
Artificial Intelligence Review 18: 117–157, 2002.
© 2002 Kluwer Academic Publishers. Printed in the Netherlands.

117

User Interfaces and Help Systems:
From Helplessness to Intelligent Assistance

SYLVAIN DELISLE1 and BERNARD MOULIN2

1Département de mathématiques et d’informatique, Université du Québec à Trois-Rivières,
Trois-Rivières, Québec, Canada, G9A 5H7 (E-mail: Sylvain_Delisle@uqtr.ca);
2Département d’informatique, Université Laval, Ste-Foy, Québec, Canada, G1K 7P4
(E-mail: moulin@ift.ulaval.ca)

Abstract. Despite a large body of multidisciplinary research on helpful and user-oriented
interface design, help facilities found in most commercial software are so ill-conceived that
they are often ‘unhelpful’. From a wide spectrum of disciplines and software tools, we present
an extensive review of related work, identifying their limitations as well as their most prom-
ising aspects. Using this material, we attempt to recapitulate the necessary requirements for
useful help systems.

Keywords: human-computer interaction, (intelligent, graphical) user interface, (intelligent)
help and user assistance

1. Introduction

Since the introduction of microcomputers in the early eighties, we have
witnessed a massive migration of software from main frame environments to
the individual-oriented and more flexible personal computers. This movement
toward the masses required major adjustments from the software industry.
Indeed, software had to be made understandable and easily usable by non-
specialist users. In order to support users’ needs, the software industry then
started to design so-called user-friendly interfaces and to produce manuals
that would accompany their software – for an historical review of soft-
ware tools for the development of user interfaces, see Myers et al. (2000).
Such manuals were typically called user manual, user tutorial or user help.
Compared with usual technical documentation, such as manual for the
programmer or reference manual, user-oriented manuals were quite different
in their writing style and contents. Sometimes prepared at great costs by
professional writers and pedagogical advisors, sometimes prepared hastily by
novice software developers, this documentation was meant to literally ‘take
the user by the hand’ to guide her through the sometimes painful learning
process of how to appropriately use the software.

118 SYLVAIN DELISLE AND BERNARD MOULIN

In the nineties, we have seen dramatic changes in how the software
industry handled the design of user interfaces and the production of software
documentation. User interfaces were dominated by the GUI (graphical user
interface) approach based on the direct manipulation paradigm introduced by
Shneiderman (1983) – some suggest that the GUI offered an alternative to the
romantic vision of natural-language-based user interfaces (Sullivan and Tyler
1991). The main advantage of GUIs was the naturalness of the representation
used to relate task domain objects and actions (software functions) to graph-
ical representations that were familiar to the users. Any modern interface
had to have icons, buttons, lists, menus, scroll bars, and so on. Today, any
software which is not using a GUI looks old-fashioned, almost suspicious.
As far as documentation is concerned, hard copies were gradually replaced by
electronic ‘on-line’ versions, hypertext or not, which are now found in almost
every professional software. But most of all, high quality, pedagogical user-
oriented documentation has almost completely disappeared from software
packages. It is also quite remarkable how relatively little space is dedicated
to software documentation in software engineering textbooks (e.g., Conger
1994; Pressman 1997; Sommerville 2000): maybe it should not come as a
surprise if software engineers and computer scientists show so little interest
for software documentation.

As a consequence, users need to buy third party books that explain to
them how to use the software they have acquired from software vendors. In
today’s software, documentation’s emphasis is put not so much on explaining
how to use the software, but on answering user’s questions ‘on the fly’ and
‘contextually’. But this is no easy task, as users have quite diverse require-
ments, all of which happening in various interaction contexts (Akoumianakis
et al. 2000). Software documentation is often very technical or not easily
accessible, especially because the vocabulary is often unfamiliar to the user.
Moreover, users have difficulties to use software documentation in a timely,
and productive manner: this explains the phenomenal commercial success of
third-party software documentation.

Several reasons can be invoked to explain this state of affairs; let us
simply mention three of them:

• the software industry has become very competitive and one way to cut
down on the costs and delivery dates was to reduce documentation to its
simplest expression;

• the widespread use of GUIs (graphical user interfaces) led the software
industry to believe that user support and documentation is becoming less
necessary, thus less important;

USER INTERFACES AND HELP SYSTEMS 119

• with more and more people becoming computer users, the software
industry was tempted to conclude that customers would become increas-
ingly more computer competent and thus would need less assistance.

But this is hardly an acceptable justification: users are usually abandoned to
themselves and to their frustrations when using a piece of software, whereas
they would need intelligent and co-operative help. Such situations must be
remedied for future human-computer interaction to stand any reasonable
chance to fulfil people’s needs. And blind technological progress will not
put an end to this situation! Indeed, as discussed in Myers et al. (1996) and
Shneiderman (1999), the pace at which technology changes and at which
software companies commercialize new versions of their products, plus the
diversity of users for which software is produced, offer strong motivation for
making user interfaces much more usable. Myers et al. (1996) note that:

Although some areas of computer science are maturing and perhaps
no longer have the excitement they once did, the current generally felt
concern with developing human-centered systems, that is, those that
more effectively support people in accomplishing their tasks, is bringing
HCI to the center of computer science. We have never had more interest,
positive publicity, and recognition of the importance of the area.

In the following, we will put forth some hypotheses as to why current help
systems are still inadequate. We will examine in Section 2 some of the
different aspects that have to be taken into account in the design of help
facilities and discuss in which regards their integration into help systems is
still problematic. Next, through the review of new investigation fields such
as agent technology (Section 3) and more recent trends such as multimedia
interfaces, affective computing and virtual reality (Section 4), we will try
to underline those elements of these technologies that are relevant to help
systems and can enhance their usability. This will be followed by a general
discussion (Section 5) and a conclusion (Section 6).

Details about today’s run of the mill help systems or documentation can
be found in some software engineering or user interface textbooks and will
not be discussed here. All references are listed at the end. We also present
a brief list of URLs that will allow the interested reader to find additional
information on the World Wide Web. We also wish to remark that several
subsections contain non exclusive material: some works could be included in
more than one subsection.

120 SYLVAIN DELISLE AND BERNARD MOULIN

2. Main Requirements for Help Systems

Mathews et al. (2000) mention two criteria that need to be discussed when
designing assistance systems: (1) the degree to which the system facilitates
the accomplishment of a particular task by a user who does not currently
know how to do it; (2) the effectiveness of the system in aiding users’ learning
processes by providing mechanisms that enable them to improve their level
of performance as they are involved in their day-to-day activities on the
system. Based on these criteria and on their experience in the development
of assistance systems, Mathews et al. (2000) suggest that the development of
effective assistance systems should be based on a framework that includes:
(1) an ideal model that is used to explain system concepts and tasks to users;
(2) a user model which keeps track of what the user is doing, what she knows
and does not know; (3) a natural language interface which can understand
users’ queries posed in natural language so that users are not constrained
by system terminology and rigid query formats; and (4) a response genera-
tion mechanism that checks the user proficiencies and the context of user’s
activities before answering a user query or prompting the user. However, we
must observe that the vast majority of help systems available in commercial
software do not comply with such requirements.

In order to help a person, one has to first gather relevant information
about her knowledge and beliefs about the domain, her goals and the task
she is trying to perform to achieve that goal. These requirements for efficient
assistance, although easily satisfied by humans, continue to seriously
challenge help or explanation system designers. A useful help system must
indeed be endowed with knowledge about the user, be able to detect her goals
and cooperate with her so that she can successfully perform her task. These
issues are dealt with under topics such as user modelling, plan recognition,
task modelling, etc. and continue to be at the heart of user interface design.
In the following sections, we will review some of these concepts and see
to what extent their shortcomings can account for the fact that current help
systems are still highly inadequate. An inadequacy that we can already
explain by several hypotheses:

• In order to effectively assist a user, a help system should have some
understanding of the user’s plans and goals, as well as of the task
being performed. None of the mainstream software systems provide help
facilities based on plan recognition, user modelling or task modelling.
However, several research works have addressed the issue of developing
various models in order to support the collaboration between users and
software systems (see Section 2.1.1).

USER INTERFACES AND HELP SYSTEMS 121

• Another problem is that users often have misconceptions about the
system. They unconsciously construct a faulty and incomplete model
of the software with which they interact. The help system must be able
to correct the user’s model of the system. We will discuss these issues in
Section 2.1.2.

• The help system should try to establish a cooperative setting by
providing relevant explanations on different aspects of the system when
needed, by giving feedback on its proper state and by volunteering
information on a proactive mode – more on this in Section 2.1.3.

• The user’s competence in the domain of application for which the
software was developed has significant impact on her capabilities to
efficiently exploit the software’s potential. This will be even truer if the
user interface has been well designed in order to appropriately reflect
the user’s perspective when performing tasks in that domain. Similarly,
the user’s experience with the software has great impact on the type of
interaction she will have with the software. A novice user will normally
tend to use a very restricted subset of the software’s functionality and
will also expect more extensive and more tutorial-like assistance when
facing difficulties. An experienced user will have a broader grasp of
the software’s functionality and will expect less intrusive assistance,
although probably at a more advanced level. The help system must there-
fore create and maintain a model of the user with whom the system is
interacting. We will turn to this in Section 2.2.

• The last but not the least problem with help system design seems to
be that of methodology. We think that the users’ needs with regard to
a given system must be identified at the early stages of that system’s
development. This will not only improve the interface design and the
representation of the system’s different tasks, but will also determine
the conceptual and procedural aspects of those tasks that will later have
to be explained through the help facility. We will discuss this issue as
well as the problem of software evaluation in Section 2.3.

In all fairness to the numerous researchers who have contributed to the
above fields, we must recognize that that their works were not all primarily
concerned with help systems. We here present a discussion which could
hopefully facilitate the identification of potential links between solution
elements that, we believe, offer great potential for the future development of
intelligent help systems. In fact, an integrated view of such diverse contri-
butions is certainly a much needed ingredient to the development of an
“ultimate” theory of human-computer interaction, of which help systems are
a necessary component. But, as pointed out in Sutcliffe (2000), delivering
human-computer interaction knowledge to (system and software) designers

122 SYLVAIN DELISLE AND BERNARD MOULIN

is often limited by scalability problems. Undoubtedly, this is a very difficult
problem. This paper does not offer a solution but, rather, a first step to a more
integrated vision of how one may approach the issue.

2.1. Helping the User with Her Task

Researchers distinguish two types of help systems: passive and active. A
passive help system answers a user’s requests but has no knowledge about
her goals, while an active help system continually monitors the user’s actions,
trying to discover her goals from the performed actions and initiates at times
the interaction with the user. With active help systems researchers aimed at
simulating the behaviour of human consultants who consider users’ know-
ledge and abilities and the context of their activities when answering their
queries. In addition, a consultant usually will help a user’s learning process by
indicating better and more efficient ways of performing tasks, when required.
Matthews et al. (2000) mention that in order to achieve such capabilities on-
line systems need to: (1) model individual users by keeping track of their
strengths and deficiencies in order to occasionally make suggestions and help
users improve their capabilities; (2) determine the context of users’ activities
and ensure that responses cater to their individual needs and proficiencies; and
(3) provide means so that user queries to the system need to be constrained
by system commands and terminology.

In the following sub-sections we examine some of these important issues:
user’s task modeling and representation; the distinction between misconcep-
tions and misunderstandings and how to achieve a cooperative setting. In
Section 2.3 we will discuss the issues related to the introduction of a user
model in a help system.

2.1.1. Task representation and task modeling
HCI researchers concerned with various aspects of user assistance have been
interested by the problem of task representation. As Sullivan and Tyler (1991,
p. 3) note, besides the problem of inferring the user’s knowledge and abilities,
the issue that continues to challenge interface designers is a matter of how
well an interface addresses the semantics of its task. Shneiderman (1998)
who provides a wide coverage of HCI factors is well known for making a
strong case for direct manipulation interfaces, i.e., GUIs, which represent
task objects with graphical entities. Shneiderman argues that the design of
a software user interface should follow an Object-Action Interface Model
(OAIM) to represent appropriately, via its GUI, the user task objects and
actions. The basic idea is that task objects should appear as objects in the
GUI, thanks to a suitable metaphor, and task steps (which are in fact elements
of the user’s intention) should appear as actions of a plan at the interface level.

USER INTERFACES AND HELP SYSTEMS 123

The same principle should be applicable to user documentation: see Chase et
al. (1993) and Section 12.3 of Shneiderman (1998). Young (1991) suggests
that the user interface could use a graphical depiction of the current plan,
including completed and undone steps, in order to keep the user aware of
the current state at all times.1 In this regard, Young distinguishes two types
of context: a persistent context, provided by knowledge bases containing
domain- and user-specific information, and a transient context, provided by
ongoing instantiation of interaction plans which represent the task structure of
interaction sequences in advance. The second type of context is at the heart of
Akoumianakis et al.’s concerns (2000, p. 391): “Achieving context-sensitive
processing requires a mechanism for obtaining a global understanding of the
task execution contexts”. An interesting issue is the relationships between the
user’s and the system’s task representations (Terwilliger and Polson 1997).

