± 0.0609
0.8921 ± 0.0437 0.8264 ± 0.0595
0.8927 ± 0.0391 0.8237 ± 0.0606
0.8362 ± 0.0589 0.7475 ± 0.0648
0.9009 ± 0.0385 0.8344 ± 0.0554
0.9072 ± 0.0385 0.8597 ± 0.0527
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information for visual speech synthesis. Thus, the
difference in performance between LSF and LPC
is not due to their origin (articulatory in both cases)
but due to the particular parameter encoding: LPC
does not extract information that is useful to predict
orofacial motion.

The performance of the best model (COMB–
LDA) is illustrated in Fig. 8 in terms of the predicted
(thin red trace) versus correct (thick blue trace)
trajectories of the three articulators on three inde-
pendent test sentences: (a) ‘‘Clear pronunciation is
appreciated’’, (b) ‘‘Barb�s gold bracelet was a gradu-
ation present’’, and (c) ‘‘Those who are not purists
use canned vegetables when making stew’’.

7.2. Perceptual realism

The perceptual realism of the models was evalu-
ated following an experimental procedure similar
to that in Section 5. Nine students not working on
this project participated in the evaluation of eight
models: ORIG (the ground truth), PP, LPC, LSF,
MFCC, PCBF, COMB and COMB–LDA. The eval-
uation was performed as a series of paired tests, for a
total of 64 comparisons (8 models · 8 models). For
each paired test, the subject was presented with four
bimodal sentences with predictions from the first
model (model A), followed by the same four sen-
tences predicted with the second model (model B),
and then asked to choose the more realistic of the
two animations. The results of this bimodal percep-
tion are summarized in Table 5. Aggregating these
results, the total number of votes per model was:
ORIG (106 votes), PP (38), LPC (51), LSF (74),
MFCC (63), PCBF (83), COMB (70) and COMB–
LDA (91), for a total of 576 votes (64 pairs · 9 sub-
jects). The statistical significance (t-test; a = 0.05) of
these perceptual evaluations is shown in Table 6.
Several interesting conclusions can be extracted:

• ORIG is perceived as the most perceptually real-
istic animation. This is to be expected, since the
animation is driven directly from video data
without any AV prediction stage.

• Among the actual AV predictions, COMB–LDA
received the highest number of votes, followed by
PCBF. It is interesting to note that the differences
between the ground truth and each of these two
models are not statistically significant and
strongly support our proposed AV modeling
approach.

• The higher performance of COMB–LDA is sta-
tistically significant with respect to all AV models
except for PCBF, whereas the higher perfor-
mance of PCBF is only statistically significant
when compared with PP, the worst performer.
Thus, COMB–LDA is the overall best AV model,
both in terms of total number of votes and in
terms of statistical significance. This result is con-
sistent with the CC/MSE figures in Table 4.

• The lower performance of PP is statistically sig-
nificant with respect to all AV models except
for MFCC. This result is also consistent with
the CC/MSE figures in Table 4.

• Differences among LPC, LSF, MFCC and COMB
are found to be not statistically significance.

8. Discussion

This work has presented a quantitative and qual-
itative comparison of different acoustic models by
their ability to predict orofacial motion from acous-
tic data. The models considered were (1) LPC and



Table 5
Perceptual evaluation of the seven AV models and the ground truth (ORIG)

Pair-wise comparisons Model B (second)

