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Abstract. Aweb-based search engine responds to a user’s query with a list of documents. This
list can be viewed as the engine’s model of the user’s idea of relevance2the engine ‘believes’
that the ¢rst document is the most likely to be relevant, the second is slightly less likely,
and so on. We extend this idea to an interactive setting where the system accepts the user’s
feedback and adjusts its relevance model.We develop three speci¢c models that are integrated
as part of a system we call Lighthouse. The models incorporate document clustering and a
spring-embedding visualization of inter-document similarity.We show that if a searcher were
to use Lighthouse in ways consistent with the model, the expected e¡ectiveness improves2
i.e., the relevant documents are found more quickly in comparison to existing methods.
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1. Introduction

The bulk of research in Information Retrieval (IR) explores techniques for improving
the ability of an automatic system to return relevant documents in response to a search-
er’s query. The work has typically been carried out in laboratory batch evaluations,
with static queries, collections, and relevance judgments. Researchers have made enor-
mous strides in understanding how to handle queries automatically, and in a wide
range of IR-related tasks. Perhaps the most visible collections of such research are
the annual Text REtrieval Conference (TREC) (Harman and Voorhees, 1999;
2000; 2001).
We are interested in extensions of these ideas to interactive environments. Although

it is very important that the underlying search technology be as accurate as possible,
how the information is presented and how the user interacts with a system are also
critical. The TREC workshops have incorporated an investigation into interactive
retrieval every year (Allan et al., 1998; Hersh and Over, 2001), though results from
those evaluations have not always been clear.
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All approaches to IR develop some sort of a model of what documents are likely to
be relevant to the user’s query.When we move from a static environment to an inter-
active setting, the models should be richer in that they ought to incorporate more
information about the user’s interaction with the system. In this study we focus on
extending the model of the user’s idea of relevance2a user relevance model2to adapt
to the user’s interaction as it occurs, capturing the user’s intents better than a classic
static model.
We will de¢ne the notion of user relevance models and show how they are related to

traditional ranked list and relevance feedback techniques.We will develop three spe-
ci¢c models that are integrated as part of a system we call Lighthouse. The models
incorporate document clustering and a spring-embedding visualization of inter-docu-
ment similarity.We will show that if a searcher were to use Lighthouse in ways con-
sistent with the model, the expected e¡ectiveness will improve2i.e., the relevant
documents will be found more quickly in comparison to existing methods.We discuss
how Lighthouse has been implemented to incorporate the best of these models
and to help (though not require) a searcher to follow that model.
We start in Section 2 by de¢ning the notion of a user relevance model (URM) and

then develop the speci¢c instances in Section 3. In Sections 4 and 5 we describe
our evaluation paradigm and the laboratory evaluation that we use to show the
improvements from our models. In Section 6 we evaluate one of the URMs that
is based on document clustering and show that our technique matches classic relevance
feedback in e¡ectiveness, while providing better information to the searcher about
what is happening. In Section 7 we evaluate two URMs based on inter-document
similarity and show that one of them is signi¢cantly better than relevance feed-
back2as well as providing a more transparent system for the searcher.We conclude
the work in Section 8.

2. User Relevance Model

Bookstein (1983) argues that information retrieval should be envisioned as a process, in
which the user is examining the retrieved documents in sequence and the system
can and should gather feedback to adjust the retrieval.We adopt a similar notion while
looking at organizing the documents retrieved by a search engine in response to a
user’s query. The document organization is a process that induces an order on the
retrieved documents and the users are expected to follow that order while examining
the results.
This document ordering re£ects the system’s model of what the user considers rele-

vant information. It is expected that the user will ¢nd the documents that are located
at the beginning of the ordering more relevant than the documents that follow them.
We call the system’s representation of the user’s desires (made visible by the document
ordering) the user relevance model (URM).
A URM can be viewed as a mapping between each unexamined document d and

a numeric value: F ðDt; d Þ. Here Dt is the current state of the document set and
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t is the current time step.The current state of the document set is the basis of the URM
and includes all information about the search: the original query, all retrieved docu-
ments, whether the documents were examined by the user, and what relevance label
if any were assigned to the documents by the searcher.The document with the highest
values of FðDt; d Þ is expected to be the most relevant and it should be examined ¢rst.
We call this mapping function the user relevance model function. Thus, a URM appli-
cation is straightforward ^ at every time step, a system that employs the URM points
the user to the document with highest value of FðDt; d Þ.
Note that a URM is a ‘dynamic’ entity and the values for the URM’s function

FðDt; d Þ change as soon as there is a change in the state of the document set Dt.
For example, suppose the user judges a document to be relevant to the request.
She labels the document as relevant, modifying the document set representation
Dt ! Dtþ1. If the URM function takes into account the document relevance labels,
it creates a new set of values of FðDtþ1; d Þ ^ the URM adapts.
One example of a URM is the ranked list of documents returned by the search

engine. In the ranked list the documents are ordered by their probability of being
relevant: the user is expected to start at the top of the ranked list and proceed down
the list examining the documents one-by-one.We call this URM the ranked list user
relevance model. The URM function is equivalent to the query-document similarity
function that is used by the search engine to rank the documents in the ¢rst place:

FðDt; d Þ � RankðQ; d Þ; 8t

where Q is the user’s query. The URM function is independent of the current state of
the retrieved document set, so there is no adaptation in the model. This is an example
of a static user relevance model.
The interactive query-based relevance feedback approach (Aalbersberg, 1992)

de¢nes another document ordering: the documents are ordered by probability of being
relevant. The user is supposed to start from the top and examine the documents until
the ¢rst relevant document is found. That document is used to modify the query,
the unexamined documents are reordered by probability of being relevant to the
new query, and the process continues. We call this dynamic ordering the relevance
feedback user relevance model.
The most widely used approach to relevance feedback is the Rocchio method (Roc-

chio, 1971). Given the original query and a set of judged documents, a new query
is constructed after a new relevance judgment is made. The weight of each term in
the new query is a weighted sum of the weights for that term in the old query, in
the known relevant and known non-relevant documents:

Qt ¼ a 	Q þ b 	 1

jRtj
X
8x2Rt

xþ g 	 1

jN tj
X

8x2N t

x ð1Þ

Here Q and Qt are the vectors of terms for the old and new queries, where each vector
element corresponds to a term in the document set vocabulary; Rt and N t are
the sets of all known relevant and non-relevant documents at time t, and x is the vector
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of terms for document x. Parameters a, b, and g ^ called Rocchio coe⁄cients ^ control
the relative impact of each component.
The URM function for the relevance feedback user relevance model is de¢ned as

follows:

FðDt; d Þ � RankðQt; d Þ

where the content of the query Qt is determined by Equation 1.
The idea of the user relevance model function is very similar to the concept of the

document ranking function that constitutes the essence of most search engines.
The main di¡erence is that the URM function is ‘dynamic’: the value FðDt; d Þ,
and therefore the current ordering of documents, may depend on what documents
were examined and what relevance judgments were assigned by the time t.
Both ranked list and relevance feedback are well-known approaches in information

retrieval. The ranked list approach is widely-used by most of the academic (Allan
et al., 1997) and commercial (e.g., http://www.google.com/) search engines. It is intui-
tive, clearly-understood by searchers, and has been shown to perform well on multiple
occasions (Harman and Voorhees, 1997; 1998; 1999). However, it does not support
any system-user interaction beyond creating the initial query.
Traditional knowledge-intensive techniques for adaptive interactive systems gen-

erally rely on individual user models learned by observing user’s behavior and they
only become useful after substantial amount of training (Cypher, 1991). Other
approaches require initial encoding of domain and user knowledge that is costly,
di⁄cult to acquire, and can be rarely extended on a di¡erent domain (Benyon
and Murray 1993; Sullivan and Tyler, 1991). Adaptive information access methods
often rely on specialized retrieval structures such as semantic indexing (Frisse
and Cousins, 1989), neural networks (Chen, 1995), and relevance networks (Chen
and Mathe, 1995). However, none of these techniques has been shown e¡ective in
TREC experimental settings. Large collections of heterogeneous information and
a set of very diverse information requests create a formidable challenge for adaptive
techniques.
Our system requires less sophisticated knowledge representation and it is very simi-

lar to the traditional relevance feedback approach in IR (Salton, 1989). Relevance feed-
back methods improve the retrieval e¡ectiveness by modifying the original query
using the user’s relevance judgments. Our system is based on ideas re¢ned by the
most successful relevance feedback implementations (Allan et al., 1998; Buckley
and Salton, 1995).
Relevance feedback has been shown to perform well in both batch-oriented

(Buckley and Salton, 1995) and incremental settings (Aalbersberg, 1992; Allan,
1995). However, existing anecdotal evidence supported by experimental studies
suggests that casual searchers ¢nd relevance feedback confusing and unpredictable
(Koenemann and Belkin, 1996). Because of its closed and di⁄cult to explain
mechanics relevance feedback still struggles to ¢nd it acceptance in every day search
tasks.
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In this paper we consider three alternative URMs. Each of these URMs stores a
representation for the state of the document set. Each de¢nes a function that ranks
the unexamined documents in the order they should be considered by the searcher.
They all accept user’s relevance judgments and adapt their document set representa-
tion to take advantage of the user feedback. Each model is strongly related to classic
relevance feedback, but is made less opaque for the user by tightly pairing it with
an interface tool that is designed to visualize the current state of the model. In
the next section we describe the systems and de¢ne the URMs.

3. De¢ning three URMs

In this paper we focus on the taskof helping a user to locate relevant documents among
the retrieved results.The Cluster Hypothesis of Information Retrieval states that docu-
ments that are similar to each other tend to be relevant to the same query (van Rijs-
bergen, 1979). A corollary of this hypothesis is that if we ¢nd one relevant
document, some of the other relevant documents will be similar to it. Our approaches
use the inter-document similarity information to help the searcher.

3.1. DOCUMENT CLUSTERING URM

The ¢rst system ^ the clustering system ^ partitions the retrieved document set into
groups of similar documents. Figure 1 shows the top 50 documents retrieved by
the Google search engine in response to the query ‘Samuel Adams’. The documents

Figure 1. Clustering visualization of 50 documents for the ‘Samuel Adams’ query.
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are shown as a list of titles. Each document title is preceded with its original rank
assigned by the search engine. Note that the last document in the set has the rank
of 65. Our system visualizes only the web pages it can access at the time of the query.
When our system fails to download a retrieved page in the time allowed, it tries
to access the next document in the ranked list. In our example the system failed
to access 15 web pages in the top portion of the list returned by the Google engine.
On the picture the list is divided into two columns, it £ows starting in the left and

continues in the right column. The document titles are arranged into clusters and
the clusters are indicated by the bars or ‘handles’ that appear in the gutter between
the columns. For example, the ¢rst 17 documents in the left column form the ¢rst
cluster. There are 8 clusters on the picture. The documents inside each cluster are
ordered by their rank and the clusters themselves are ordered by the rankof the highest
ranked document. We call this representation the clustered list by analogy with the
ranked list. Several past studies adopted similar approaches (Hearst and Pedersen,
1996; Leuski and Croft, 1996).
By analogy with the ranked list we assume that a user will start at the top of the

clustered list and follow it down examining document after document. The only dif-
ference is that we assume that the user stops examining a cluster and switches to
another cluster if she ¢nds too many non-relevant document. When she reaches
the end of the clustered list, the searcher returns back to the top of clustered list
and continues this process until all retrieved documents are examined. We call the
resulting document ordering the clustering user relevance model.
We de¢ne the clustering URM function as follows:

FclðDt; dÞ ¼ y1 	
X
x2Rt

simclðx; dÞ þ y2 	
X
x2N t

simclðx; dÞ

where Rt and N t are the sets of all examined relevant and non-relevant documents at
time step t and simclðx; d Þ is the binary similarity between two documents:

simclðx; dÞ ¼
1; if x and d are in the same cluster
0; otherwise

�

If two documents have the same score FclðDt; dÞ, the clustering URM prefers the docu-
ment placed higher in the clustered list. The parameters y1 and y2 determine when
the user should switch from one cluster to another.
For example, suppose y1 ¼ 1 and y2 ¼ �1, then at the beginning all documents have

the same score (FclðDt; dÞ ¼ 0). The URM suggests that the user examines the top
document in the top cluster. If the document is relevant, then all other documents
in that cluster receive a score of 1, and the URM will suggest the next document from
the same top cluster. That will continue until there are no more documents in the
cluster or the number of examined non-relevant documents in the cluster exceeds
the number of examined relevant document, i.e. all remaining documents in that clus-
ter will have a negative score. In both cases, the URM will suggest the top document
in the second ranked cluster.
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At this point, it is worth mentioning, that the URM we have de¢ned is by no
means the only URM that could use document clustering. A URM could randomly
select a cluster (so they would have an expected ranking), could rank clusters by their
average similarity to the query, could require that a searcher examine a complete
cluster before moving on, etc. Our intent is to show how those models can be eva-
sluated so that their parameters can be optimized, and so that preferable models
can be found.
There are four experimental questions we consider in relation to the document

clustering system and the URM we have de¢ned:

1. What clustering algorithm should we use to partition the documents?
2. How should documents be arranged in the clustered list? We select one represen-
tative document from each cluster and place it at the top of the cluster’s list. This
document is supposed to be the most helpful to the user in establishing the overall
relevance value for the cluster. Ideally, by looking at the representative document
the user should be able to decide whether to examine the cluster or skip it and
go to the next one. The rest of the documents inside the cluster are kept in their
original order ^ they are ordered by the probability of being relevant to the user’s
request. This should insure an e¡ective ranking (van Rijsbergen, 1979, p. 88).
The clusters are ordered using the original rank of the highest ranked document
in each cluster.

3. When should the user stop examining a cluster and switch to the next cluster in the
list? What will be the best values for the weights y1 and y2 ?

4. Is the clustered URM a better model of the user’s concept of relevance than the
ranked list URM? Will a system that uses this model be more e¡ective in locating
relevant information in the retrieved document set than the ranked list or the inter-
active relevance feedback?

We address each of these questions in more detail in Section 6 on clustering experi-
ments.
A problem with clustering is that it requires a hard decision about which cluster a

document should be assigned to. In the next section we change the presentation
so that clusters are not explicitly created. Instead, a visualization portrays document
relationships in such a way that tight clusters are easily recognizable and that relation-
ships between and within clusters are also visible.