The importance of plans and goals is thoroughly discussed in (Carberry
2001, p. 31):

Knowing a user’s plans and goals can significantly improve the effec-
tiveness of an interactive system. However, recognizing such goals and
the user’s intended plan for achieving them is not an easy task.

The main approach that has been developed to perform plan recognition is
that of plan inference. A system using plan inference must have a priori
knowledge of the set of goals a user is expected to pursue, along with
sequences of actions that allows her to accomplish these goals. Thus, to put
it very simply here, the system constantly observes the user’s actions and
attempts to associate these actions to the ones it knows and which are linked
to the goals it also knows. When the system is able to do that, it can infer
the goals the user is pursuing. The system can thus offer better support to the
user’s needs because it has some representation (in terms of plans, goals and
actions) of what the user is apparently trying to do. An example of a plan
recognition system is that of the Unix Consultant (UC) project: see, amongst
others, Mayfield (2000). Another example is the plan recognition system used
in the CAUTRA air traffic control system (Mo and Crouzet 1999). Many
extensions have also been proposed to basic plan inference, ranging from
formal reasoning models, based on argumentation or abduction for instance,
to probabilistic reasoning models (for instance, see Virvou (1999) for an
intelligent help system based on a theory of human plausible reasoning). The
idea of monitoring the user’s actions in order to determine her intentions and
(sub-)goals has also been used in systems not based on plan recognition, but
on a much lower level of modelling which takes into account the states of a
computer’s mouse and cursor (Agah and Tanie 2000).

124 SYLVAIN DELISLE AND BERNARD MOULIN

Task modelling can help with the problem of goal or plan recognition.
Goals refer to states that a user wishes to reach and plans describe steps to
achieve the goals. Plan recognition becomes a big challenge especially if the
user’s goals are ambiguous (Ardissono et al. 1993; van Beek et al. 1993) or
based on mistaken beliefs. Several works have been devoted to the detection
of user’s misconceptions (see Section 2.1.2) and to the development of robust
and flexible plan recognition systems (Quilici 1989), as well as to the way a
system should react to misconceptions (McCoy 1988). Based on his experi-
ence of developing the SINIX system, Hecking (2000) discusses the problem
of plan recognition in an active help consultant, using symbolic logic. SINIX
answers user’s natural language questions about SINIX commands, objects
and concepts and is capable of activating itself. At the heart of SINIX is a
plan recognition sub-system. Hecking shows how an interval-based logic of
time can be used to describe actions, atomic plans, non-atomic plans, action
execution, simple plan recognition as well as the recognition of inserted sub-
plans. Hecking also discusses the limits of this formalism. Hegner (2000)
discusses the problem of representation of dynamic knowledge and proposes
a plan generation mechanism which is used to solve complex dynamic queries
in the Yucca help system. Yucca provides users with detailed expert advice
on the use of UNIX command language, especially to complex queries whose
solution may involve the interconnection of several commands, each with
multiple options. Interestingly, this research showed that the form of know-
ledge representation necessary to support modelling of communication with
the user is quite different than that which is appropriate for the details about
the behavior of an operating system.

Often, the actions proposed by a help system aim at orienting the user
to take advantage of the system’s functionalities, with no consideration of
the user’s real needs when accomplishing her current task. Task models can
facilitate the identification of the user’s current goals and situation. Most
of the systems using task models have been developed for problem solving
tasks, mainly expert systems, decision support systems or intelligent tutoring
systems. We think that task models should be seriously taken into account
for the development of other classes of systems, especially in relation to help
functionalities.

We find task models and user models (see Section 2.2) in explanation
facilities which explain to the user how a problem has been solved and why
the system reached certain conclusions, as well as in intelligent tutoring
systems (ITS) which are instructional systems teaching knowledge or skills
to users in specific application domains (Wenger 1987). ITSs attempt to get
information about the learner’s learning state in order to adapt the instruction
strategy to fit her needs. This is usually done on the basis of a problem solving

USER INTERFACES AND HELP SYSTEMS 125

model of the task to be accomplished. Based on such a task model, an ITS
attempts to determine which tasks the user currently tries to perform, in order
to help her when difficulties arise, for example, by giving some hints (Zhou
et al. 1999).

In order to control the software development costs, certain researchers
have investigated ways to accelerate the creation process of ITS by providing
task-specific authoring environments to develop ITSs for classes of tasks
(El-Sheikh and Sticklen 1999). The basic assumption of such an approach
is that complex problems can be decomposed into ‘basic tasks’ (problem
solving strategies and knowledge representation templates). Hence, an ITS
could be automatically generated by developing a shell that can interact
with any task-based expert system and produce an ITS for the domain
topic addressed by it.2 Several approaches can be used to develop task
models based on well-known knowledge engineering approaches such as
KADS (Schreiber et al. 2000) and the Generic Task model (Chandrasekaran
1986) also used for explanation purposes (Tanner et al. 1993), or cognitive
task analysis (Lovett 1998): these works should provide inspiration for the
development of task-based help systems.

Let us note that what is being referred to as ‘task model’, usually under-
stood from the user’s viewpoint, can also include the agent’s task model if
both the user and the software agent are modelled as performers of a collab-
orative task. Such a model can be thought of as a collection of action plans
shared by the agent and the user in which the initiative can be taken by the
person or the machine. The Collagen system (Rich and Sidner 1997) is an
example of such a system which embodies a set of conventions for collab-
orative discourse as a mechanism for maintaining the flow and coherence of
agent-user interactions.

Many researchers emphasised the role of task knowledge as a vital
component of intelligent and helpful interfaces (Marion 1999a,b), but also
as a means of evaluating the quality of the user interface. Lecerof (1997)
proposes to use task models for assessment purposes, while Mitta and
Packebush (1995) suggest to measure the learning rate with which the users
successfully complete HCI tasks. Such tools could indeed allow software
developers to better judge the quality of their work, from the users’ point
of view, and thus represent a sensible way by which user interfaces and help
systems could be put at the very heart of the software team’s attention.3

If help systems had access to a useful representation of the user’s task, they
could offer contextually relevant and beneficial help. However, developing
help systems based on the techniques (e.g., plan recognition) that would allow
them to do that is a complex and knowledge intensive process which, so far,
has been confined to prototype (often, artificial intelligence) systems.

126 SYLVAIN DELISLE AND BERNARD MOULIN

2.1.2. Misconceptions and misunderstandings
Another problem the system should deal with is that of the user’s model
of the system. This model corresponds to the user’s understanding of the
software’s functionality, capabilities and behaviour. A model that is regularly
updated as the user discovers new aspects of the software. But this model will
normally be incomplete and more or less faulty. Incomplete because users
very rarely know everything about a software, including its defects and its
reaction to unforeseen data. Faulty because users may not have a perfectly
correct model of the software: this model might contain errors that could
lead to an inappropriate operation of the software – see Virvou (1999) for an
intelligent help system built on a reasoning mechanism that focuses on error
diagnosis. It might also be the case that discrepancies between reality and
the user’s model could be caused by undocumented ‘bugs’ in the software:
the user’s model might be correct according to the software’s normal (and
documented) mode of operation but unexpected software behaviour forces the
user to update her model. Whatever their origin, we call such discrepancies
misconceptions. We distinguish misconceptions from misunderstandings. A
misconception is normally a mental representation of something for which
the person is sure or at least very confident, i.e., for which she believes she
is right or has few doubts as to the validity of her knowledge. When a person
discovers that what she thought was correct was in fact wrong, she normally
reacts with surprise. A misunderstanding, which might be the source of a
misconception, refers to the user’s reaction when faced with a concept or
situation which she has trouble understanding. In that case, the person is
conscious that she is faced with something for which she does not have a
full grasp or for which her knowledge may not be reliable – one might want
to argue that some misconceptions are unconscious misunderstandings.

When using GUIs, users acquire personal conceptual models of the applic-
ation programs laying behind these interfaces (Miller et al. 1987), models that
are initially flawed and incomplete. A situation which leads users to various
problems. Miller et al. (1987) argue that the user assistance mechanism
should be able to anticipate and solve such problems through the diagnosis
and repair of these misconceptions. Earlier similar work appeared in McCoy
(1983), Smith (1985), and Dede (1986). McCoy points out that by failing
to correct user misconceptions, the system may not only appear to confirm
the original misconception, but may cause the user to develop even further
misconceptions – the same observation is made in Maybury (1992). Chin’s
Unix Consultant system (Chin 1998) tries to correct (detect) user miscon-
ceptions by denying that what the user mistakenly believes is the case. The
problem of recognising and handling misconceptions is also an important
issue in intelligent tutoring systems (Mallen 1996) and intelligent learning

USER INTERFACES AND HELP SYSTEMS 127

environments (Lester et al. 1997). How exactly misconceptions relate to
knowledge gaps between software systems and the users is an interesting
issue to investigate (Winograd and Flores 1986).

An ideal help system must minimise the number of misconceptions and
misunderstandings, particularly if they prevent the user from attaining her
goals. As with user’s intentions and plans, misconceptions are difficult to
detect but hold the potential, if identified, to adjust assistance to the user’s
needs and further improve future interaction by allowing the repair of the
user’s model of the system. In Fischer (2001, p. 80), this problem is iden-
tified as a future research challenge (“dealing with user models containing
wrong, outdated, and inadequate information”). We should also emphasise
the importance of presenting a meaningful interface to the user which relates
naturally to her view of the software’s application domain in terms of the
metaphor, functions and objects used. Also, the terms and concepts used
throughout the interface should be consistent with the user’s ontology in
order to facilitate communication between the human and the machine by
minimising areas of potential confusion and misunderstanding.

2.1.3. Cooperative setting
A co-operative setting requires that the system provide feedback to the
user. Pérez-Quiñones and Sibert (1996) present a model with five feed-
back states that must be communicated to the user in order to fulfil the
communication expectations of a dialogue. These five states are: ready,
processing, reporting, busy-no-response, and busy-delayed-response. These
authors found that when the system failed to properly identify one of these
states, it led the user to make a tentative repair which could consume a
significant amount of time. This provides an example of collaborative HCI,
although at a relatively low level. Frohlich et al. (1994) show the importance
of signalling to users when a sequence of interaction turns with the computer
is complete, much like in human conversations. Moreover, they recognise the
need for an on-line repair facility which would be able to handle the user’s
troubles and guide her when repairs are necessary – the same observation
is made in Shneiderman (1999). Work by Weissert (1996) also showed that
error messages could be much more useful when accompanied by recovery
actions. The same principles are also important in agent-based software, as
reported in Sengers (1999).

Providing explanations on the system’s reasoning mechanisms is also
important for establishing a cooperative setting (Moulin et al. 2002).
Hermann et al. (1998) indicate that in the context of software systems, explan-
ations should have two purposes: to make clear all aspects of the system and
to provide the causes or reasons for decisions made by the system. The need

128 SYLVAIN DELISLE AND BERNARD MOULIN

for introducing explanation capabilities in software systems was recognised
during the construction of the first expert systems in the early eighties. In
those systems, explanations were merely reasoning traces used by knowledge
engineers in order to check the coherence of the knowledge base. It has
long been recognised that explanation knowledge should be distinguished
from expert knowledge contained in the reasoning component (Wick and
Thompson 1992) and that explanations must be seen as a problem-solving
issue by themselves. Yet, the automatic generation of useful and understand-
able explanations remains a difficult task (see, e.g., Cawsey 1998). It should
be emphasised that building an explanation component requires resources,
energy and time in addition to those devoted to the development of the expert
reasoning component, not to mention the effort to adapt the explanations to
the user’s profile (user’s knowledge, vocabulary, reasoning style, etc.).

Several projects (see Intelligent User Interfaces in the web sites listing
at the end and AI Magazine 2001) aim at developing collaborative intel-
ligent user interfaces (IUI). For example, Rich et al. (2001) work on the
COLLAGEN project and develop a collaborative IUI which exploits the
metaphor of conversation. Several prototype systems have been developed
using COLLAGEN in which an agent guides the user through the process
of achieving a typical task such as the set up and programming of a video
cassette recorder, the operation of a gas turbine, and help provided to people
when programming a home thermostat. Interactions between the agent and
the user are carried out in English. At the core of COLLAGEN is the
discourse state system which tracks the beliefs and intentions of all parti-
cipants in a collaboration and provides a focus-of-attention mechanism for
tracking shifts in the task and conversational context. COLLAGEN also use
plan recognition mechanisms in order to reduce the amount of communica-
tion required to maintain a mutual understanding between the user and the
agent of their shared plan in a collaborative setting. These techniques could
be used to develop advanced help facilities which are able to interact with
the user in a conversational setting. Although it is clear that most software
projects are not able to develop such advanced help facilities because of
tight budgets and delivery dates, some domain of application may benefit
from these techniques such as tutoring systems (Graesser et al. 2001) and
character-based presentation systems (André and Rist 2001).