ORIG PP LPC LSF MFCC PCBF COMB LDA

Model A (first)
ORIG BBAAB AAAAB AAAAA BBAAA BAAAB AABAA AAAAB AAAAB

ABBB BAAB AAAB BAAA AAAA BABB BAAB BAAA
PP BBABA ABABB BBBBA BBABB AAABB BBBBA BBABB BBBBB

BBBB BABB AAAB BBAB BBBB BABB BABA BBBA
LPC BBBBA ABBAB AAAAA BBAAA BBAAB BBABA ABABB BBABB

BBBB ABAB AAAB AABA BABB BABB BAAB BBAB
LSF BBBBA AABAA BAABA AABBA AABAB BBBBB AABAB BBBBA

BBBB AAAA ABAA BBBA AAAB BBBB BABA BBBB
MFCC AABBB AABAA AABAA BBBBB BBBAA BBBBA BBBBB BBBBA

BBBB AAAA ABBA BBBB BAAB BABA BBBB BBBA
PCBF BBBBA AAAAA AAAAA AABAB BAAAB AABBA AAAAA BABAB

BBBB ABAA BBAA ABBB BBBA BBBB BBBB BBBB
COMB BBBBA AAAAA AABAB BBABB AAABB BBBAB BBBAA BAABB

BBBB AABA AAAB BBBB ABBB BAAA BAAB ABBB
LDA ABBAA AAAAA AAAAA BAAAB BBAAB BBBBA AABAB AABAA

BBBB AAAA AABB AAAB BABB BABA ABAA BAAA

Each cell in the table represents a paired test, where model A (row) was presented first, followed by model B (column). The response of the
9 subjects (in order) is shown on each cell: an A indicates that the subject chose Model A.

Table 6
Statistical significance of the perceptual differences between pairs of AV models

Pair-wise comparisons Model B (second)

ORIG PP LPC LSF MFCC PCBF COMB LDA

Model A (first)
ORIG 0.0005* 0.0003* 0.0362* 0.0317* 0.1210 0.0165* 0.1525
PP 0.0499* 0.0090* 0.0579 0.0144* 0.0028* 0.0005*

LPC 0.0727 0.3637 0.0506 0.0599 0.0005*

LSF 0.0743 0.4714 0.6091 0.0474*

MFCC 0.2208 0.4751 0.0255*

PCBF 0.2557 0.5155
COMB 0.0094*

LDA

# Votes 106 38 51 74 63 83 70 91

For each pair of models, the number of votes received by each model on each of the 9 subjects is used as a sample population. The null
hypothesis is ‘‘the mean of the two populations (AV models) is equal’’. Small values in the P-value (marked with an asterisk) indicate that
the null hypothesis must be rejected at a significance level a = 0.05.
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LSF, which encode articulatory features related to
the dynamics of the speech production system, (2)
MFCC and PCBF, which encode perceptual cues
exploited by the human auditory system in process-
ing speech signals, (3) energy and F0, which capture
prosodic aspects of speech and (4) COMB and
COMB–LDA, which combine information from
all the above models. The models were trained, val-
idated and tested on the 450 sentences from the
TIMIT compact set. The general conclusion from
our results is that the combination of information
from multiple models, coupled with a supervised
dimensionality reduction stage, yields statistically
significant improvements in predictive accuracy from

acoustic data. The results also indicate that LSF,
MFCC, PCBF and COMB perform similarly, while
LPC and PP give the lowest performance. More
importantly, the COMB–LDA model received the
highest ratings in terms of perceptual realism. Differ-
ences in perceptual realism between the ground
truth and COMB–LDA (or PCBF) were found
not to be statistically significant, a clear indication
that our audio–visual model is able to synthesize
credible orofacial motion from speech acoustics.
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Several additional considerations can be drawn
from our results. First, information about orofacial
motion is encoded in both, perceptual and articula-
tory features. No significant differences in perfor-
mance were found between these two groups of
models. This suggests that both perceptual and
articulatory hypotheses posed in Section 3 are valid:
both the production system and the perceptual sys-
tem play a role in shaping the speech signal. Speech
(visual and acoustic) must be conceived as a signal
jointly produced by the vocal tract and facial
dynamics to be accurately perceived by human audi-
tory learning that influences production and the
evolved lipreading that takes place.