3.2. SPRING-EMBEDDING VISUALIZATION

In the clustering system described in Section 3.1 the inter-document similarity is a
binary function ^ two documents are either similar or not, they are either in the same
cluster or not. Our second document organization system relies on a more accurate
and continuous representation of the similarity. Figure 2 shows the documents visua-
lized as spheres £oating in space and positioned in proportion to inter-document
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similarities. Documents with spheres located close together have a similar content and
a pair of spheres placed far apart corresponds to a pair of very di¡erent documents.
To arrange the document spheres in the visualization space we use a multidimen-

sional scaling (MDS) algorithm called spring-embedding. AnMDS algorithm accepts
a matrix of inter-object dissimilarities and attempts to create a set of points in a Eucli-
dean space such that the distances between the points correspond to the dissimilarities
between original objects as closely as possible. A number of such algorithms exist.
Our choice was motivated by the graph-drawing heritage of spring-embedding (Fruch-
terman and Reingold 1991; Swan and Allan, 1998) ^ it is supposed to generate
eye-pleasing pictures ^ and the availability of the source code.
The spring-embedding algorithm models each document as an object in 2- or

3-dimensional visualization space. The objects repel each other with a constant force.
They are connected with springs and the strength of each spring is proportional
to the similarity between the corresponding documents. This ‘mechanical’ model
begins from a random arrangement of objects and due to existing tension forces
in the springs, oscillates until it reaches a state with ‘minimum energy’ ^ when
the constraints imposed on the object placements by the springs are considered to
be the most satis¢ed. The result of the algorithm is a set of points in space, where
each point represents a document and the inter-point distances are proportional to
the inter-document dissimilarities.
We extend the idea of using inter-document similarity to design a URM for the

spring-embedding visualization. There is a signi¢cant di¡erence between the
clustering and spring-embedding visualizations that we have to take into account

Figure 2. Spring-embedding visualization of 50 documents for the ‘Samuel Adams’ query in two

dimensions.
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while designing the URM. The ranked list, interactive feedback, and clustering
URMs have a well-de¢ned starting point: the top of the ranked list. What is
the starting point for someone navigating the spring-embedding visualization?
We address this problem by allowing the URM to start from the ¢rst relevant docu-
ment in the ranked list. We consider this document and all the other documents
that precede it in the list as examined and the relevance judgments available to
the model. This simulates a user who started looking for relevant information
in the ranked list and switched to the spring-embedding visualization after she
found the ¢rst relevant document.
In this paper we consider two di¡erent URMs for the spring-embedding visual-

ization that take into account the distances between the document representations.
Other models are of course possible (Leuski, 2000).

3.2.1. Relevance Proximity URM

The ¢rst URM ranks the documents by their average proximity to the known relevant
documents. Initially that distance is equivalent to the distance between the document
and the top ranked relevant document in the ranked list as per the starting condition.
As the user examines the documents, more relevant documents get discovered and
labeled. The URM is adjusted by modifying the sum:

FrelðDt; dÞ ¼ � 1

jRtj
	
X
x2Rt

distðx; dÞ

where FrelðDt; dÞ is the URM function,Dt is a representation of the current state of the
document set that includes the relevance judgments about the examined documents
at time step t, d is an unexamined document, distðx; dÞ is the distance or dissimilarity
between two documents, Rt is the set of all examined relevant documents at time
step t. We call this model the relevance proximity URM.
Note that the relevance proximity URM may behave di¡erently depending on whe-

ther distðx; dÞ is the distance between two document vectors or it is the distance
between two spheres in the visualization space. Generally, it is impossible to ¢nd
a set of objects in the visualization space such that the inter-sphere distances are pre-
cisely equal to the distances between the corresponding document vectors. When
the documents are visualized with the spring-embedding algorithm some of the docu-
ments may be shown nearby when they are actually unrelated because of the con-
straints imposed by using fewer dimensions.
It is likely that the URM that uses distances between document vectors ^ which are

more accurate ^ will be more e¡ective than the one that uses inter-sphere distances.
However, the document closest to the known relevant documents in the document
vector space may not appear so in the visualization space. The document ranking
made by the former URM may appear on the screen as breaking the intuition behind
the relevance proximity URM. Thus the URM that uses inter-sphere distances
may prove to be more intuitive to the users.
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3.2.2. Wizard URM

The design of the second URM builds on the idea of the traditional Rocchio relevance
feedback scheme (Equation1). By analogy with the Rocchio approach our URM ranks
the unexamined documents using a weighted sum of the document similarity to
the query, average similarity between the document and all examined relevant docu-
ments, and average similarity between the document and all examined non-relevant
documents:

FRocðDt; dÞ ¼ y0 þ y1 	 querysimðdÞþ

þ y2 	
1

jRtj
X
x2Rt

simðx; dÞþ

þ y3 	
1

jN tj
X
x2N t

simðx; dÞ

where querysimðdÞ is the similarity between the document and the original query,
simðx; dÞ ¼ 1=distðx; dÞ is the similarity between two documents. Note that Frel is
equivalent to FRoc with y0 ¼ y1 ¼ y3 ¼ 0 and y2 ¼ 1.
We go beyond the Rocchio approach by making an heuristic observation that dif-

ferent arguments in the Rocchio-based representation should be weighted depending
on how many documents were examined. For example, the similarity of a document
to the query is more important at the beginning of the search, when few relevant docu-
ments are known, than further into the process when the document relevance infor-
mation is plentiful. We accommodate this intuition by dividing the search process
into three distinct phases and considering a separate Rocchio-alike URM function
for each phase:

FwzdðDt; dÞ ¼
X
i

AiðjRtj þ jN tjÞ 	 FRoc;iðDt; dÞ

where the coe⁄cients Aið	Þ ^ called application coe⁄cients in machine learning ^ are
smooth functions of the number of the examined documents (Berliner, 1979):

AiðxÞ ¼ exp �ðx� miÞ2

s2

 !

where mi de¢nes the center of the in£uence area for the ith ‘subfunction’ FRoc;iðDt; dÞ
and s de¢nes its width.We call this model the wizard URM.
We set the centers for application coe⁄cients (Að	Þ) of each area to the beginning,

middle, and end of the ordering. The width was set to one quarter of the distance
between the centers. For example, for 50 documents m ¼ 1; 25; 50 and s ¼ 6.The para-
meter vectors for FRoc;iðDt; dÞ (yi;	) were determined during a preliminary training
phase described elsewhere (Leuski, 2000).
There are two experimental questions we consider in relation to the spring-embed-

ding visualization, relevance proximity, and wizard URMs:
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1. Both the ranked list and interactive relevance feedback URMs provide the baseline
for our experiments. How do the relevance proximity and wizard URMs compare
to the ranked list and relevance feedback URMs? Can a system that uses either
of these URMs help a searcher ¢nd the relevant documents faster than our base-
lines?

2. The inter-document similarity does not necessarily have metric properties (we dis-
cuss the document similarity function in Section 5.1) and it is not possible to
map it precisely onto inter-sphere distances in the visualization. Some of the docu-
ment spheres may be shown nearby when the corresponding documents are unre-
lated because of the constraints imposed by the visualization space. Our
intuition is that a higher dimensional visualization will provide more degrees
of freedom and therefore it has a better chance to represent the inter-document
relationships accurately than a lower dimensional one. How does the dimension-
ality of the visualization a¡ect the quality of the URM?

We address each of these questions in more detail in Section 7. In the next section we
discuss our evaluation strategy and provide some additional motivation for both
the clustering and the spring-embedding systems.