The knowledge about the user can be organized in a user model
(Section 2.2). By appropriately exploiting the user model maintained by the
system (e.g., Komatsu et al. 1994), a system can display several cooper-
ative attitudes. This would result in volunteering information not explicitly
asked for by the user (Sæbø 1988; Liu and Ng 1998), handling unexpected
exchanges in dialogues (Jokinen 1996), tailoring answers to the user’s know-

USER INTERFACES AND HELP SYSTEMS 129

ledge level (Paris 1988), or adjusting a system’s output to the user’s boredom
and cognitive overload (Zukerman and McConacky 1995).

There are several ways to define what a cooperative system is, or could be.
Here is an excerpt from Tsui and Azvine (2000, p. 259): “It is important for
computers to proactively assist humans, anticipate the effects of their action
and learn from users’ reactions”. Cooperation is definitely a highly desirable
feature of help systems. But very few modern systems could qualify as even
mildly cooperative. All too often, the user is under the impression she has
to fight against the system to either get the required help or accomplish her
current goal. Tsui and Azvine argue that one way to improve interaction
between humans and computers, and thus to minimize communication ambi-
guities, is through multimodal user interfaces – see Section 4.1. However,
this is only part of the picture. Sooner or later, even in a situation of perfect
human-computer communication, the user will require help. And then, the
dimensions covered in other sections of this paper offer invaluable elements
of solution.

2.2. Learning about the user

In order to adapt their interactions to the user’s knowledge, style and other
characteristics, some systems use and maintain a model of the user. The idea
that computers should adapt to their users has been a major concern in both
Human Computer Interaction (HCI) and Artificial Intelligence (AI) fields,
including Computational Linguistics, for more than fifteen years (McTear
1993; Schneider-Hufschmidt et al. 1993; Kobsa 2001) – for a recent review of
user modelling research, see Fischer (2001). In addition, works in cognitive
and differential psychology show that user analysis is central to well-designed
systems (Dillon and Watson 1996). We mentioned already in Section 2.1 that
researchers distinguish two categories of help systems, depending on how the
interaction with the user is initiated. A passive system answer users’ initiated
queries, while an active system initiates the interaction with the user at times,
when it identifies an opportunity to help the user. Based on an empirical
study of how various kinds of users in an academic site manipulate UNIX
files, Virvou et al. (2000) discuss the advantages and limitations of an active
help system for UNIX and the type of help needed by users. These authors
suggest that in order to provide such help, the construction and mainten-
ance of a model of each user is required. In HCI research on user models,
a special emphasis is put on the user’s cognitive style and personality factors.
AI approaches of user modelling mainly aimed at developing systems that can
automatically construct a model of a user as she interacts with the system. The
user’s characteristics that are typically modelled are: goals and plans, capabil-
ities, attitudes and preferences, knowledge and beliefs. The same features are

130 SYLVAIN DELISLE AND BERNARD MOULIN

modelled in current software agents models (Moulin and Chaib-draa 1996;
Singh et al. 1999).

How is the user’s information acquired? McTear (1993) identifies the
explicit and implicit modes of acquisition. In the explicit information acquis-
ition mode, knowledge about the user is obtained through user-system
interactions (Linden et al. 1997), while in the implicit information acquisition
mode, it is acquired by inference mechanisms, or even by mechanisms based
on neural networks (Ye 1997). This knowledge may be relative to an indi-
vidual user or to a stereotype whose characteristics are shared by several users
(Chin 1989; Finin 1989; Rich 1998). Of course, contradictions may appear if
a user is assigned to the wrong stereotype or if the stereotype’s default values
do not apply to a given user. Several other AI techniques have been tested to
enhance user models such as machine learning techniques, neural networks
and Bayesian networks. We will not discuss those techniques here, but the
interested reader may consult the website of the Association of Researchers
Working on User Modelling (http://www.um.org/).

User models can be used to tailor the system’s responses to the user’s
needs and to interpret the user’s input; hence, their relevance to system-
generated explanations. Explanations will be better understood if they are
adapted to the user’s knowledge of the domain and if they take into account
the user’s goals, plans and preferences. The information contained in a user
model can even be updated through an explanatory dialogue (Cawsey 1998).

User modelling has also been addressed in research on intelligent tutoring
systems (ITS) with the creation of student models representing a student’s
knowledge and understanding of the material being taught (Lelouche 1998).
Various researchers proposed to characterize a student’s knowledge with
respect to the system’s knowledge of the domain. However, such an approach
cannot be used to characterize a student’s incorrect knowledge. For that
purpose, a system might contain ‘bug catalogues’ or ‘mal-rules’ in which are
recorded typical students’ errors for a given topic. At a more sophisticated
level, student modelling may involve plan recognition: a system tries to find
out why a student asked a particular question or performed some action in
order to relate these elements to its beliefs about the student’s goals. Such
a system should also be able to identify the cases in which a student lacks
knowledge or has misconceptions about what is being taught.

Naturally, user models have been used in intelligent help systems. Among
other works, let us mention Cesta and Romano’s (1989) help system that takes
into account the user’s state of knowledge, intentions and plans, as well as
her communicative abilities and Chiu et al.’s (1993) adaptive help system that
can operate with various kinds of users, from novice to experienced. Jones et
al. (2000) developed an active intelligent help system that monitors users in

USER INTERFACES AND HELP SYSTEMS 131

order to offer spontaneous help when they are facing problems while using
UNIX. The system builds and maintains a model of the user. The user may
have misconceptions about how commands work or about what is true in the
current system state. The authors describe a mechanism of the user modelling
component which accounts for different hypotheses about what the user is
actually thinking at every stage of the interaction. The consistency of these
assumptions if managed by an Assumption-based Truth Maintenance System
(ATMS). The selection between a number of different user models is based
on information which is extracted from the feedback that UNIX provides in
response to user actions.

We must mention here the scepticism of certain researchers with regard
to the feasibility of building true user models. From a cognitive standpoint,
the adequacy of approaches to user modelling are evaluated according to the
degree to which they are able to faithfully represent relevant aspects of the
users. Gilbert (1987) argued that even the most sophisticated approaches fell
short of that goal. The reason is that these approaches are based on model-
ling the assumed cognitive states of users, including their plans, intentions
and goals. Drawing on studies of human-human interaction, Gilbert argued
that the cognitive states of other interactants are not available to a speaker
although adaptation to their conversational moves appears to be successfully
achieved. Gilbert concludes that attempts to construct better models of the
user’s cognitive state are misconceived and that the emphasis should be put on
providing software with models of the system itself and models of the interac-
tion, in order to allow ‘reflexive reasoning’ and ‘meta-level’ commentary on
the user/system dialogue (Gilbert 1987). Ramscar et al. (1997) also emphasise
the weakness of the current ‘knowledge modelling’ due to the absence of
any convincing psychological model of conceptual categorisation. This issue
is important since systems try to categorize users according to stereotypes.
Ramscar et al. (1997) argue that a system’s representations need not be
definitive, but rather must function ‘pragmatically’. The system should be
able to adapt its user model when an external representation of the user
appears to be ‘aligned’ structurally with some of its stored representations:
hence, it could pragmatically attribute certain conceptual knowledge to the
user.

On that issue it is worthwhile mentioning Strachan et al.’s (1997, 2000)
experience of building a ‘pragmatic user model’ for a commercial soft-
ware system: TIMS, the Tax and Investment Management Strategizer. They
state that in spite of the demonstrated capabilities of many research systems
including user models, little progress has been made in commercial software
systems. They suggest several reasons for this situation: (1) the perform-
ance overhead on the system when including a user model; (2) the time and

132 SYLVAIN DELISLE AND BERNARD MOULIN

expenses involved in the development of a user model component; (3) the
fact that many approaches embodied in research systems are too complex
or impracticable for use in commercial software systems. This situation
has led researchers to create ‘pragmatic’ user modelling techniques based
on theoretically-motivated approaches. From a commercial standpoint, this
amounts to include in software systems ‘a minimalist user model component’
benefiting from the main advantages of large research systems, with minimal
cost and commercial disruption. The authors present the main issues related
to the design, implementation and empirical evaluation of such a minimalist
user model targeted to the novice users of the TIMS system. They raise
interesting issues such as the importance of measuring the practical impact
on users of the introduction of a user model component in a software. They
also emphasise that users should be involved early in the system development
process so that their ‘real needs’ with respect to their use of the software
under development can be identified. Chin (2001) also emphasise the need to
carry out empirical evaluations (i.e., appraisal of a theory by observation in
experiments) in order to determine if users are helped of hindered by user-
adapted interaction in user modeling systems. These issues are discussed in
the next section.

2.3. Help systems: methodology and evaluation

We are conscious that in current software development practice the effort
devoted to the creation of a help facility is only a small part of the effort
assigned to the overall system development, and such a situation will not
change in the foreseeable future. However, we are convinced that something
has to be done in order to improve the quality of software when it comes
to the help that users should receive from it. We think that the software
development process should be adapted in order to take into account users’
requirements and needs for the help component of the future system. The help
component should appear in the early versions of the software architecture
so that designers keep in mind that it is an important part of the system.
When gathering users’ requirements, designers should also ask questions in
order to obtain information about their vocabulary and the main tasks they
will perform using the future software. This information is much needed in
order to build usable interfaces and to take into account the context in which
the system will be used, hence, a better starting point in order to build the
help facility. The help component should be built in parallel with the soft-
ware under development because it must be thought of as tightly coupled
with the system interface. As soon as the design team has decided upon the
main system functionalities and the main system interface characteristics, the
reflection about the help component can start, in order to make sure that the

USER INTERFACES AND HELP SYSTEMS 133

help functions will take into account the context in which the user will use the
system. The first versions of the help system should be delivered early, at an
appropriate date during the overall system construction, but certainly much
sooner than is usually done in current system development (i.e., after most of
the system is delivered).

Certain readers may argue that it is often the case that designers develop
a new system without having proper users’ requirements because they are
developing an innovative system and have no access to potential users. This
happens when developing new software that is expected to fulfil new needs
not yet addressed by the competition. However, if the software is to be sold,
it must in any case be useful to future users. Project managers controlling
the software development should also be convinced of the importance of
designing systems for usability and hence integrate in software development
plans and schedules the required resources for help facilities.

Some of these issues have been taken into consideration in user-centred
design and usability engineering. We think that the same principles should
apply to the design of help facilities. User-centred design methods (Norman
and Draper 1986; Preece 1994) emphasise the fact that design should: (1)
be user-centred and involve the users as much as possible so that they can
influence the design; (2) integrate knowledge and expertise from different
disciplines that contribute to HCI design, and (3) be highly interactive so that
testing can be done to check that the design does meet users’ requirements.

Numerous papers and books have been written on the subject since the
idea of design for usability has been introduced by Gould and Lewis (1984),
some of which explore how cognitive science can be used for user interface
design (Gardiner and Christie 1987; Norman 1984).

From these seminal works emerged the modern discipline of Usab-
ility Engineering which aims at supporting the entire software development
process with user-centred design and validation activities.4 Of interest are
also the works done in the field of Cognitive Ergonomics at the intersection
of Psychology and Design.5 Finally, we must mention that with the explo-
sion of internet applications (e-commerce and the like) usability design is
currently attracting much interest for the development of user-centred Web
applications.6

In Akoumianakis et al. (2000, p. 391), the authors propose what they call
the unified interface development method:

A unified user interface is defined as a hierarchical construction in
which the root represents an abstract design pattern de-coupled from the
specifics of the target user (group) profile and the underlying interface
development toolkit, while leafs depict concrete physical instantiations
of the abstract design pattern. The unified user interface development

134 SYLVAIN DELISLE AND BERNARD MOULIN

method comprises design- and implementation-oriented techniques for
accomplishing specific objectives.

The first and fourth specific objectives of their user interface design are (ibid,
p. 392):

“accommodation of different user groups with varying abilities, skills,
requirements and preferences, as opposed to the average ‘able’ bodied
user”, and “propagation of design knowledge into the development cycle
by embedding design recommendations into user interface implementa-
tion”.

These authors did not take into consideration the development of the help
facility as such. However, the methodology they propose could easily be
extended to include the help facility.

Another important problem is the evaluation of the user interface. Based
on work by Senach (1990), Balbo (1994) investigated the automation of
user-interface evaluation. Balbo considers that the evaluation of software
ergonomics should be based on two main dimensions: utility and usability.7

She also argues that software design should be centred on the user in order
to properly take into account ergonomic considerations. To this end, tasks
should be described from the user’s viewpoint, where a task is defined as the
combination of a goal plus a procedure. Balbo presents a tool called ÉMA
(Évaluation par Mécanisme Automatique) which automatically produces
ergonomic evaluations of specific user-software situation. ÉMA uses a rule
base of user behaviour models, a forma representation of potential tasks
for the specific software at hand, and behaviour data recorded from the
user during her interaction with the software. User behaviour data consists
of a file of events that took place during the evaluation. Potential tasks
are represented using so-called sequence graphs, which are directed graphs
organized in terms of a hierarchy of procedures expressed with certain
constraints (sequence, obligation, restriction). During a particular evaluation,
both sequence graphs and files of events are loaded into ÉMA’s analyzer
which then produces annotated versions of the two inputs. This analysis,
based on ergonomic principles developed by Scapin (1990) (i.e., guidance,
work load, explicit control, adaptability, error management, homogeneity,
codes significance, and compatibility), detects anomalies which are then
reported and expected to be further analysed by a human expert who will
eventually adapt the software to better meet the users’ needs. Even though
ÉMA is described as an automatic tool, it is more like a semi-automatic tool,
since human expertise is required first to define the models needed by the
analyzer and second to interpret the analyser’s output. But nevertheless, it
seems to be a good idea to monitor the user’s behaviour, with dedicated tools,

USER INTERFACES AND HELP SYSTEMS 135

in order to better adjust the software to her needs, instead of always assuming
that the user will adjust herself to the software. Clearly, a good evaluation of
the user interface will provide a useful feedback to the team responsible for
the development of the help facility, allowing them to put emphasis in those
areas where appropriate help is need to better support the user.