Second, proper use of context duration plays a
critical role in accurately predicting orofacial
motion. Our results show, as could be expected, that
all the proposed acoustic models have a perfor-
mance minimum at n = 0, when no coarticulatory
effects are considered. The performance of individ-
ual models reaches a maximum at n = 5 (83 ms
carryover, 83 ms anticipatory), and drops sharply
for longer contexts. The COMB–LDA model is able
to extend the optimum to n = 10 frames, though
the improvements in performance beyond n = 5
can be considered negligible. This context length is
consistent with the duration of most stressed and
unstressed canonical syllable forms (Greenberg
et al., 2003).

Third, the parameters of the audio–visual map-
ping (number of nearest neighbors k) also play a
role in the final prediction accuracy. The perfor-
mance of the individual models shows an optimum
at around k = 15 neighbors, and drops moderately
afterwards. In the case of COMB–LDA the maxi-
mum is reached at k = 38 neighbors, although the
performance levels off near k = 15. A methodologi-
cal concern that could be raised at this point, and is
open for further investigation, is whether more
sophisticated computational models (such as
TDNNs or HMMs) could improve the prediction
results. Surprisingly, preliminary experiments
performed by our group using more sophisticated
A/V mappings (input-output HMMs, radial basis
functions, and support vector machines) provide
results that are not better than those obtained by
the KNN procedure presented here, and at the
expense of a much higher computational complexity
during training (Fu, 2002, 2005; Balan, 2003).
Moreover, the computational load of KNN can be
significantly reduced with the use of improved
search (i.e., bucketing, k–d trees) or editing tech-
niques (reducing the training set to a small number
of prototype vectors). Preliminary but yet unpub-
lished results by our group indicate that the entire
database can be edited down to a small number of
prototype vectors (e.g., 1024) without severely
reducing the overall synthesis accuracy.

No comparisons are currently possible between
our results and previously published studies or with
intelligibility tests (e.g. CVC, VCV, etc.) as the cor-
pus collected unfortunately did not include that
data. Given that the interest in speech-driven facial
animation is to implement realistic and natural talk-
ing faces, most of the results reported in the litera-
ture are presented in terms of video sequences of
the animation. Although this allows the animation
to be evaluated by its perceptual quality, there is
no possibility to quantify the accuracy of the predic-
tion numerically as is done here. Few quantitative
results have been already reported in the litera-
ture (Lavagetto, 1995; Massaro et al., 1999; Hong
et al., 2002; Brand, 1999). A comparison with these
results was, however, not possible because (1) differ-
ent metrics were used and (2) the audio–visual
data was not publicly available. To this end, all of
our audio–visual data is publicly available on
the group�s webpage at Wright State University
(http://www.cs.wright.edu/~kpraveen/fa/).

Our study gives objective and perceptual mea-
sures that indicate the extent to which it is possible
to predict facial motion directly from speech acous-
tics. We have shown that, although complete recov-
ery of lip motion is not yet possible, a significant
portion can be directly predicted from sub-phone-
mic speech features. Our results indicate that orofa-
cial motion can be predicted with an average CC of
0.86 on novel speech sequences (test data), a rela-
tively high performance considering the simplicity
of the KNN audio–visual mapping. These results
have been obtained on the complete TIMIT com-
pact set, which contains 450 phonetically balanced
sentences.

Finally, the present work shows that an appropri-
ate encoding of the speech signal allows animation of
synthetic faces in synchrony with speech through a
computationally simple procedure. No complex
associations between phonemes and visemes and
no automatic segmentation and phoneme recogni-
tion procedures are required since the proposed
method works at a sub-phonetic level. For this rea-
son, the method can potentially be extended to
multi-lingual applications because sub-units of the
speech signal are not as language-specific as the

http://www.cs.wright.edu/~kpraveen/fa/
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phonemes–visemes association. Moreover, the
method yields a realistic facial animation and recog-
nizes the importance of the data representation for
improving the prediction performance of any
speech-driven facial animation system.
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