3.3. SUMMARY

All three URMs discussed in this section ^ the clustering, relevance proximity, and
wizard models ^ can be used without the corresponding clustering and spring-embed-
ding interface tools. For example, one can envision a system that presents the retrieved
documents to the searcher one at a time. It requires the searcher to make a relevance
judgment about each document and uses the URM to select the next document
for presentation. Such a scenario has the same problem as the traditional query-based
relevance feedback ^ it is completely opaque and confusing to the user.
The main advantage of our approach is that each URM is coupled with an interface

that visualizes all the information used by the model. For example, the relevance proxi-
mity URM ranks documents by their average similarity to the known relevant docu-
ments. The spring-embedding visualization clearly displays that information by
mapping the similarity onto inter-sphere distances on the screen. Suppose the system
color-codes the individual document spheres using green for relevant and red for
non-relevant documents. The inner workings of the URM are now transparent ^
‘the next document recommended by the system is the one closest to that group
of green spheres.’ Thus the interface serves an important goal in the system-user inter-
action ^ it explains and motivates the choices made by the system.
A similar approach is possible for the query-based relevance feedback.We can cre-

ate a system that will display each new term the relevance feedback adds to the query
and we can display the relative weight of each term in the individual documents
in the attempt to capture and present all the information used by the Rocchio formula
(Koenemann and Belkin, 1996). However, we believe that an interface dealing with
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dozens or even hundreds of individual terms can be no less confusing than an interface
that does not explain anything at all.
A second, more ambitious goal of the visualization is to eliminate the need for the

searcher to assign relevance judgments to individual documents. So far we have
assumed that the searcher will always assign relevance judgments.The document orga-
nization system de¢nes and actively maintains an explicit form of the user relevance
model, i.e. there is a ranking function with well-de¢ned numerical parameters enco-
ded in the system. At the same time all the information used by the URM is presented
on the screen. If the user successfully recognizes and applies the inter-document simi-
larity data from the picture, she can browse the retrieved set as e¡ectively as if she
were guided by the URM. Thus the visualization can help the searcher to de¢ne
and maintain an implicit version of the relevance model herself, i.e, the knowledge
of where to look for the next relevant document. The model is adjusted every time
the user examines a document. For example, consider Figure 3. Suppose document
A is examined and it is relevant. The user examines document B, because it is the
closest document to A. If B is relevant, then the user will examine C as it is the closest
document to both A and B. Otherwise, the user will examine D as the next closest
document to A alone.
We consider the question of how well a searcher can recognize and interpret the

informational clues displayed by the spring-embedding visualization system in Section
7.2.

4. Evaluating a URM

To evaluate a URM we imagine a searcher who always follows the URM’s advice ^
every time she examines the document with the highest rank assigned by the
URM function. Given a standard set of document collections with queries and rele-
vance judgments, we simulate such a user interacting with individual systems that
employ the URMs discussed in this article. Speci¢cally, this simulation works as
follows:

1. Using a search engine, run a query on the collection and select the top 50 retrieved
documents.

2. Rank all unexamined documents using the URM function F ðDt; d Þ.
3. Pick a document with the highest value FðDt; d Þ, mark it as examined, and
record it.

Figure 3. Example of how an implicit version of relevance proximity URM will adapt. The interval that

goes through the centers of spheres A and D indicates that point D and the point where B and C touch are

equidistant from A.
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4. Assign a relevance label to the document using the relevance judgments from the
experimental dataset.

5. If there are no more unexamined documents quit, otherwise go to step 2 to select the
next document.

The result of each simulation is an ordering of the documents.We compare multiple
document ordering using average precision (van Rijsbergen, 1979). To compute the
average precision we examine the document ordering starting at the beginning
and following it until the end. Every time there is a relevant document in the ordering
we take a note of the precision at that position, i.e. the proportion of relevant docu-
ments among those we have seen. At the end of this process we compute the average
of the recorded precision values ^ the average precision. It determines how quickly
the searcher can locate all relevant documents while following the given ordering.
Here ‘speed’ is measured in the number of examined documents. In the best possible
ordering all relevant documents are located before any non-relevant ones. Such an
ordering has average precision equal to one. The average precision of the worst
possible ordering with all relevant documents placed after all non-relevant ones is

Pworst ¼
1

jRj
XjRj

i¼1

i

iþ jN j

5. Experimental Setup

For our experiments we used the data provided by the Text REtrieval Conference
(TREC) (Harman and Voorhees, 1997). Speci¢cally, we used the ad-hoc queries with
their corresponding collections and relevance judgments supplied by NIST assessors.
We converted TREC topics 251^300 and 301^350 into queries and ran them against
the documents in TREC volumes 2 and 4 (2.1 GB) and TREC volumes 4 and 5
(2.2 GB) respectively. To run the queries we used INQUERY ^ a search engine devel-
oped at the University ofMassachusetts at Amherst (Allan et al., 1998). For eachTREC
topic we considered four types of queries:

1. a query constructed by extensive analysis and expansion (Allan et al., 1997);
2. the description ¢eld of the topic;
3. the title of the topic;
4. a query constructed from the title by expanding it using Local Context Analysis
(LCA) (Xu and Croft, 1996). A query of this type has size and complexity between
the corresponding queries of the ¢rst and second types.

Di¡erent queries constructed for the same topic result in di¡erent retrieved sets. That
allowed us to study what e¡ect both the quality of the query and its size have on
the information organization. The complete discussion of this e¡ect can be found
elsewhere (Leuski, 2001b).
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For each query we selected the top 50 documents returned by the search engine.
There were 400 document sets with 50 documents each. These formed our main
experimental data set.
The ranked list was generated by the INQUERYsystem during the retrieval process

(Allan et al., 1998).We implemented the relevance feedback URM following the strat-
egy outlined in Section 2:

Qt ¼ a 	Q þ b 	 1

jRtj
X
8x2Rt

xþ g 	 1

jN tj
X

8x2N t

x ð2Þ

The Rocchio coe⁄cients were set to the default values of the INQUERY feedback
subsystem (a ¼ 0:5, b ¼ 4, and g ¼ �1). We also limited the number of terms that
are added to the original query Q. Our experiments showed that performance of
the relevance feedback URM can be improved if we use only the highest ranked
100 terms to expand the query.

5.1. DOCUMENT REPRESENTATION

The INQUERYsystem’s retrieval model neither incorporates the notion of similarity
between documents nor assumes the construction of document representations. To
compute inter-document similarities we employ the vector-space model for document
representation (Salton, 1989) ^ each document is de¢ned as vector V, where
vi ¼ wi is the weight in this document of the i-th term in the vocabulary. The term
weight is computed following the INQUERY weighting formula (Allan et al.,
1998), which combines Okapi’s tf score (Robertson et al., 1995) and INQUERY’s
normalized idf score to compute the weight:

vi ¼
tf

tfþ 0:5 þ 1:5
doclen

avgdoclen

	
log
� colsizeþ 0:5

docf

�
logðcolsizeþ 1Þ

where tf is the number of times the term occurs in the document, docf is the number of
documents the term occurs in, doclen is the number of terms in the document,
avgdoclen is the average number of terms per document in the collection, and colsize
is the number of documents in the collection. The similarity between a pair of docu-
ments is measured by the cosine of the angle between the corresponding vectors
(Salton, 1989). In this paper we use one over the cosine (1= cos y) to de¢ne the
dissimilarity (or the distance) between a pair of documents.

6. Clustering Experiments

In this section we consider the following four experimental questions introduced in
Section 3.1 based on the clustering URM:
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1. What clustering algorithm should be selected?
2. How should documents be arranged in the clustered list? What document has to be
the cluster’s representative (the top document in the cluster)?

3. When should the user stop examining a cluster and switch to the next cluster in the
list?

4. Is the clustered list a more e¡ective presentation for locating relevant information in
the retrieved document set than the ranked list or the interactive relevance feed-
back?