In the following sections we investigate new fields such as agent tech-
nology (Section 3), multimedia interfaces, affective computing and virtual
reality (Section 4) and underline certain elements of the corresponding tech-
nologies which may be relevant to help systems and can enhance their
usability.

3. Agent Technology

Agent technology is more and more used for assistance purposes. In this
section we will try to see how these intelligent agents can fulfil the users’
assistance needs. But, first we have to define the notion of an agent. There is
still no consensus on what exactly an agent is: several definitions are proposed
in Bradshaw (1997), Russell and Norvig (1995), and Hayes-Roth (1995).
Weiss proposes the following definition (1999, p. 27):

. . . for an increasingly large number of applications, we require systems
that can decide for themselves what they need to do in order to satisfy
their design objectives. Such computer systems are known as agents.
Agents that must operate robustly in rapidly changing, unpredictable, or
open environments, where there is a significant possibility that actions
can fail are known as intelligent agents, or sometimes autonomous
agents.

For a recent discussion of agent-based software, see Jennings (1999); for a
discussion on the notion of autonomy, see Friedman and Nissenbaum (1997).
Finally, for a critical analysis of agents, see Shneiderman (1997).

In Sections 3.1 and 3.2, we discuss two types of agents: interface agents
which automatically perform certain actions for the user and intelligent
assistants or intelligent support systems which support the user in her task.

3.1. Interface agents

Interface agents are programs that can affect the objects in a direct manipula-
tion interface without explicit instruction from the user.

Maes and Kozierok (1993) define interface agents as computer programs
that employ artificial intelligence techniques in order to provide assistance to
a user dealing with a particular computer application. Modelled closely after

136 SYLVAIN DELISLE AND BERNARD MOULIN

the metaphor of a personal assistant, the agent discussed in their paper learns
how to assist the user by (i) observing the user’s actions and imitating them,
(ii) receiving user feedback when it takes wrong actions and (iii) being trained
by the user on the basis of hypothetical examples.

The basic idea presented by the authors is that the interface agent learns by
“continuously looking over the shoulder of the user as the user is performing
actions”, and this over long periods of time. For instance, if the agent finds
that action X is often performed after action Y, then it will suggest to auto-
matically perform X whenever Y is performed. Such interface agents are
often qualified as semi-intelligent and semi-autonomous. But there are serious
limitations with these agents. They assume that the user knows what she
is doing and they can only learn after a certain number of repetitions or
in situations which are very similar to previous ones – see Lashkari et al.
(1994), Takeda et al. (1996), Decker et al. (1997), and Good et al. (1999) for
frameworks for multi-agent collaboration which allow greater flexibility in
learning and information exchange.

Lieberman (1997) argues that agents should be both interface agents and
autonomous agents. Such an agent is a program operating in parallel with the
user and does not follow the traditional conversational approach in which the
user and the agent alternate acting or follow a collaborative dialog (Rich and
Sidner 1997). LETIZIA is the name of Lieberman’s system, an autonomous
interface agent for Web browsing. LETIZIA is constantly searching the Web,
according to preferences and interests specified by the user, and presenting its
results (candidate sites and recommended sites) to the user in dedicated Nets-
cape sub-windows. But as Lieberman indicates himself, such autonomous
interface agents are most appropriate in non-critical decision making situ-
ations, especially when the user might be busy with other tasks at the same
time.

A somewhat similar project is presented in Payne and Edwards (1997)
where the authors discuss the issues involved in the development of an
autonomous interface agent, called MAGI, which can filter mail messages. By
observing and analysing the user’s behaviour in dealing with mail, MAGI can
update user preferences and assist her in sorting her mail – a similar applic-
ation is presented in Malone et al. (1997) and in Maes (1997). Payne and
Edwards conclude by noting the need to evaluate interface agents in working
environments and to determine if they truly assist users without becoming a
nuisance.

Of course, interface agents cannot really assist the user when she needs
intelligent on-line help. Once in a while, they can propose useful shortcuts
to simplify the user’s life in the operation of a frequently used computer

USER INTERFACES AND HELP SYSTEMS 137

application. But that is pretty much all what users can expect from current
interface agents.

3.2. Intelligent assistants and intelligent support systems

Much work has been done on the development of intelligent assistant systems
(Boy 1991). Intelligent assistant systems are characterised by a co-operative
problem solving procedure and aim at supporting the user’s work. Some
authors, like Riecken (1997), even propose a clear distinction between agents
and assistants: an agent is a simple specialized reasoning process and an
assistant is comprised of many co-ordinated agents.

To assist a user’s work, her working methods and models should be repres-
ented and supported by the system. Many assistant systems leave the control
of the problem solving process in the user’s hands and take over routine
problem solving steps. Hermann (1996) notices that “tools for complex real-
world problems are often organized in the wrong way. They try to automate
the considered task (or part of it) instead of supporting the problem solving
process performed by the user”. As several other authors, such as Maes
(1994), Hermann (1996) argues that intelligent assistant systems should have
learning capabilities in order to better adapt to their users. For example,
such a system should learn to avoid an error that occurred once during the
problem-solving process, to revise the knowledge base according to selected
inconsistencies or weak points, to gain knowledge about problem solving
steps from the observation of users’ activities, to adapt the knowledge base
to the user’s problem solving style and to restructure the knowledge base in
order to improve comprehensibility.

In Microsoft’s Persona Project (Ball et al. 1997), future assistant systems
are described as follows (pp. 191–192):

. . . computers will become assistants rather than just tools . . . Rather
than invoking a sequence of commands which cause a program to carry
out small, well-defined, and predictable operations, the user will specify
the overall goals of a task and delegate to the computer responsib-
ility for working out the details. . . . The machine-like metaphor of a
direct manipulation interface is not a good match to the communication
needs of a computer assistant and its boss. In order to be successful, an
assistant-like interface will need to: Support interactive give and take
. . . Recognise the costs of interaction and delay . . . Manage interrup-
tions effectively . . . Acknowledge the social and emotional aspects of
interaction.

The Persona Project intends to push the anthropomorphic metaphor to its
limits, allowing human-computer interaction to take place through natural

138 SYLVAIN DELISLE AND BERNARD MOULIN

(spoken) language processing, dialogue management, and video and audio
output in what can be called ‘life after the GUI’. The Persona Project certainly
constitutes one of the most advanced proposals ever made in the area of
conversational interfaces. By all accounts, this project is not only interesting,
but quite ambitious and challenging for a variety of practical and theoretical
reasons.

The work of Jones and Mitchell (1994) on intelligent support systems is
also quite interesting (p. 527): “One way to improve the human-machine
system is with intelligent support systems that provide context-sensitive
displays, dialogue, and resources for activity management”. They discuss the
foundations of a supervisory control system, called GT-MOCA, for NASA
satellite ground control. Based on four general principles of good human
communication (i.e., be relevant, be coherent, appropriately synchronized,
and allow for repair), they propose the following design guidelines for
intelligent support systems (from Jones and Mitchell 1994, p. 536):

(i) “Allow the human to retain authority”; (ii) “Support mutual intel-
ligibility (e.g., via the use of inspectable and interactive task and user
models)”; (iii) “Be open and honest – the structures and reasoning of
intelligent support systems should be inspectable and comprehensible
to human users”; (iv) “Support the management of trouble – provide
resources (e.g., context-sensitive help at various levels of detail) to help
repair breakdowns in communication between human and machine”; (v)
“Provide multiple perspectives. . . . Different perspectives can be offered
from various levels of abstraction and aggregation”.

Jones and Mitchell’s proposal takes into account the notion of repair that we
consider as highly important. GT-MOCA’s repair capability is constructed on
two ancillary mechanisms, those of elaboration and explanation, much in the
expert system tradition. They also suggest to implement relevance and coher-
ence, referred to as ‘mutual intelligibility’ above, with the help of user actions
monitoring and dynamic modelling of domain goals and user intentions as
the basis for co-operative interaction – Levi et al. (1990) also consider that
the representation of actions and goals is a critical requirement of intelligent
assistant systems. As Smith et al. (1997) put it: “. . . people . . . want help with
their jobs, their tasks, their goals”.

Mallen (1996, p. 350) argues that an intelligent help system must be able
to “answer questions from the user which take account of its current workings
and the state of the system” and “provide operational descriptions and explan-
ation þ but in ways which take account of the user’s knowledge”. And to meet
these requirements, Mallen suggests that the help system should: recognise
the user’s plans, tailor its answers to the user and her current context, deal

USER INTERFACES AND HELP SYSTEMS 139

intelligently with repeated questions, deal with issues of efficiency, and give
advice on repair actions. This will require four components: a domain model,
a user model, an instructor module, and a communication manager.8

We can indeed suppose that the more knowledge sources are used, the
more intelligent user interfaces will be. For instance, in the CUBRICON
multimedia interface system (Neal and Shapiro 1991), there is a lexicon,
a grammar, a discourse model, a user model, a repository of output plan-
ning strategies, a repository of general (world) knowledge and a repository
of domain-specific knowledge. However, at the current state of the art, the
development of realistic systems with such capabilities is still more a goal
than an established technology. Nevertheless, such capabilities are definitely
worth consideration for the development of future help systems.

4. Recent Trends

Today’s human-computer interaction is still very much centred around the
keyboard and the screen. But with the elaboration of new concepts like
affective computing and with recent progress made in new technologies such
as natural language/multimedia interfaces or virtual reality, other interaction
means are becoming available or will soon be. We will review some of these
new trends here to see how they could contribute to progress towards more
helpful interfaces.

4.1. Multimedia interfaces

Researchers have investigated the use of several media for supporting the
user/system interactions (Maybury 1993): they speak about multimedia or
multimodal interfaces. For instance, Maybury and Wahlster (1998) consider
voice, gesture, GUIs, natural language and speech, hand gestures, and eye
movement.9 Other researchers have been interested in the use of multimedia
in training or education. For instance, Chang and Chen (1995) emphasise
multimedia’s flexibility in presenting information and providing feedback.
Dormann (1996) discusses the interest of on-line animated help instead of
plain animations based on simple simulations: she argues that such help
mechanisms can reduce the gap between the application and the help system.
Van Aalst et al. (1995) say that some topics are very difficult to teach with
traditional means and thus suggest that multimedia support productive new
approaches. Interestingly, the system they describe, named FLUID, is a multi-
media tutorial for user interface design in which the learner plays the role of
an assistant user interface designer.10 Of particular relevance to help systems
are projects that use a combination of natural language and realistic objects or

140 SYLVAIN DELISLE AND BERNARD MOULIN

maps to express procedural instructions (Feiner and McKeown 1993; André
et al. 1993) or to provide explanations (Goodman 1993).

4.2. Affective computing

Work at the MIT Media Laboratory illustrates well this relatively new field
of computer science research (Picard 1997). Generally speaking, the goal is
to endow computers with human-like reactions, perceptions or capacities,
in order to allow them to behave in a more natural and sensible manner
– a desirable characteristic of believable agents (Bates 1994) and ‘charis-
matic’ computers (Fogg 1997). This includes the recognition, modelling and
synthesis of emotions, such as impatience and happiness, through direct or
indirect use of the computer’s input/output devices (keyboard, screen, micro-
phone, speaker), with media like voice/speech, image (e.g., emotional icons
(Rivera et al. 1996), faces and facial expression (Essa and Pentland 1997;
Cassell et al. 1998; Nagao and Takeuchi 1998)) and text.

In an interesting experiment, Klein et al. (1999) describe a computer
system on which a deceiving game is installed. The game makes the user’s
life miserable by simulating so-called ‘random Web delays’ which prevent
players from performing at the best of their capabilities. This situation quickly
leads to frustration which is then measured by a clever experimental set-up
as well as (on-line) questionnaires. The researchers found that users were
more patient with the frustrating system when they were able to report their
problems and feelings to the computer. But the system only allowed users
to express themselves about their negative emotional states, it provided them
neither with explanations about the frustrating situation nor with solutions
that would allow them to avoid or correct the frustrating situation in the
future.

In Okada et al. (1999), a task-oriented dialogue system is presented in
which emotional aspects are integrated. A rather general model of compu-
tational dialogue processing, along the lines of Allen et al. (1996) and
Carberry (1990), is augmented with emotion-specific processors that can deal
with emotion recognition, emotion arousal, emotion prediction and emotion
generation. They use a taxonomy of eight primitive emotions: joy, sadness,
acceptance, disgust, surprise, expectancy, anger, and fear. The authors argue
that this allows dialogue systems to communicate in a less mechanical fashion
which might be more adapted to certain users or certain conversational situ-
ations. They also argue that their approach is suitable to endow systems (or
agents) with ‘personality’. Compared with the work of Klein et al. (1999), this
work involves more knowledge intensive processing, using plans and goals
specific to emotional aspects. In this sense, it is more typical of artificial
intelligence approaches, whereas Klein et al. (1999, p. 4) deliberately stay

USER INTERFACES AND HELP SYSTEMS 141

away from AI, mentioning that: “such a system can be built using existing
technology, without requiring strong AI”.

Affective computing makes computers appear more human-like at a super-
ficial level, it does not necessarily make them truly more human-like in any
deep sense, and certainly not more human-like at a cognitive level. From our
perspective, affective computing provides a pleasant enhancement of a system
when the computer (the software) already has all the proper functionalities
and knowledge for the task at hand. It does not, for instance, significantly
contribute to our needs in terms of designing and developing more intelligent
help systems. At best, affective computing techniques would allow an intelli-
gent help system to be more agreeable but not more knowledgeable or more
helpful.

4.3. Virtual reality

Zheng et al. (1998, p. 20) define virtual reality as follows:

Virtual Reality (VR) is an advanced, human-computer interface that
simulates a realistic environment. . . . A virtual reality system should
have three characteristics: response to user actions, real-time 3-D
graphics and a sense of immersion.

Virtual reality influences the design of computer systems mainly at the level
of the user interface. The main argument being that a system using a meta-
phor that relates ‘naturally’, or ‘intuitively’, to the user and her tasks will
be much easier to understand and operate effectively (Shneiderman 1998),
Section 6.8). Let us now consider a few examples of such works.

Chu et al. (1997) discuss the problem of determining the requirements for
the multi-sensory user interface of a virtual reality based CAD (Computer-
Assisted Design) system.11 Their system uses two essential modes: a naviga-
tion mode to navigate through the design space to view generated geometric
shapes, and the shape operation mode to create or modify geometric shapes.
The model that they propose uses hand and eye motions, voice commands,
real-time 3-D images, auditory and tactile feedback. On a related topic,
Nadeau (1996) discusses the concept of a 3-D Web, while Wann and Mon-
Williams (1996) propose to centre the design of virtual environment systems
on the perceptual-motor capabilities of the user, in the context of the task to
be undertaken. Similarly, Hodges (1998) presents virtual reality simulations
especially designed for training purposes in which trainees could ‘learn by
doing’ in environments nearly identical to actual workplaces.

As with affective computing, the realism or intuitiveness that virtual
reality brings to user interfaces does not make them more informative or co-
operative when users need help. In fact, one could argue that virtual reality is

142 SYLVAIN DELISLE AND BERNARD MOULIN

just another way to ease the adaptation of the user to the software, much in
the spirit of GUIs, hoping that this will lessen the need for a truly helpful and
intelligent help mechanism. The work done by Rickel and Johnson (1999),
which is closer to intelligent tutoring systems and agents, is more inter-
esting with regards to help systems. They describe a system called Steve,
an animated agent, that helps students learn to perform physical, procedural
tasks (e.g., how to inspect a high-pressure air compressor aboard a ship).
Steve’s three main modules, perception, cognition (with domain-specific and
domain-independent knowledge) and motor control, allow it to qualify as an
AI system – although not as complex as the CUBRICON prototype system
(Neal and Shapiro 1991) which was designed to also handle speech – thus
making it conceptually distant from the more superficial affective computing
or virtual reality systems. Although communication between Steve and the
user is limited to pre-specified speech utterances, instead of unconstrained
natural language, Rickel and Johnson’s work suggests a promising direc-
tion for further exploration of software help mechanisms. Johnson (2001)
presents several examples of so-called guidebots (or animated pedagogical
agents) which are animated virtual guides which interact with learners in
a manner that is inspired by the behavior of human tutors. These interac-
tions include a combination of verbal communication and gestures. Guidebots
express thoughts and emotions (enthusiasm, empathy, etc.). These guidebots
exemplify the recent convergence of virtual reality approaches, conversation
management systems and certain aspects of affective computing that may
pave the way to the next generation of help systems.

5. Discussion

Despite the progress made in user-oriented systems presented in the previous
sections, we can notice that current help systems and user interfaces continue
to suffer from several weaknesses. We drew a list of some of these limitations
and discussed the promising areas in current or future research that will even-
tually be able to deal with them. In what follows, we summarize the main
findings of our investigation.

5.1. Methodological and software engineering aspects

• We note that although most of the recent methods of software engin-
eering start with the identification of ‘use-cases’ to orient the design
process, there is not much emphasis on the techniques that should be
used to develop user-interfaces and to adapt the software functional-
ities to users’ needs. Current software development methods, especially

USER INTERFACES AND HELP SYSTEMS 143

object-oriented ones, which have been widely used in recent years, put
little emphasis on the design of user interfaces, users’ manipulation
needs, and users’ help needs. Even notations such as UML (The Unified
Modeling Language) seem to neglect this important aspect of software
development (Ericksson and Penker 1998). This is an intriguing weak-
ness since the technique of use cases which is used in UML seems
to offer the appropriate context to investigate this issue in an in-depth
manner and to develop an appropriate user interface. Let us emphasise
the importance of a user-centred software development methodology for
the description of the tasks from the user’s viewpoint, and the importance
of ergonomics (utility and usability) in designing the user interface and
the help function.

• The vast majority of help systems is organized in a way that directly
follows a functional view of the software. The trouble with such an
approach is that the users’ perspective is often drastically different from
that of the software designers. It is important to present a meaningful
interface to the user which naturally relates to her view of the software’s
application domain in terms of the metaphor, functions and objects used.
One way to ensure this is to put the user’s needs (manipulation, func-
tional and assistance) at the very centre of the software development
process.

• The typical rational used by most software companies seems to be the
following: graphic user interfaces allow us to completely control the
user’s actions in a visually appealing fashion and there is simply no
need for complicated help systems. In other words, software should be
‘perfect’ and the user is expected to adapt herself to the software. And if
something goes wrong, if she encounters difficulties or has questions, it
is up to her to figure out a way to escape the problematic situation or to
discover clues in the on-line help (documentation) system or, worse, in
her favourite third-party documentation, in order to go on with her task.
We must insist on the importance of task-specific help and explanations.
These have to be adapted to the user’s profile and relevant with respect to
the user’s current situation and goals. The importance of giving advice
on repair actions must also be emphasised. These requirements should
be met through the use of a non-intrusive help mechanism, based more
on a strategy of user intelligence ‘boosting’ than user task automation,
and supported by a knowledge base expressed in terms of user tasks and
goals.

144 SYLVAIN DELISLE AND BERNARD MOULIN

5.2. Modelling the user

• Most user interfaces do not exploit a user model. Because of this lack of
information, the software is unable to help the user in a truly relevant and
timely way and at an appropriate level with respect to her knowledge.
To make matters even worse, the vocabulary used in the interface and in
the help system is often technical and hardly understandable to a non-
specialist user. With such a short-sighted view of the user and her current
task, it is simply impossible to assist her intelligently. Hence, the user is
expected to ask relevant questions to the system (or to find appropriate
items in the help index) and if she fails to do so, or if the help system is
unable to answer her request, she is left alone with her frustrations. It is
important to use and maintain a user model in order for the system to
behave more co-operatively with the user. Maybe rather than embarking
in the construction of a complex user model based on beliefs, desires,
intentions, attitudes, users’ mental states, etc., we can adopt a more
pragmatic viewpoint which translates into the use and updating of a
simple but useful user model. Amongst other things, the user model
allows the help mechanism to adapt its assistance to the user’s level of
expertise. For instance, we expect that tutorial-like assistance will be
more appropriate for novice users than for expert users who normally
expect assistance more on a demand basis and at a more advanced or
technical level. This adaptation is also true for the terminology used in
the help facility.

• We must emphasize how important it is that the user model be developed
in a parameterized manner, allowing it to take into consideration indi-
vidual user preferences and abilities – this is sometimes referred to as
‘personalization’ nowadays. We already mentioned the work of Akou-
mianakis et al. in Section 2.3. There is also the work of Fischer (2000,
p. 65) who precisely identifies the challenge facing software developers:
“Designers of collaborative human-computer systems face the formid-
able task of writing software for millions of users (at design time) while
making it work as if it were designed for each individual user (only
known at use time)”.

• The user model can also help to handle some cases of misconcep-
tion and misunderstanding. Current user interfaces and help systems
are unable to deal with (detect, represent, process) the users’ miscon-
ceptions. Such misconceptions can appear for a variety of reasons:
lack of knowledge, use of false premises, ambiguous interaction with
the software, error during processing, etc. Some of these flaws can
be compensated by reactive and proactive system-related explanations.

USER INTERFACES AND HELP SYSTEMS 145

Mutual understanding can be reached by means of cooperative user-
system interaction.

• It is important to design systems that seem to understand what the
user wants to do and minimise the user’s frustration. The system must
constantly follow the user’s objectives and actions, thus permitting the
help system to offer contextually relevant assistance at the right time
and, thanks to the user model, at the appropriate level of explanation
with a vocabulary adapted to the user. Inversely, the user must be able to
follow the system’s procedures. The latter must therefore have a proper
visual means to inform the user about its state in all circumstances.

5.3. Agents and other recent trends

• Most interface agents that have been built up to now, even those that
are called “intelligent”, are extremely limited – a good number of them
being very specific of Web applications – and are usually not designed
from the user’s perspective of the task. It is at least questionable why
such “looking over the user’s shoulder” interface agents are so remote
from the user’s point view or have absolutely no connection with the help
system. With regard to interface agents which attempt to learn shortcuts
for the user, to perform work on her behalf or to take initiatives with or
without her approval, we believe that it is preferable to rely on a strategy
which attempts to amplify the user’s intelligence instead of attempting,
with more or less success, to intelligently do her work, or at least some
part of it, on her behalf. Such a system would support the user’s task in
a co-operative manner instead of trying to automate it.

• Recent trends, such as affective computing, conversational interfaces,
and some elements of virtual reality, have shown interesting potential for
important aspects of human-computer interaction. These generally tend
to incorporate more human-like reactions or more realistic interfaces.
However, they still fall short of offering a truly intelligent way to assist
the user, as if it had nothing to do with their objectives. In fact, it is
still unclear how these elements could be combined to provide valu-
able enhancements to future user interfaces. Many of the preliminary
results obtained in these fields have led to the production of interface
embellishments rather than authentic new tools. It is still not known
what types of interactions, or combination thereof, are more appropriate
for human-computer interaction in general and, in particular, for help
systems. Much more research is needed to push forward these new fields
of investigation and to reach more definitive conclusions.

146 SYLVAIN DELISLE AND BERNARD MOULIN

6. Conclusion

Our main concern is that, despite such a large body of knowledge as the one
we have attempted to cover here, help facilities found in most commercial
software are so ill-conceived that they are usually ‘unhelpful’. We think that
human-computer interaction should be seen as a task-oriented co-operative
interaction in which the machine is expected to intelligently support the user’s
task, especially when she experiences difficulties. The help system must be
seen as an integral part of the user interface and its role must be to assist the
user in accomplishing her task by whatever suitable means: providing relevant
answers to her how-to questions about her task or the software’s functionality,
and providing useful advice on how to perform certain (sub)tasks, but not
necessarily to automatically perform them on her behalf. Or, to use Fischer’s
wording (2001, p. 65): “say the right thing at the right time in the right way”.

One area of importance for future research is certainly the integration
of several of the techniques, tools and approaches covered in this paper.
Another area is the study of the “scaling up” problem: many of the proposals
presented here are applicable only to small systems or prototype systems:
they can hardly be justified on a commercial basis – and this is a serious
limitation, quite similar to the one that plagued the development of artifi-
cial intelligence systems for many years. Yet another area of interest is that
of help-desk systems.12 Many organizations, especially those selling hard-
ware and software, provide extensive customer support via telephone “help
desks”: technical experts must answer the same users’ questions repeatedly.
Such support is expensive and many organizations try to reduce their costs
by limiting or maintaining the size of their help desk staff and by offering
Web-based help desk systems. A search on Internet will show the reader that
many companies offer Web-based help desk systems. Certain designers offer
guidelines to develop Web-based help systems (See Section 8: Help for the
Web initiative), claiming that Web-based help system should provide equal
or better the functionality and performance of existing help systems. This
new trend raises new questions about help systems: Which services should be
available in a software’s help facility and which ones should be supported by
a Web-based help desk? Which kind of interaction mode should be offered
to the user by either kind of help system? Will Web-based system replace
software help facilities? It is intriguing that so little of the developments
in this field, which has been relatively active in the last five years, have
transferred to actual benefits for help systems. One element of explanation
seems to be that many of these systems are based on artificial intelligence
techniques (see, e.g., Chan et al. (2000); Fong and Hui 2001; Kang et al.
(1997)).