6.1. CLUSTERING ALGORITHM

The ¢rst experimental question in this section is the comparison of di¡erent clus-
tering algorithms. Our system uses a hierarchical agglomerative clustering algorithm
to cluster the documents. Such an algorithm creates a hierarchy of clusters ^ it builds
a tree where each node is a cluster of objects and the clusters corresponding to
the node’s immediate children form a complete partition of that cluster (Mirkin,
1996). On input the algorithm receives a set of objects and a matrix of inter-object
distances. It starts by assigning each object to its own unique cluster ^ the leaves
of the future tree. The algorithm iterates through the cluster set by selecting the clo-
sest pair of clusters and merging them together forming a new cluster that replaces
them in the cluster set. A node corresponding to this new cluster is created in
the tree and the selected pair of clusters become its children. That procedure is exe-
cuted until all objects are contained within a single cluster, which becomes the root
of the tree.
This is a general algorithm that is instantiated by choosing a speci¢c distance func-

tion for clusters. Indeed, the distance between a pair of singleton clusters is well-
de¢ned by the original distance matrix. If one of the clusters contains more than
one object, the inter-cluster distance is determined by a speci¢c heuristic. For example,
the single linkage method de¢nes the distance between two clusters as the smallest
distance between two objects in both clusters. The group average on the other hand
de¢nes the distance between two clusters as the average of distances between the clus-
ter members.
Lance and Williams (1967) have shown that many di¡erent clustering methods can

be derived from the following equation and computed quite e⁄ciently:

dk;i[ j ¼ ai 	 dk;i þ aj 	 dk; j þ b 	 di; j þ g 	 jdk; i � dk; jj ð3Þ

here, dk;i[ j, the distance between the cluster created by merging ith and jth clusters and
an arbitrary cluster k is de¢ned as a nonlinear function of distances between the indi-
vidual clusters. The coe⁄cients for the most commonly used methods are presented
in Table I.
In this study we consider six di¡erent clustering techniques based on the general-

ized agglomerative algorithm (Table I): centroid, complete linkage, group average,
single linkage,Ward, and weighted group average.
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The hierarchical agglomerative clustering algorithm produces a hierarchy of clusters.
We are interested in an approach which presents the user with a partition of the
document set ^ a set of clusters that divides the retrieved material into the groups
of similar documents.
To create a partition of the document set from a cluster hierarchy we ‘cut’ the hier-

archy at some level, i.e., stop the clustering algorithm before it reaches the root of
the tree. The clusters present in the set at that moment form the required partition.
The problem is to decide at what point to make the cut. For example, the Scatter/
Gather research (Hearst and Pedersen, 1996) ¢xes the number of clusters in the docu-
ment set.We, on the other hand, set a threshold on the similarity distance between
clusters ^ while iterating through the cluster set the algorithm stops as soon as
the distance between the closest pair of clusters exceeds the threshold. If the threshold
is kept constant from session to session, the density of the clusters becomes the system’s
invariant.The user will always know what minimal degree of similarity to expect from
the documents placed in the same cluster.
To select the threshold value we conducted our experiments following a basic two-

way cross-validation scheme. We divided our experimental data in half: training
and testing data. We selected the threshold using the data from the former data
set and evaluate the performance on the rest of the data.We then repeated the experi-
ments switching the roles of the data sets (Leuski, 2001a). We set the clustering
URM coe⁄cients y1 and y2 to 1 and �1, respectively (see Section 3.1). The documents
were arranged in the clustered list and the documents in each cluster were ordered
by their original rank. The highest ranked document in each cluster was selected
as the cluster’s representative.
As outlined in Section 4, we implemented our system using one of the clustering

algorithms. We then follow the advice given by the clustering URM (i.e., stay with
a cluster as long as it has su⁄cient number of relevant documents) to generate a ‘rank-
ing’ and calculate its average precision. We do the same with the other clustering
algorithms to compute their e¡ectiveness.
We observed that the group average and Ward algorithms result in the best per-

formance (seeTable II).The di¡erence between these two algorithms is not statistically

Table I. Lance-Williams coe⁄cients for some agglomerative clustering methods. ni
denotes the size of the ith cluster.

Method ai ai b g

Centroid
ni

ni þ nj

nj
ni þ nj

�ni 	 nj
ðni þ njÞ2

0

Complete linkage 0.5 0.5 0 0.5

Group average
ni

ni þ nj

nj
ni þ nj

0 0

Single linkage 0.5 0.5 0 �0.5

Ward
ni þ nk

ðni þ nj þ nkÞ
nj þ nk

ðni þ nj þ nkÞ
�nk

ðni þ nj þ nkÞ
0

Weighted group average 0.5 0.5 0 0
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signi¢cant�. Also the di¡erences between the group average algorithm and both
weighted average and complete linkage are not statistically signi¢cant. The single
linkage method is a clear ‘loser’ in this competition.

6.2. PRESENTING CLUSTERS

We consider four di¡erent alternatives for selecting the representative document. The
¢rst, a rather obvious choice is to use the document that is the best representation
of the cluster ^ the cluster centroid, or the document that is the most similar to
the actual centroid.The second alternative we consider is the highest ranked document
in the cluster. Our intuition is that if this document is non-relevant than the rest
of the cluster is very likely non-relevant. The third choice is to use the lowest ranked
document: if that document is relevant than it is very likely that the rest of the cluster
is also relevant.
The documents at the top of the ranked list most likely are relevant and the docu-

ments at the bottom of the list most likely are non-relevant. Lewis (1992) speculated
that the best way to ¢nd the boundary between the relevant and non-relevant material
in the list is to examine the documents in the middle.The last candidate for the cluster
representative is the medium ranked document ^ the document whose original rank
is the median of the cluster.
The choice of the highest ranked document in a cluster as the cluster’s representative

is the most e¡ective for the task of locating the relevant material (Table III). For this
experiment we used the group average clustering algorithm and the clustering
URM coe⁄cients y1 and y2 were set to 1 and �1, respectively.We observe an almost
4%drop in average precisionwhile selecting the document closest to the cluster’s center.
The di¡erence is statistically signi¢cant. Our explanation is that the highest relevant
document allows the user to quickly discard non-relevant clusters ^ if even the highest

Table II. Performance (percent average precision) of the clustering URM on
document see partitions created by six di¡erent clustering algorithms.

Single
link

Compl.
link

Group
avrg.

Weight.
avrg. Centr. Ward

45.90 47.24 47.39 46.73 46.34 47.28

Table III. Performance (percent average precision) of the clustering URM on
document set partitions created by the group average algorithm using four
di¡erent types of cluster representative documents.

Centroid Highest ranked Lowest ranked Medium ranked

45.76 47.39 43.78 44.70

�In the clustering experiments we used the paired two-tailed t-test to measure the statistical significance.
The cutoff level is set to 5% ( p < 0:05).
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ranked document in the cluster is non-relevant, then it is very likely that the rest of the
cluster is also non-relevant.

6.3. STOPPING CRITERIA

Recall from Section 3.1 that the clustering URM function FclðDt; d Þ has two para-
meters y1 and y2.The ratio of these values determines when the searcher should switch
from examining one cluster to another. For example, if y1 ¼ 1 and y2 ¼ �1 the values
of FclðDt; d Þ for unexamined documents in the cluster will drop below zero as soon
as the user sees more non-relevant than relevant documents in the cluster. The docu-
ments from the next cluster in the list will have a higher score ^ it is time to start
looking at the next cluster in the list. Note that if the ¢rst document in a cluster
is non-relevant, the user should go immediately to the next cluster in the list.
We clustered the documents using the group average clustering algorithm and used

the highest ranked document in each cluster as the cluster’s representative.
The six columns inTable IV correspond to six di¡erent value settings for the relevant

and non-relevant weights (y1 and y2) in Fcl. The column titles are presented in the
form y1:y2. There is a clear maximum in performance of the total average for
y1 ¼ 1 and y2 ¼ �1. Increasing or decreasing the value for the non-relevant weight
y2 from�1 leads to lower values of average precision. All pairwise di¡erences between
the maximum (‘1:�1’) and the other parameter sets are statistically signi¢cant.

6.4. CLUSTERING VS. RANKED LIST

The last experimental question in this section is to compare the performance of the
clustering URM Fcl with the performance of the ranked list and relevance feedback

Table IV. Performance (percent average precision) of the clustering URM on
document set partitions created by the group average algorithm. Average precision
values are shown for di¡erent ratios of relevant and non-relevant weights (y1 and
y2) in FclðDt; d Þ.

Relevant to non-relevant weight ratio

1:0 1:�0.2 1:�0.5 1:�1 1:�2 1:�4

43.22 46.97 47.18 47.39 47.14 47.09

TableV. Performance (percent average precision) of Fcl search strategy on document set
partitions created by the group average algorithm. The table also includes the
precision values for the ranked list and interactive relevance feedback search
strategies. The interactive relevance feedback used top 100 terms for query expansion.

RL original RF Group Average v. RL

41.98 47.17 47.39 þ13.61%
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URMs. The last two columns of TableV show the average precision values for Fcl and
the percentage di¡erence from the ranked list (‘RL’). The search strategy worked with
clustering structures built by the group average algorithm. The highest ranked docu-
ment was used as the cluster representative. The search strategy function weights were
set to y1 ¼ 1 and y2 ¼ �1.
We observe 13.61% improvement over the ranked list. This di¡erence is statistically

signi¢cant.The di¡erence between Fcl and the search strategy for interactive relevance
feedback (‘RF’) is small and not statistical signi¢cant.

6.5. CONCLUSIONS

In this part of our study, we have shown that we can substantially improve the speed at
which relevant documents are found, if document clusters are incorporated into
the system’s model of how to predict relevance.We have developed a model for eval-
uating several strategies a searcher might follow when trying to ¢nd relevant docu-
ments in a clustered set (i.e., where to start and when to switch to a di¡erent
cluster). Our results indicate that some approaches are better than others, but that
most are better than a simple ranked list.

7. Spring-embedding Experiments

Our second set of experiments in this paper deals with the spring-embedding visu-
alization system and with relevance proximity and wizard URMs.

1. How do the relevance proximity and wizard URMs compare to the ranked list and
relevance feedback URMs? Can a system that uses either of these URMs be more
successful in helping a searcher to ¢nd the relevant documents than our baselines?

2. How does the dimensionality of the visualization a¡ect the quality of the URM?

7.1. RESULTS

We evaluated the performance of both relevance proximity and wizard URMs on the
same data sets we used for the clustering experiments.TableVI summarizes the results
of our experiments. Note that in Section 6 our simulations began their exploration
from the top of the ranked list. Here the simulation process started from the highest

Table VI. Performance (average precision) of the relevance proximity ‘Frel’ and wizard
‘Fwzd’ URMs in the original vector space and spring-embedded visualization space.
We did not run the wizard URM in the visualization space because it designed to
work in the original vector space.

Dimension RL RF FrelðD; d Þ FwzdðD; d Þ

Vector space 39.12 49.29 48.23 53.82
3D 47.86 ^
2D 46.54 ^
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ranked relevant document (as if the searcher started in the ranked list and then jumped
to the visualization after discovering the ¢rst relevant document).
The results con¢rm our intuition that a higher dimensional visualization will pro-

vide more degrees of freedom and therefore it has a better chance to represent the
inter-document relationships accurately than a lower dimensional one. We observe
a small drop in average precision when the relevance proximity URM is moved from
the high-dimensional document space into a smaller number of dimensions.The drop
in precision is less when three dimensions are used (�0.8%) instead of two
(�3.5%) and it is only statistically signi¢cant for the di¡erence between the URM
e¡ectiveness in the original document vector space and in the two-dimensional visual-
ization space.
There is a small improvement (2.8%) if the search strategy is moved from the two-

dimensional embedding space to the three-dimensional. This di¡erence is statistically
signi¢cant by two-tailed t-test with p < 0:05.
The wizard URM is a clear winner in these experiments. It shows 37.6% and

9.2% improvement over the ranked list and interactive relevance feedback URMs,
respectively. Both these di¡erences are statistically signi¢cant. A more detailed
analysis of these results that shows that the relevance proximity and wizard URM’s
performance is noticeably higher for short queries can be found elsewhere (Leuski,
2000).

7.2. USER STUDY

The idea of searching for relevant information by examining the document that is the
closest to already discovered relevant material seems simple. We assume that given
an accurate visual representation of inter-document similarities the user can e¡ectively
locate the relevant documents without any aid from the system.
Thus, the next question of our study is: ‘How e¡ective in locating the relevant infor-

mation will the user be when given the spring-embedding visualization of the retrieved
set?’ We hypothesize that the notion of spatial similarity in the spring-embedding
visualization is an intuitive and accurate metaphor for representing inter-document
relationships.We expect that the user’s implicit URM will be similar to our relevance
proximity URM in both procedure and e¡ectiveness.We use the relevance proximity
URMas our baseline in these experiments because it is more intuitive than theWizard
URM ^ theWizard URMmaintains substantially more state than we expect a person
to be able to keep track of.
To test these hypotheses we have implemented a computer-based user study. It

was designed to simulate a user looking for relevant information in the visualization
(i.e., the document title list was removed from the system). Each participant in this
study had to solve a number of information-foraging problems. Every problem con-
sisted of a set of 50 spheres £oating in space: one green, a few red (maybe none),
and all the rest white. (This is the same initial condition adopted in the experiments
considered in the previous section.) The participants were told that the ‘true’ color
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of the white spheres were either red or green. The true color of a white sphere could
be discovered ^ the sphere could be ‘opened up’ ^ by double-clicking on the sphere
with the mouse pointer. The participants were asked to ¢nd all the green spheres
as quickly as possible, trying to avoid opening red spheres. The participants received
a small time penalty for opening a sphere ^ the sphere was animated for several
seconds before showing its true color. They were also prohibited from double-click-
ing on a sphere while another was opening. This was done to discourage the users
from clicking the spheres in random order. At the same time it crudely simulated
the delay that would have been experienced by a person while reading and judging
the document.
The participants were told that spheres of the same color (e.g., green spheres) tend to

appear in close proximity to each other (similar spheres generally group together)
but not necessarily so.The last hint was a direct corollary from the Cluster Hypothesis
as the spheres represented the documents, and the color, the document relevance value.
A green sphere indicated a relevant document and a red one indicated a non-relevant
document. However, the participants were not told the meaning of the spheres. We
believe this design eliminates a high uncertainty that is generally connected with query
formulation and passing relevance judgments (Koenemann and Belkin, 1996; Swan
and Allan, 1998) and allows us to isolate the navigation properties of the visualization
which are the focus of our study.
The problems were presented in two and three dimensions. The three-dimensional

e¡ect was created by using a 3D-rendering engine. To improve the depth perception,
a simulated fog e¡ect was added to the picture. The participants were able to rotate,
slide, and zoom the set of spheres. The application interface of a two-dimensional
presentation was equivalent to that of a three-dimensional one except that the user
saw a £at structure on the screen (i.e., he or she could still rotate and zoom the
2-dimensional structure).
Each participant was presentedwith ten problems.We divided the problems into two

equal groups.The problems in one group were shown in two dimensions, the problems
in the other ^ in three dimensions. The dimensions in which each group of problems
was shown alternated between users. We also varied the order in which the groups
were presented and the order in which the problems inside each group were presented.
This was done to account for a possible learning e¡ect. Before each group of problems
was shown to a participant he or she was given two training problems to familiarize
herself with the application interface. The participants ¢lled out two questionnaires
about their experience with the system ^ one after the ¢rst ¢ve problems and another
at the end of the study. The results from those questionnaires are summarized in
the next section.
The study was designed to be completely supervision-free.The software was written

in Java and it was available on theWeb.We advertised the study in local newsgroups
and in information retrieval mailing lists on the Internet. 40 people expressed their
interest in the study by accessing the software; 20 of them completed it, spending
on average one hour and thirty minutes with the system.
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7.3. USER STUDY RESULTS