USER INTERFACES AND HELP SYSTEMS 147

Finally, we think that work on help system would greatly benefit from an
in-depth study of today’s users’ frustrations and expectations when they use
their software. It would be very beneficial to get a precise description of the
type of feedback and assistance users expect from modern software.

Acknowledgements

This research is supported by the Natural Sciences and Engineering Research
council of Canada. The authors wish to acknowledge the contribution of
Hengameh Irandoust who carefully revised earlier versions of this paper.
Many thanks also to the anonymous reviewers for their helpful comments
and suggestions.

Notes

1 A related idea is that of high-level plans in Bonar and Liffick (1991).
2 See section VI of Maybury and Wahlster (1998) on ‘Model-Based Interfaces’ which
presents, essentially from an ITS perspective, several tools and techniques that assist the user
interface designer.
3 See Marion (1999c) and Winograd (1996) for a discussion of the importance of user inter-
face in software development.
4 See our Website addresses on this subject in Section 7.
5 See our referenced Websites.
6 See our referenced Website: ‘Usable Web: Usability Engineering’.
7 On ergonomics standards, see Harker (1995) who identifies ‘user guidance’ and ‘guidance
on usability’ as two important elements.
8 The reader interested in knowledge-intensive approaches to the design and development of
intelligent user interfaces will find representative works in Sullivan and Tyler (1991).
9 See also the first section of Sullivan and Tyler (1991) on multimodal communication and
Burger and Marshall (1998) on the notion of multimedia conversations.
10 For guidelines on the design of user interfaces to multimedia ITSs, see Najjar (1998).
11 See also Trika et al. (1997) and Palamidese (1999).
12 “Help desks are computer aided environments in customer support centers that provide
frontline support to external and internal customers”: Chan et al. (2000, p. 125).

References

Agah, A. & Tanie K. (2000). Intelligent Graphical User Interface Design Utilizing Multiple
Fuzzy Agents. Interacting with Computers 12: 529–542.

AI Magazine (2001). Special issue on Intelligent User Interfaces. AI Magazine 22(4), Winter
2001.

Akoumianakis, D., Savidis, A. & Stephanidis, C. (2000). Encapsulating Intelligent Interactive
Behaviour in Unified User Interface Artefacts. Interacting with Computers 12: 383–408.

148 SYLVAIN DELISLE AND BERNARD MOULIN

Allen, J. F., Miller, B. W., Ringger, E. K. & Sikorski, T. (1996). A Robust System for Natural
Spoken Dialogue. Proceeding of the 34th Annual Meeting of the Association for Compu-
tational Linguistics Conference (ACL-96), 62–70. Santa Cruz, California, USA, 24–27
June.

André, E. & Rist, T. (1993). The Design of Illustrated Documents as a Planning Task. In
Maybury, M .T. (ed.) Intelligent Multimedia Interfaces, 94–116. AAAI/MIT Press.

André, E. & Rist, T. (2001). Controlling the Behavior of Animated Presentation Agents in the
Interface: Scripting versus Instructing. AI Magazine 22(4), Winter 2001: 53–66.

Ardissono, L., Lombardo, A. & Sestero, D. (1993). A Flexible Approach to Cooperative
Response Generation in Information-Seeking Dialogues. Proceedings of the 31st Annual
Meeting of the Association for Computational Linguistics, 274–276. Columbus, Ohio,
USA, 22–26 June.

Balbo, S. (1994). Évaluation ergonomique des interfaces utilisateur: un pas vers
l’automatisation, Thèse de doctorat en informatique, Laboratoire de Génie Informatique-
IMAG, Université Joseph Fourier-Grenoble 1.

Ball, G., Ling, D., Kurlander, D., Miller, J. Pugh, D., Skelly, T., Stankosky, A., Thiel, D., Van
Dantzich, M. & Wax, T. (1997). Lifelike Computer Characters: The Persona Project at
Microsoft. In Bradshaw, J. M. (eds.) Software Agents, chapter 10, 191–222. AAAI/MIT
Press.

Bates, J. (1994). The Role of Emotion in Believable Agents. Communications of the ACM
37(7): 122–125.

Bonar, J. & Liffick, B. (1991). Communicating with High-Level Plans. In Sullivan, J. W. &
Tyler, S. W. (eds.) Intelligent User Interfaces, 129–156. ACM Press.

Boy G. A. (1991). Intelligent Assistant Systems. Academic Press.
Bradshaw J. M. (ed.) (1997). Software Agents. AAAI Press/MIT Press.
Burger, J. D. & Marshall, R. J. (1998). The Application of Natural Language Models to Intel-

ligent Multimedia. In Maybury, M. T. & Wahlster, W. (eds.) Readings in Intelligent User
Interfaces, 429–440. Originally published in Maybury (1993), 174–196.

Carberry, S. (1990). Plan Recognition in Natural Language Dialogue. The MIT Press.
Carberry, S. (2001). Techniques for Plan Recognition. User Modelling and User-Adapted

Interaction 11: 31–48.
Cassell, J., Pelachaud, C., Badler, N., Steedman, M., Achorn, B., Becket, T., Douville,

B., Prevost, S. & Stone, M. (1998). Animated Conversation: Rule-Based Generation of
Facial Expression, Gesture and Spoken Intonation for Multiple Conversational Agents.
In Maybury, M. T. & Wahlster, W. (eds.) Readings in Intelligent User Interfaces, 582–
589. Morgan Kaufmann. Originally published in Proceedings of the SIGGRAPH’94
Conference, 413–420.

Cawsey, A. (1998). Planning Interactive Explanations. In Maybury, M. T. & Wahlster, W.
(eds.) Readings in Intelligent User Interfaces, 404–419. Morgan Kaufmann. Originally
published in International Journal of Man-Machine Studies 38: 169–199, 1993.

Cesta, A. & Romano, G. (1989). Planning Structures for an Intelligent Help System.
Proceedings of the 3rd International Conference on Human-Computer Interaction, vol. 2,
767–774.

Cetus: A Web site worth 10300 links of object-oriented subjects: http://www.csioo.com/
cetusen/software.html

Chan, C. W., Chen, L.-L. & Geng, L. (2000). Knowledge Engineering for an Intelligent Case-
based System for Help Desk Operations. Expert Systems with Applications 18: 125–132.

Chandrasekaran, B. (1986). Generic Tasks in Knowledge-based Reasoning. IEEE Expert 1(3):
23–30.

USER INTERFACES AND HELP SYSTEMS 149

Chang, C.-H. & Chen, Y. (1995). A Study of Multimedia Applications in Education and
Training. Computers in Industrial Engineering 29(1–4): 103–107.

Chase, J. D., Parentti, M., Hartson, H. R. & Hix, D. (1993). Task-Oriented User Documenta-
tion Using the User Action Notation: A Case Study. Proceedings of the 5th International
Conference on Human-Computer Interaction, vol. 1, 421–426.

Chin D. N. (1989). KNOME: Modeling What the User Knows in UC. in Kobsa, A. & Wahlster,
W (eds.) User Models in Dialog Systems. Springer Verlag.

Chin, D. N. (1998). Intelligent Interfaces as Agents. In Maybury, M. T. & Wahlster, W.
(eds.) Readings in Intelligent User Interfaces. Morgan Kaufmann, pp. 343–357. Origin-
ally published in Sullivan, J. W. & Tyler, S. W. (eds.) Intelligent User Interfaces (1991),
177–206.

Chin, D. N. (2001). Empirical Evaluation of User Models and User-adapted Systems. User
Modeling and User-Adapted Interaction 11: 181–194.

Chiu, C.-T., Chiu, C. & Norcio, A. F. (1993). An Adaptive Intelligent Help System.
Proceedings of the 5th International Conference on Human-Computer Interaction, vol. 2,
718–723.

Chu, C.-C.P., Dani, T. H. & Gadh, R. (1997). Multi-Sensory User Interface for a Virtual-
Reality-Based Computer-Aided Design. Computer Aided Design 29(10): 709–725.

Conger, S. (1994). The New Software Engineering. Wadsworth Publishing Company.
David, J.-M., Krivine, J.-P. & Simmons, R. (eds.) (1993). Second Generation Expert Systems.

Springer Verlag.
Decker, K., Pannu, A., Sycara, K. & Williamson, M. (1997). Designing Behaviors for Inform-

ation Agents. Proceedings of the First International Conference on Autonomous Agents
(Agents’97). Marina del Rey, California, February 5–8.

Dede, C. (1986). A Review and Synthesis of Recent Research in Intelligent Computer-
Assisted Instruction. International Journal of Man-Machine Studies 24(4): 329–353.

Dillon, A. & Watson, C. (1996). User Analysis in HCI: the Historical Lesson from Individual
Differences Research. International Journal of Human-Computer Studies 45(6): 619–637.

Dormann, C. (1996). Designing On-Line Animated Help for Multimedia Applications.
Lecture Notes in Computer Science, #1077, 73–84. Springer Verlag.

El-Sheikh, E. & Sticklen, J. (1999). Leveraging a Task-Specific Approach for Intelligent
Tutoring System Generation: Comparing the Generic Tasks and KADS Frameworks.
Lecture Notes in Computer Science, #1611, 809–819. Springer Verlag.

Ericksson, H.-E. & Penker, M. (1998). UML Toolkit. Wiley.
Essa, I. & Pentland, A. (1997). Coding, Analysis, Interpretation, and Recognition of Facial

Expressions. IEEE Transactions on Pattern Analysis and Machine Intelligence 19(7): 757–
763.

Feiner, S. K. & McKeown, K. R. (1993). Automating the Generation of Coordinated Multi-
Media Explanations. In Maybury, M. T. (ed.) Intelligent Multimedia Interfaces, 117–147.
AAAI/MIT Press.

Finin, T. W. (1989). GUMS: A General User Modeling Shell. In Kobsa, A. & Wahlster, W.
(eds.) User Models in Dialog Systems. Springer Verlag.

Fischer, G. (2001), User Modeling in Human-Computer Interaction. User Modeling and User-
Adapted Interaction 11: 65–86.

Fischer, G., Lemke, A. & Schwab. T. (1985). Knowledge-Based Help Systems User Assist-
ance. Proceedings of the ACM CHI’85 Conference on Human Factors in Computing
Systems, 161–167.

150 SYLVAIN DELISLE AND BERNARD MOULIN

Fogg, B. J. (1997). Charismatic Computers: Creating more Likable and Persuasive Interactive
Technologies by Leveraging Principles from Social Psychology, Ph.D. Thesis, Department
of Communication, Stanford University.

Fong, A. C. M. & Hui, S. C. (2001). An Intelligent Online Machine Fault Diagnosis System.
Computing & Control Engineering Journal, October 2001: 217–223.

Friedman, B. & Nissenbaum, H. (1997). Software Agents and User Autonomy. Proceedings
of the First International Conference on Autonomous Agents (Agents’97). Marina del Rey,
California, February 5–8.

Frohlich D., P. Drew & A. Monk (1994), Management of Repair in Human-Computer
Interaction. Human-Computer Interaction 9(3): 385–425.

Gardiner, M. M. & Christie, B. (eds.) (1987). Applying Cognitive Psychology to User-Interface
Design. Wiley.

Gilbert, G. N. (1987): Cognitive and Social Models of the User. Proceedings of the IFIP
INTERACT’87 Human-Computer Interaction Conference, 165–169.

Good, N., Schafer, J. B., Konstan, J. A., Borchers, A., Sarwar, B., Herlocker, J. & Riedl,
J. (1999). Combining Collaborative Filtering with Personal Agents for Better Recom-
mendations. Proceedings of the Sixteenth National Conference on Artificial Intelligence
(AAAI-99), 439–446. Orlando, Florida, USA, 18–22 July.

Goodman, B. A. (1993). Multi-Media Explanations for Intelligent Training Systems. In
Maybury, M. T. (ed.) Intelligent Multimedia Interfaces, 148–171. AAAI/MIT Press.

Gould, J. D. & Lewis, C. (1984). Design for Usability: Key Principles and What Designers
Think. Communications of the ACM 38(3): 300–311.

Graesser, A. C., VanLehn, K., Rosé, C. P., Jordan, P. W. & Harter, D. (2001). Intelligent
Tutoring Systems with Conversational Dialogue. AI Magazine 22(4), Winter 2001: 39–52.

Grice, H. P. (1975). Logic and Conversation. In Cole, P. & Morgan, J. L. (eds.) Syntax and
Semantics (Vol. 3, Speech Acts), 41–58. Academic Press.

Harker, S. (1995). The Development of Ergonomics Standards for Software. Applied Ergo-
nomics 26(4): 275–279.

Hayes-Roth, B. (1995). An Architecture for Adaptive Intelligent Systems. Artificial Intelli-
gence 72: 329–365.

Hecking, M. (2000). The SINIX Consultant – Towards a Theoretical Treatment of Plan Recog-
nition. In Hegner, S. J. et al. (eds.) Special Issue on Intelligent Help Systems for UNIX,
Artificial Intelligence Review 14(3), Kluwer: 153–180.

Hegner, S. (2000). Plan Realization for Complex Command Interaction in the UNIX Help
Domain. In Hegner, S. J. et al. (eds.) Special Issue on Intelligent Help Systems for UNIX,
Artificial Intelligence Review 14(3), Kluwer: 181–228.

Herrmann, J. (1996). Different Ways to Support Intelligent Assistant Systems by Use of
Machine Learning Methods. International Journal of Human-Computer Interaction 8(3):
287–308.

Herrmann, J., Kloth, M. & Feldkamp, F. (1998). The Role of Explanation in an Intelligent
Assistant System. Artificial Intelligence in Engineering 12: 107–126.

Hickman, F. R., Killin, J. L., Land, L., Mulhall, T., Porter, D. & Taylor, R. M. (1989).
Analysis for Knowledge-Based Systems (A Practical Guide to the KADS Methodology).
Ellis Horwood.

Hodges, M. (1998). Virtual Reality in Training. Computer Graphics World 21(8): 45–52.
Jameson, A., Paris, C. & Tasso, C. (1997). User Modeling. Proceedings of the Sixth

International Conference UM97. Vienna, Austria (available on line from http://um.org).

USER INTERFACES AND HELP SYSTEMS 151

Jennings, N. R. (1999). Agent-Based Computing: Promise and Perils. Proceedings of the
Sixteenth International Joint Conference on Artificial Intelligence (IJCAI-99), 1429–1436.
Stockholm, Sweden, July 31–August 6.

Johnson, W. L. (2001). Pedagogical Agent Rresearch at CARTE. AI Magazine 22(4), Winter
2001: 85–94.

Jokinen, K. (1996). Reasoning about Coherent and Cooperative System Responses. Lecture
Notes in Computer Science, #1036, 168–187. Springer Verlag.

Jones, J., Millington, M. & Virvou, M. (2000). An Assumption–based Truth Maintenance
System in Active Aid for UNIX Users. In Hegner, S. J. et al. (eds.) Special Issue on
Intelligent Help Systems for UNIX, Artificial Intelligence Review 14(3), Kluwer: 229–252.

Jones, P. M. & Mitchell, C. M. (1994). Model-Based Communicative Acts: Human-Computer
Collaboration in Supervisory Control. International Journal of Human-Computer Studies
41: 527–551.

Kang, B. H., Yoshida, K., Motoda, H. & Compton, P. (1997). Help Desk System with
Intelligent Interface. Applied Artificial Intelligence 11: 611–631.

Klein, J., Moon, Y. & Picard, R. W. (1999). This Computer Responds to User Frustration
(Theory, Design, Results, and Implications). Vision and Modeling Group Technical Report
#501, MIT Media Laboratory, June 17.

Kobsa, A. & Wahlster, W. (1988). guest editors, Special Issue on User Modelling. Computa-
tional Linguistics 14(3).

Kobsa, A. & Wahlster, W. (1989). User Models in Dialog Systems. Springer Verlag.
Kobsa, A. (ed.) (2001). Ten Year Anniversary Issue. User Modelling and User-Adapted

Interaction 11(1–2).
Komatsu, H., Ogata, N. & Ishikawa, A. (1994). Towards a Dynamic Theory of Belief-

Sharing in Cooperative Dialogues. Proceedings of the 15th International Conference on
Computational Linguistics (COLING-94), vol. 2, 1164–1169. Kyoto, Japan, August 5–9.

Lashkari, Y., Metral, M. & Maes, P. (1994). Collaborative Interface Agents. Proceedings of
the Twelfth National Conference on Artificial Intelligence (AAAI-94), 444–449. Seattle,
Washington, July 31–August 4.

Lecerof, A. (1997). User Interface Evaluation Using Task Models, Master’s Thesis, Depart-
ment of Computer and Information Science, Linköping University.

Lelouche, R. (1998). The Successive Contributions of Computers to Education: A Survey.
European Journal of Engineering Education 23(3): 297–308.

Lester, J. C., FitzGerald, P. J. & Stone, B. A. (1997). The Pedagogical Design Studio:
Exploiting Artifact-Based Task Models for Constructivist Learning. Proceedings of the
1997 International Conference on Intelligent User Interfaces, 155–162.

Lieberman, H. (1997). Autonomous Interface Agents. Proceedings of the ACM CHI’97
Conference on Human Factors in Computing Systems (available on line from
http://www.acm.org/sigs/sigchi/chi97/proceedings/paper/hl.htm).

Linden, G., Hanks, S. & Lesh, N. (1997). Interactive Assessment of User Preference Models:
The Automated Travel Assistant. In Jameson, A. et al. (eds.) proceedings of the Sixth
International Conference UM97, 67–69. Vienna, Austria.

Liu, Q. & Ng, P. A. (1998). A Query Generalizer for Providing Cooperative Responses in an
Office Document System. Data & Knowledge Engineering 27(2): 177–205.

Lovett, M. C. (1998). Cognitive Task Analysis in Service of Intelligent Tutoring System
Design: A Case Study in Statistics. Lecture Notes in Computer Science, #1452, 234–243.
Springer Verlag.

Maes, P. (1994). Agents that Reduce Work and Information Overload. Communications of the
ACM, Special Issue on Intelligent Agents, 37(7): 31–40.

152 SYLVAIN DELISLE AND BERNARD MOULIN

Maes, P. (1997). Agents that Reduce Work and Information Overload. In Bradshaw, J. M. (ed.)
Software Agents, chapter 8, 145–164. AAAI Press/MIT Press.

Mallen, C. (1996). Designing Intelligent Help for Information Processing Systems. Interna-
tional Journal of Human-Computer Studies 45: 349–377.

Malone, T. W., Lai, K.-Y. & Grant, K. R. (1997). Agents for Information Sharing and
Coordination: A History and Some Reflections. in Bradshaw, J. M. (ed.) Software Agents,
chapter 7, 109–143. AAAI Press/MIT Press.

Marion, C. (1999a). User Interface Design (available on line from http://www.chesco.com/
∼cmarion/Design/UIDesign.html).

Marion, C. (1999b). Online Information Design (available on line from http://www.chesco.
com/∼cmarion/Design/OnInfDes.html).

Marion, C. (1999c). What is Interaction Design (and what does it mean to inform-
ation designers)? (available on line from http://www.chesco.com/∼cmarion/PCD/
WhatIsInteractionDesign.html)

Mathews, M., Pharr, W., Biswas, G. & Neelakandan, H. (2000). An Active Intelligent Assist-
ance Systems. In Hegner, S. J. et al. (eds.) Special Issue on Intelligent Help Systems for
UNIX, Artificial Intelligence Review 14(1–2), Kluwer: 121–141.

Maybury, M. T. & Wahlster, W. (eds.) (1998). Readings in Intelligent User Interfaces. Morgan
Kaufmann.

Maybury, M. T. (1992). Communicative Acts for Explanation Generation. International
Journal of Man-Machine Studies 37(2): 135–172.

Maybury, M. T. (ed.) (1993). Intelligent Multimedia Interfaces. AAAI/MIT Press.
Mayfield, J. (2000). Evaluating Plan Recognition Systems: Three Properties of a Good

Explanation. Artificial Intelligence Review 14: 351–376.
McCoy, K. F. (1983). Correcting Misconceptions: What to Say when the User is Mistaken.

Proceedings of the ACM CHI’83 Conference on Human Factors in Computing Systems,
197–201.

McCoy, K. F. (1988). Reasoning on a Highlighted User Model to Respond to Misconceptions.
In Kosba, A. & Wahlster, W. (eds.) Computationa Linguistics 14(3): 52–63.

McTear, M. F. (1993). User Modelling for Adaptive Computer Systems: a Survey of Recent
Developments. Artificial Intelligence Review 7: 157–184.

Miller, J. R., Hill, W. C., McKendree, J., Masson, M. E. J., Blumenthal, B., Terveen,
L. & Zaback, J. (1987). The Role of the System Image in Intelligent User Assist-
ance. Proceedings of the IFIP INTERACT’87 Conference: Human-Computer Interaction,
885–890.

Mitta, D. A. & Packebush, S. J. (1995). Improving Interface Quality: An Investigation of
Human-Computer Interaction Task Learning. Ergonomics 38(7): 1307–1325.

Mo, J. & Crouzet, Y. (1999). A Method for Operator Error Detection Based on Plan
Recognition. Lecture Notes in Computer Science, vol. 1698, 125–138. Springer Verlag.

Moulin, B. & Chaib-draa, B. (1996). Distributed Artificial Intelligence: an Overview. In
Jennings, N. & O’Hare, G. (eds.) Foundations of Distributed Artificial Intelligence, 3–55.
Wiley.

Moulin, B., Irandoust, H., Bélanger, M. & Desbordes, G. (2002). Explanation and Argu-
mentation Capabilities: Towards the Creation of More Persuasive Agents. AI Review
(forthcoming).

Myers, B., Hollan, J. & Cruz, I. (eds.) (1996). Strategic Directions in Human Computer
Interaction. ACM Computing Surveys 28(4).

Myers, B., Hudson, S. E. & Pausch, R. (2000). Past, Present, and Future of User Interface
Software Tools. ACM Transactions on Computer-Human Interaction 7(1): 3–28.

USER INTERFACES AND HELP SYSTEMS 153

Nadeau, D. R. (1996). User Interface Metaphor in Virtual Reality Using VRML. Behavior
Research Methods, Instruments, & Computers 28(2): 170–173.

Nagao, K. & Takeuchi, A. (1998). Speech Dialogue with Facial Displays: Multimodal Human-
Computer Conversation. In Maybury, M. T. & Wahlster, W. (eds.) Readings in Intelligent
User Interfaces, 572–579. Morgan Kaufmann. Originally published in Proceedings of the
32nd Annual Meeting of the Association for Computational Linguistics (ACL-95), 102–
109. Cambridge, Massachusetts, USA, 26–30 June, 1995.

Najjar, L. J. (1998). Principles of Educational Multimedia User Interface Design. Human
Factors – Journal of the Human Factors and Ergonomics Society 40(2): 311–323.

Neal, J. G. & Shapiro, S. C. (1991). Intelligent Multi-Media Interface Technology. in Sullivan,
J. W. & Tyler, S. W. (eds.) Intelligent User Interfaces, 11–43. ACM Press.

Norman, D. A. & Draper, S. W. (eds.) (1986). User-Centered System Design. Lawrence
Hillsdale, NJ: Erlbaum Associates.

Norman, D. A. (1986). Cognitive Engineering. User-Centered System Design, 31–61.
Lawrence Hillsdale, NJ: Erlbaum Associates.

Okada, N., Inui, K. & Tokuhisa, M. (1999). ‘An Affective Approach to Human-Friendly
Dialogue Systems. Proceedings of the 1999 Conference Pacific Association for Compu-
tational Linguistics (PACLING-99). University of Waterloo, Ontario (Canada), 25–28
August.

Palamidese, P. (1999). A Virtual Reality Interface for Space Planning Tasks. Journal of Visual
Languages and Computing 10: 99–115.

Paris, C. (1988). Tailoring Object Descriptions to a User’s Level of Expertise. In Kobsa, A. &
Wahlster, W. (eds.) Computational Linguistics 14(3): 64–78.

Payne, T. R. & Edwards, P. (1997). Interface Agents that Learn: An Investigation of Learning
Issues in a Mail Agent Interface. Applied Artificial Intelligence 11: 1–32.

Pérez-Quiñones, M. A. & Sibert, J. L. (1996). A Collaborative Model of Feedback in
Human-Computer Interaction. Proceedings of the ACM CHI’96 Conference on Human
Factors in Computing Systems (available on line from http://www.acm.org/sigchi/chi96/
proceedings/papers/Perez/map1txt.htm).

Picard, R. W. (1997). Affective Computing. MIT Press.
Preece, J. (1994). Human Computer Interaction. Addison-Wesley.
Pressman, R. S. (1997). Software Engineering (A Practitioner’s Approach), 4th edition.
Quilici, A. (1989). Detecting and responding to Plan-Oriented Misconceptions. In Kobsa, A.

& Wahlster, W. (eds.) User Models in Dialog Systems. Springer Verlag.
Ramscar, M., Pain, H. & Lee, J. (1997). Do We Know What the User Knows and Does it

Matter? The Epistemics of User Modeling. In Jameson, A. et al. (eds.) Proceedings of the
Sixth International Conference UM97, 429–431. Vienna, Austria.

Rich, C. & Sidner, C. L. (1997). COLLAGEN: When Agents Collaborate with People.
Proceedings of the First International Conference on Autonomous Agents (Agents’97).
Marina del Rey, California, February 5–8.

Rich, C., Sidner, C. L. & Lesh, N. (1997). COLLAGEN: Applying Collaborative Discourse
Theory to Human-computer Interaction. AI Magazine 22(4), Winter 2001: 27–38.