To create the problems we randomly selected ten topics fromTREC topics 251^350 (see
Section 5). We used the ‘title’ versions of the corresponding queries to retrieve the
50 top ranked documents for each topic. These documents were visualized and pre-
sented to the users in 2 and 3 dimensions. At the beginning of each problem the spheres
corresponding to the highest ranked relevant document and the non-relevant docu-
ments that precede it in the ranked list were shown in color.The rest of the documents
were shown in white ^ i.e., as if starting after the ¢rst relevant document in the ranked
list was found. This was supposed to provide the users with the starting point in their
exploration.
The users examined the white spheres in sequence. The order in which each user

double-clicked the spheres de¢ned the user’s search strategy or the user’s implicit rele-
vance model. To distinguish it from the explicit relevance proximity URM discussed
in previous experiments (Frel) we call the latter the algorithmic search strategy. We
calculated the average precision for the user’s model and averaged it across all users
and all problems. TableVII shows that the algorithmic URM produced better average
precision numbers than the users’ selections. Note, though, that the table also indicates
that the users do better by using the visualization than by blindly following the ranked
list.
The di¡erences between the users’ performance in both dimensions and the ranked

list, between the users’ performance and the algorithmic URM in both dimensions,
and between the users’ performance in individual dimensions are statistically signi¢-
cant by two-tailed t-test with at least p < 0:01.
The algorithmic search strategy has a higher performance when working with a

3-dimensional representation of the document set than with a 2-dimensional

Table VII. Users’ performance navigating the visualizations of ten randomly selected document sets.
The numbers are averaged across all selected document sets. Average precision numbers, percent
improvement over the ranked list search strategy, percent improvement over the relevance
proximity URM in the corresponding dimension, and percent improvement of using 3D over 2D
are shown.We also show the signi¢cance level for each di¡erence by two-tailed t-test.

URM
Average
precision Improvement

Ranked list 42.9

Algorithmic 2D 59.1
strategy 3D 61.4

Users 2D 55.8 vs. Ranked list (þ30.1%) p < 5 	 10�8
vs. Algorithmic (�5.7%) p < 5 	 10�4
strategy in 2D

3D 53.2 vs. Ranked list (þ24.1%) p < 5 	 10�6
vs. Algorithmic (�13.3%) p < 5 	 10�12
strategy in 3D

vs. Users in 2D (�4.6%) p < 0:01
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representation. The users on the other hand show much better results in 2 dimensions
than in 3 dimensions. From this observation and also from the comments we have
collected during the study we conclude that the users have a much harder time estab-
lishing proximity relationships and navigating the 3-dimensional visualization.
We were interested in comparing the users’ browsing strategy with the ordering

de¢ned by the relevance proximity URM. Each time the user selected a sphere to
examine, the algorithmic URM ranks the unexamined (white) spheres by the spatial
proximity to the current cluster of examined green (relevant) spheres and assigns
a rank number to the user’s choice. Note that in this situation the algorithmwill select
the highest ranked sphere. If both the algorithm and the user select the same sphere,
the user’s choice is ranked as one. Figure 4 shows the rank of the users’ choice as
each successive sphere is selected. The X-axis is the index of the examined sphere.
We show both the average rank and the error bar indicating the standard deviation.
We also show the average and standard deviation for the number of green spheres

Figure 4. Comparison of the users’ average document ordering to the algorithmic URM in 2 and 3 dimen-

sions for one document set. The X-axis is the number of the examined documents. We show the number of

green spheres remaining unexamined by the algorithm (‘num of rel left, alg’), the same number for the

users (‘num of rel left, user’), and the rank of the user choice (‘rank of user’s choice’).
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remaining unexamined by the user at each step, and the same number for the algo-
rithm. For example, at the beginning there are 18 unexamined spheres (x ¼ 0). In
two dimensions both the users and the algorithm succeed in locating a green sphere
on ¢rst pick ^ the number of unexamined green spheres drops to 17 for x ¼ 1.
The users always select a green sphere ^ the standard deviation is zero. We also
see that the sphere selected by the users on that step has an average rank of 1.5. It
means that the users almost always picked up either the ¢rst or the second closest
white sphere to the ¢rst green sphere.
Figure 4 presents the algorithm and users’ behavior for one of the document sets.We

have observed similar e¡ects on the rest of the data. Comparing the plots in 2
and 3 dimensions we see that:

1. the algorithm is more successful in 3 dimensions than it is in 2 dimensions ^ the plot
line for the number of green spheres left after the algorithm’s pick descends faster
in the bottom ¢gure (3D).

2. the users are more successful in 2 dimensions than they are in 3 dimensions ^ the
plot line for the number of green spheres left after the users’ pick descends faster
and trails the same line for the algorithm closer in the top ¢gure (2D).

3. the users’ordering is more similar to the algorithmic URM in 2 dimensions ^ the
average rank of the users’ choice is smaller.

4. the users’ choices have less variance in 2 dimensions than in 3 ^ the error bars are
generally shorter in the top ¢gure (2D).

5. the users’ordering is not signi¢cantly di¡erent from the algorithmic URMat least at
the beginning of the search ^ the average users’choice is always less than one stan-
dard deviation apart from the algorithm’s ¢rst choice for the ¢rst14 examined docu-
ments.

6. when the users’ ordering diverges sharply from the algorithmic URM choices, the
users’ selection is more likely to be a red sphere. Examples of that divergence appear
as sharp ‘peaks’ on the user’s choice graph in the top ¢gure at x ¼ 5 and
x ¼ 15. That mostly red spheres are chosen is clear in the same graph because
the number of green spheres (relevant) left stays noticeably higher for the user than
for the algorithm.

We asked the users to ¢ll out short questionnaires about their experience with the
system comparing 2D with 3D. Speci¢cally, we asked the users to assign a ‘grade’
between 1 and 5 measuring how easy it was to use each presentation and if, in their
opinion, the system did a good job at organizing the objects. The average grades
in TableVIII show that the users preferred the 2D presentation over the 3D one.They
overwhelmingly found 2D visualization easier to use and they were generally satis¢ed
with the system’s arrangement of the green and red spheres.
We conclude that both our hypotheses are supported. The users have no di⁄culty

grasping the idea of spatial proximity as the metaphor for inter-object similarity.
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Their browsing strategy is very similar to the notion of selecting the spheres that are
close to the known green spheres. In fact, one of the participants explicitly stated
he was trying to pick up the ‘white ball that is the closest to the average of the green
set.’ Generally the users were very successful in following this tactic. However, the
more spheres that were examined, the more di⁄cult it became to correctly identify
the similarity between the cluster of green spheres and the remaining white spheres.
This task was even more di⁄cult in three dimensions. The users constantly pointed
out that correct identi¢cation of the inter-sphere distances in 3D required frequent
rotations of the structure, thus making the visualization task more di⁄cult.We believe
these e¡ects account for the observed di¡erences in precision between the algorithmic
and user document orderings.