Rich, E. (1998). User Modeling via Stereotypes. In Maybury, M. T. & Wahlster, W.
(eds.) Readings in Intelligent User Interfaces, 329–341. Morgan Kaufmann. Originally
published in Cognitive Science 3: 329–354, 1979.

Rickel, J. & Johnson, W. L. (1999). Animated Agents for Procedural Training in Virtual
Reality: Perception, Cognition, and Motor Control. Applied Artificial Intelligence 13:
343–382.

154 SYLVAIN DELISLE AND BERNARD MOULIN

Riecken, D. (1997). ‘The M System. In Bradshaw, J .M. (ed.) Software Agents, chapter 12,
247–267. AAAI Press/MIT Press.

Rivera, K., Cooke, N. J. & Bauhs, J. A. (1996). The Effects of Emotional Icons on Remote
Communication. Proceedings of the ACM CHI’96 Conference on Human Factors in
Computing Systems, vol. 2, pp. 99–100.

Russell, S. & Norvig, P. (1995). Artificial Intelligence (A Modern Approach). Prentice Hall.
Sæbø, K. J. (1988). A Cooperative Yes-No Query System Featuring Discourse Particles.

Proceedings of the 12th International Conference on Computational Linguistics
(COLING-88), vol. 2, 549–554. Budapest, Hungary, 22–27 August.

Scapin, D. L. (1990). ‘Des critères ergonomiques pour l’évaluation et la conception
d’interfaces utilisateurs. Actes du XXVI ème Congrès de la SELF. Montréal, Québec,
Canada, 3–5 October.

Schneider-Hufschmidt, M., Kühme, T. & Malinowski, U. (1993). Adaptive User Interfaces:
Principles and Practice. North Holland.

Schreiber, A. Th., Akkermans, J. M., Anjewierden, A. A., de Hoog, R., Shadbolt, N. R., Van
de Velde, W. & Wielinga, B. J. (2000). Knowledge Engineering and Management: The
CommonKADS Methodology. MIT Press. See also http://www.commonkads.uva.nl/

Schuster, E., Chin, D., Cohen, R., Kobsa, A., Morik, K., Sparck Jones, K. & Wahlster, W.
(1988). Discussion Section on the Relationship between User Models and Discourse
Models. in Kobsa, A. & Wahlster, W. (eds) Computational Linguistics 14(3): 79–103.

Senach, B. (1990). Évaluation ergonomique des interfaces homme-machine: une revue de
littérature. Rapport de recherche INRIA #1180, Programme 8, Communication Homme-
Machine.

Sengers, P. (1999). Designing Comprehensible Agents. Proceedings of the Sixteenth Inter-
national Joint Conference on Artificial Intelligence (IJCAI-99), 1227–1232. Stockholm,
Sweden, July 31–August 6.

Shneiderman, B. (1983). Direct Manipulation: A Step Beyond Programming Languages. IEEE
Computer 16(8): 57–69.

Shneiderman, B. (1997). Direct Manipulation Versus Agents: Paths to Predictable, Control-
lable, and Comprehensible Interfaces. In Bradshaw, J. M. (ed.) Software Agents, chapter 6,
97–106. AAAI Press/MIT Press.

Shneiderman, B. (1998). Designing the User Interface (Strategies for Effective Human-
Computer Interaction), 3rd edition. Addison-Wesley.

Shneiderman, B. (1999). Universal Usability: Pushing Human-Computer Interaction
Research to Empower Every Citizen. HCIL Technical Report No. 99-17 (July 1999),
ftp://ftp.cs.umd.edu/pub/hcil/Reports-Abstracts-Bibliography/99-17html/99-17.html

Singh, M. P., Rao, A. S. & Georgeff, M. P. (1999). Formal Methods in DAI: Logic-Based
Representation and Reasoning. In Weiss, G. (ed.) Multiagent Systems. The MIT Press.

Smith, D. C., Cypher, A. & Spohrer, J. (1997). KidSim: Programming Agents without a
Programming Language. In Bradshaw, J. M. (ed.) Software Agents, chapter 9, 165–190.
AAAI Press/MIT Press.

Smith, J. J. (1985). SUSI – A Smart User-System Interface. Proceedings of the HCI’85
Conference on People and Computers: Designing the Interface, 211–220.

Sommerville, I. (2000). Software Engineering. 5th edition, Addison-Wesley. See also the Web
site http://www.comp.lancs.ac.uk/computing/resources/SE6/

Strachan, L., Anderson, J., Sneesby, M. & Evans, M. (1997). Pragmatic User Modelling in
a Commercial Software System. In Jameson, A. et al. (eds.) Proceedings of the Sixth
International Conference UM97, 189–200. Vienna, Austria.

USER INTERFACES AND HELP SYSTEMS 155

Strachan, L., Anderson, J., Sneesby, M. & Evans, M. (2000). Minimalist User Modelling in
a Complex Commercial Software System. User Modelling and User-Adapted Interaction
10(2–3): 109–146.

Sullivan, J. W. & Tyler, S. W. (eds.) (1991). Intelligent User Interfaces. ACM Press.
Sutcliffe, A. (2000). On the Effective Use and Reuse of HCI Knowledge. ACM Transactions

on Computer-Human Interaction 7(2): 197–221.
Swartout, W. R. & Moore, J. D. (1993). Explanation in Second Generation Expert Systems. In

David, J.-M. et al. (eds.) Second Generation Expert Systems, 544–585. Springer Verlag.
Takeda, K., Inaba, M. & Sugihara, K. (1996). User Interface and Agent Prototyping for

Flexible Working. IEEE Multimedia Magazine 3(2): 40–50.
Tanner, M. C., Keuneke, A. M. & Chandrasekaran, B. (1993). Explanation Using Task Struc-

ture and Domain Functional Models. In David, J.-M. et al. (eds.) Second Generation
Expert Systems, 586–613. Springer Verlag.

Terwilliger, R. B. & Polson, P. G. (1997). Relationships Between Users’ and Inter-
faces’ Task Representations. Proceedings of the ACM CHI’97 Conference on Human
Factors in Computing Systems (available on line from http://www.acm.org/sigs/sigchi/
chi97/proceedings/paper/hl.htm).

Trika, S. N., Banerjee, P. & Kashyap, R. L. (1997). Virtual Reality Interfaces for Feature-Based
Computer-Aided Design Systems. Computer-Aided Design 29(8): 565–574.

Tsui, K. C. & Azvine, B. (2000). Intelligent Multimodal User Interface. In Azvine et al. (eds.)
Intelligent Systems and Soft Computing. LNAI 1804, 259–283. Springer.

Van Aalst, J. W., Van der Mast, C. A. P. G. & Carey, T. T. (1995). An Interactive Multimedia
Tutorial for User Interface Design. Computers and Education 25(4): 227–233.

van Beek, P., Cohen, R. & Schmidt, K. (1993). From Plan Critiquing to Clarification Dialogue
for Cooperative Response Generation. Computational Intelligence 9(2): 132–154.

Virvou, M. (1999). Automatic Reasoning and Help about Human Errors in Using an Operating
System. Interacting with Computers 11: 545–573.

Virvou, M., Jones, J. & Millington, M. (2000). Virtues and Problems of an Active Help System
for UNIX. In Hegner, S. J. et al. (eds.) Special Issue on Intelligent Help Systems for UNIX,
Artificial Intelligence Review 14(1–2), Kluwer: 23–42.

Wahlster, W. (1998). User and Discourse Models for Multimodal Communication. In
Maybury, M. T. & Wahlster, W. (eds.) Readings in Intelligent Yser Interfaces, 359–370.
Morgan Kaufmann. Originally published Sullivan, J. W. & Tyler, S. W. (eds.) (1991).
Intelligent Yser Interfaces, 45–67. ACM Press.

Wann, J. & Mon-Williams, M. (1996). What does Virtual Reality NEED?: Human Factors
Issues in the Design of Three-Dimensional Computer Environments. International
Journal of Human-Computer Studies 44: 829–847.

Weiss, G. (1999). Multiagent Systems (A Modern Approach to Distributed Artificial Intelli-
gence). The MIT Press.

Weissert, C. (1996). Increased User Satisfaction through Improved Error Messages. Master’s
Thesis, Department of Computer Science, California State Polytechnic University.

Wenger, E. (1987). Artificial Intelligence and Tutoring Systems: Computational and Cognitive
Approaches to the Communication of Knowledge. Morgan Kaufmann Publishers.

Wick, M. R. & Thompson, W. B. (1992). Reconstructive Expert System Explanation. Artificial
Intelligence 50: 33–70.

Winograd, T. & Flores, F. (1986). Understanding Computers and Cognition (A New Founda-
tion for Design). Reading.

Winograd, T. (ed.) (1996). Bringing Design to Software. Addison-Wesley.

156 SYLVAIN DELISLE AND BERNARD MOULIN

Ye, N. (1997). Neural Networks Approach to User Modelling and Intelligent Interface: A
Review and Reappraisal. International Journal of Human-Computer Interaction 9(1): 3–
23.

Young, R.L. (1991). A Dialogue User Interface Architecture. In Sullivan, J .W. & Tyler, S. W.
(eds.) Intelligent User Interfaces, 157–176. ACM Press.

Zheng, J. M., Chan, K. W. & Gibson, I. (1998). Virtual Reality (A Real World Review on a
Somewhat Touchy Subject). IEEE Potentials 17(2): 20–23.

Zhou, Y., Freedman, R., Glass, M., Michael, J. A., Rovick, A. A. & Evens, M. W. (1999).
Delivering Hints in a Dialogue-Based Intelligent Tutoring System. Proceedings of the
Sixteenth National Conference on Artificial Intelligence (AAAI-99), 128–134. Orlando,
Florida, USA, 18–22 July.

Zukerman, I. & McConachy, R. (1995). Generating Discourse across Several User Models:
Maximizing Belief while Avoiding Boredom and Overload Proceedings of the Fourteenth
International Joint Conference on Artificial Intelligence (IJCAI-95), vol. 1, 1251–1257.
Montréal, Québec, Canada, August 20–25.

Web Sites

AIRG AI Webliography
http://www.cs.wpi.edu/Research/airg/AI-hotlist.html

3D Site: Virtual Reality
http://www.3dsite.com/n/sites/3dsite/cgi/virtual-reality-index.html

ACM SIGCHI (Special Interest Group on Computer-Human Interaction)
http://www.acm.org/sigchi/

Agent Architectures
http://www.cs.buffalo.edu/∼goetz/agents.html

Association of researchers working on User Modelling
http://www.um.org/

Ben’s VR (Virtual Reality) Links
http://www.cc.gatech.edu/gvu/people/Phd/Benjamin.Watson/links/vr.html

Bibliography of the International Journal on User Modelling and User-Adapted Interaction
http://liinwww.ira.uka.de/bibliography/Ai/UMAI.html

Craig Marion’s User Interface Design
http://www.chesco.com/∼cmarion/Design/UIDesign.html

Help for the Web Initiative
http://www.help4web.org/index.html

Human-Computer Interaction Resources on the Net
http://www.ida.liu.se/labs/aslab/groups/um/hci/

Intelligent Software Agent Bibliography
http://ils.unc.edu/gants/agentbib.html

Intelligent Software Agents
http://www.sics.se/isl/abc/survey-main.html

Intelligent User Interfaces
http://excalibur.brc.uconn.edu/∼aui/iui3.html

Linguistics, Natural Language, and Computational Linguistics Meta-index
http://www.sultry.arts.usyd.edu.au/links/linguistics.html

M.E.P. Plutowski’s Emotional Computing Book
http://www.emotivate.com/Book/index.htm

USER INTERFACES AND HELP SYSTEMS 157

MIT Media Lab: Affective Computing
http://affect.www.media.mit.edu/projects/affect/

Multiagent Systems Research Group
http://www.cs.wustl.edu/∼mas/links.html

Psychology & Design Web links: Cognitive Ergonomics
http://www.ntu.ac.uk/soc/bscpsych/psydes/cogerg.htm

Research at the MIT Media Laboratory
http://www.media.mit.edu/Research/

The Association for Computational Linguistics
http://www.aclweb.org/

The Cognition And Affect Project (School of Computer Science, University of Birmingham)
http://www.cs.bham.ac.uk/∼axs/cog_affect/COGAFF-PROJECT.html

Usability Engineering Web Resources
http://inf2.pira.co.uk/jzus1.htm

Usability Guide for Software Engineers (GUSE)
http://www.otal.umd.edu/guse/

Usability Links for Web design
http://www.usableweb.com/

Usable Web: Usability Engineering
http://usableweb.com/items/usabilityeng.html

User Interface Design Bibliography
http://world.std.com/∼uieweb/biblio.htm

User Interface Design: collection of URLs
http://www.chesco.com/∼cmarion/Design/UIDesign.html

Virtual Reality Links
http://www.loria.fr/equipes/isa/pointers.html

Workshop on Adaptive Systems and User Modelling on the World Wide Web
http://www.contrib.andrew.cmu.edu/∼plb/WWWUM99_workshop/