7.4. USING THE WIZARD

Based on the experiments described in this paper, we created Lighthouse ^ an inter-
face system for a web-based search engine. Lighthouse integrates a ranked list, clus-
tering, and a spring-embedding visualization. A detailed description of the system
can be found elsewhere (Leuski and Allan, 2000a,b). Lighthouse uses a wizard tool
based on the wizard URM that accepts the searcher’s relevance judgments, computes
its estimations of relevance for the unexamined documents, and visualizes this infor-
mation on the screen.
For example, if Lighthouse’s URM estimates that a document is relevant it high-

lights the corresponding document sphere and title using some shade of green.
The intensity of the shading is proportional to the strength of the system’s belief
in its estimation ^ the more likely that the document is in the category, the brighter
the color.The same shade of color is used to highlight the document title backgrounds.
Additionally, the length of that highlighted background is proportional to the strength
of the system’s belief in its estimation.
Figure 5 shows a screenshot of the Lighthouse system displaying the same top 50

documents returned by the Google search engine in response to the query ‘Samuel
Adams’ we presented in Figures 1 and 2.The spring-embedding visualization presents
the documents in three dimensions. The dark ovals at the bottom of the picture

Table VIII. Users’ responses to a number of questions comparing 2D with 3D visualizations. The
answers were given as ‘grades’ between 1 and 5. The average grade is shown for each question. The
higher numbers are better (‘easier’, ‘more satis¢ed’).

Question 2D 3D

How easy was it to understand how to use the system? 4.4 3.4
How easy was it to learn to use the system? 4.6 3.6
How easy was it to use the system? 4.3 2.7
Are you satis¢ed with the system’s organization of data? Does
the system’s placement of the objects makes it easier to ¢nd the green spheres?

3.4 2.7

Are you satis¢ed with your performance in ¢nding the green spheres? 3.6 3.1
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are the shadows of the spheres.We use the shadows, perspective projection, and fog
e¡ect to create a sense of the depth in the picture.
Green indicates relevant documents, e.g., the document ranked 2 is marked as rele-

vant (note that the title background has complete and uniform green ¢ll) and the cor-
responding document sphere is on the left side of the visualization. We use red to
mark non-relevant documents. The document ranked 55 by Google is marked as
non-relevant.The color completely ¢lls the title background.The corresponding sphere
is on the right side of the picture. The Lighthouse wizard URM estimates that many
of the documents should be assigned to the non-relevant category, e.g. documents
12, 15, 16, 29, and 35 have a light-red background with smooth gradient ¢ll. The
lightly-shaded red spheres corresponding to those documents occupying the right side
of the picture.The documentswith the ranks1,19, 21, 26, etc. are estimated tobe relevant
^ they have light-green title backgrounds and document spheres.The user has selected
document ranked 28. Its title has a black outline and the corresponding sphere located
in the top left quarter also has a thick blackoutline.The URMestimates this document
far less likely to be in the relevant category than the document with rank 1: green color
hardly ¢lls one half of the title background and the sphere has a lighter shade of green.
Lighthouse displays the top three wizard URM choices with the green stars

attached to the document titles and spheres. The stars are placed diagonally to the
right and bottom of the spheres. Three stars indicate the document ranked ¢rst by
the wizard (document 1). Two (document 18) and one star (document 63) point to
the second and third choices respectively. As the user examines more documents
and assigns the categories to them, Lighthouse recomputes its estimations based on
the wizard URM and adjusts the colors in the visualization.

Figure 5. Lighthouse visualization of documents for the ‘Samuel Adams’ query in three dimensions.
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The highlighted backgrounds in the left column are aligned on the left side and the
highlighted backgrounds in the right column are aligned on the right side. Note that
a gray sphere and no highlighting for the document title re£ect that the document
can be equally likely assigned to any one of the categories.
TableVI showed very clearly that the wizard URM is the most e¡ective one for a user

interested in ¢nding relevant documents. However, the user study just described sug-
gests that searchers could not always follow such a strategy on their own: they have
progressively more di⁄culty determining where to look next as the number of exam-
ined documents grows.
This situation made creating a Lighthouse wizard very obvious. A searcher can

enable the wizard to have it highlight the next three documents that the algorithm
would choose (see Section 7.1). If the searcher were to enable the wizard and follow
its suggestions blindly, the result would be identical to the algorithmic approach
of Fwzd.
The Lighthouse wizard can also be extended to multiple aspects of relevance ^

multiple simultaneous URMs. Lighthouse supports the capability of marking docu-
ments with one or more tags that can be thought of as aspects of relevance.The wizard
can be asked to identify unmarked documents likely to belong to one of those aspects
(by that aspect’s URM), making it easier for a searcher to exhaustively recover all
documents on a single aspect. In addition, the searcher can set the wizard to suggest
documents that do not match any of the currently marked aspects, allowing a searcher
to identify the various aspects or to ¢nd the one that is of interest.
Lighthouse is one of several clustering-based visualization systems that have been

created for research use. For example, Hearst and Pedersen (Hearst and Pedersen,
1996) considered a clustering system for visualizing retrieved documents. They did
not investigate the question of how the clustering can help a user to locate relevant
documents. Their system breaks the retrieved results into a ¢xed number of document
groups, while Lighthouse sets the clustering parameters based on inter-document
similarity.
The Bead system (Chalmers and Chitson, 1992) uses the same Multidimensional

Scaling algorithm as Lighthouse for visualizing the document set. That system
was designed to handle very small documents ^ bibliographic records represented
by human-assigned keywords. The Bead research did not evaluate the system.
There exist many other approaches for clustering and document visualization.

An extended review of the related work in both areas can be found elsewhere (Leuski,
2001b).

8. Conclusion

We believe that ranked lists, strict clustering, and the visualization of inter-document
similarities combine to provide a highly useful interactive IR environment. A
user may ¢nd that many queries are satis¢ed by a simple ranked list, that pure clus-
tering is sometimes ideal, and that more complex inter-relationships may be made
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transparent using the spring-embedding visualization, if it is required.We have shown
that clustering and visualization are both useful.
We have done that by constructing user relevance models that capture the feedback

provided by a searcher as do the simpler models of relevance that are typical in past
IR research.We have shown how these models can capture a wide range of methods
for a system to model a user’s notion of relevance and have evaluated three styles
of URM. We showed that a searcher that follows the ‘advice’ of the wizard URM
(or a searcher that uses the same strategy) is signi¢cantly more likely to ¢nd relevant
material quickly than one using classic retrieval techniques.
Our motivation for exploring URMs and building the Lighthouse system to incor-

porate them was to support interactive IR.We are continuing our work in that direc-
tion, exploring additional ways that Lighthouse and similar technologies can be
exploited and included in URMs (Frey et al., 2001).We would like to carry out full
user studies to compare URMs to real user activities and models of relevance, but
have not done so yet. User studies are expensive and time consuming, and should
not be undertaken until the problem being investigated is su⁄ciently well understood.
The experiments in this study provide ‘simulation’evaluations of users (i.e., users that
follow an algorithmic model) and provide us with an improved understanding of
the problem, making it possible for us to eventually carry out a user study that is
valuable as well as interesting.
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