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ABSTRACT
Research in Information Retrieval usually shows performance
improvement when many sources of evidence are combined
to produce a ranking of documents (e.g., texts, pictures,
sounds, etc.). In this paper, we focus on the rank aggregation
problem, also called data fusion problem, where rankings of
documents, searched into the same collection and provided
by multiple methods, are combined in order to produce a
new ranking. In this context, we propose a rank aggregation
method within a multiple criteria framework using aggrega-
tion mechanisms based on decision rules identifying positive
and negative reasons for judging whether a document should
get a better rank than another. We show that the proposed
method deals well with the Information Retrieval distinctive
features. Experimental results are reported showing that
the suggested method performs better than the well-known
CombSUM and CombMNZ operators.

Categories and Subject Descriptors: H.3.3 [Informa-
tion Systems]: Information Search and Retrieval – Re-
trieval models.

General Terms: Algorithms, Measurement, Experimenta-
tion, Performance, Theory.

Keywords: Data fusion, Metasearch Engine, Multiple Cri-
teria Approach, Outranking Methods, Rank Aggregation.

1. INTRODUCTION
A wide range of current Information Retrieval (IR) ap-

proaches are based on various search models (Boolean, Vec-
tor Space, Probabilistic, Language, etc. [2]) in order to re-
trieve relevant documents in response to a user request. The
result lists produced by these approaches depend on the ex-
act definition of the relevance concept.

Rank aggregation approaches, also called data fusion ap-
proaches, consist in combining these result lists in order
to produce a new and hopefully better ranking. Such ap-
proaches give rise to metasearch engines in the Web context.
We consider, in the following, cases where only ranks are
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available and no other additional information is provided
such as the relevance scores. This corresponds indeed to the
reality, where only ordinal information is available.

Data fusion is also relevant in other contexts, such as when
the user writes several queries of his/her information need
(e.g., a boolean query and a natural language query) [4], or
when many document surrogates are available [16].

Several studies argued that rank aggregation has the po-
tential of combining effectively all the various sources of ev-
idence considered in various input methods. For instance,
experiments carried out in [16], [30], [4] and [19] showed that
documents which appear in the lists of the majority of the
input methods are more likely to be relevant. Moreover, Lee
[19] and Vogt and Cottrell [31] found that various retrieval
approaches often return very different irrelevant documents,
but many of the same relevant documents. Bartell et al.
[3] also found that rank aggregation methods improve the
performances w.r.t. those of the input methods, even when
some of them have weak individual performances. These
methods also tend to smooth out biases of the input meth-
ods according to Montague and Aslam [22]. Data fusion has
recently been proved to improve performances for both the
ad hoc retrieval and categorization tasks within the TREC
genomics track in 2005 [1].

The rank aggregation problem was addressed in various
fields such as i) in social choice theory which studies vot-
ing algorithms which specify winners of elections or winners
of competitions in tournaments [29], ii) in statistics when
studying correlation between rankings, iii) in distributed
databases when results from different databases must be
combined [12], and iv) in collaborative filtering [23].

Most current rank aggregation methods consider each in-
put ranking as a permutation over the same set of items.
They also give rigid interpretation to the exact ranking of
the items. Both of these assumptions are rather not valid in
the IR context, as will be shown in the following sections.

The remaining of the paper is organized as follows. We
first review current rank aggregation methods in Section 2.
Then we outline the specificities of the data fusion problem
in the IR context (Section 3). In Section 4, we present a
new aggregation method which is proven to best fit the IR
context. Experimental results are presented in Section 5 and
conclusions are provided in a final section.

2. RELATED WORK
As pointed out by Riker [25], we can distinguish two fam-

ilies of rank aggregation methods: positional methods which
assign scores to items to be ranked according to the ranks



they receive and majoritarian methods which are based on
pairwise comparisons of items to be ranked. These two fam-
ilies of methods find their roots in the pioneering works of
Borda [5] and Condorcet [7], respectively, in the social choice
literature.

2.1 Preliminaries
We first introduce some basic notations to present the

rank aggregation methods in a uniform way. Let D =
{d1, d2, . . . , dnd

} be a set of nd documents. A list or a rank-
ing Âj is an ordering defined on Dj ⊆ D (j = 1, . . . , n).
Thus, di Âj di′ means di ‘is ranked better than’ di′ in Âj .
When Dj = D, Âj is said to be a full list. Otherwise, it
is a partial list. If di belongs to Dj , r

j
i denotes the rank

or position of di in Âj . We assume that the best answer
(document) is assigned the position 1 and the worst one is
assigned the position |Dj |. Let <D be the set of all per-
mutations on D or all subsets of D. A profile is a n-tuple
of rankings PR = (Â1,Â2, . . . ,Ân). Restricting PR to the
rankings containing document di defines PRi. We also call
the number of rankings which contain document di the rank
hits of di [19].

The rank aggregation or data fusion problem consists of
finding a ranking function or mechanism Ψ (also called a so-
cial welfare function in the social choice theory terminology)
defined by:

Ψ :
<n

D → <D

PR = (Â1,Â2, . . . ,Ân) → σ = Ψ(PR)

where σ is called a consensus ranking.

2.2 Positional Methods

2.2.1 Borda Count
This method [5] first assigns a score

∑n

j=1 r
j
i to each doc-

ument di. Documents are then ranked by increasing order
of this score, breaking ties, if any, arbitrarily.

2.2.2 Linear Combination Methods
This family of methods basically combine scores of docu-

ments. When used for the rank aggregation problem, ranks
are assumed to be scores or performances to be combined
using aggregation operators such as the weighted sum or
some variation of it [3, 31, 17, 28].

For instance, Callan et al. [6] used the inference net-
works model [30] to combine rankings. Fox and Shaw [15]
proposed several combination strategies which are Comb-
SUM, CombMIN, CombMAX, CombANZ and CombMNZ.
The first three operators correspond to the sum, min and
max operators, respectively. CombANZ and CombMNZ re-
spectively divides and multiplies the CombSUM score by
the rank hits. It is shown in [19] that the CombSUM and
CombMNZ operators perform better than the others. Meta-
search engines such as SavvySearch and MetaCrawler use
the CombSUM strategy to fuse rankings.

2.2.3 Footrule Optimal Aggregation
In this method, a consensus ranking minimizes the Spear-

man footrule distance from the input rankings [21]. For-
mally, given two full lists Âj and Âj′ , this distance is given

by F (Âj ,Âj′) =
∑nd

i=1 |r
j
i − r

j′

i |. It extends to several lists
as follows. Given a profile PR and a consensus ranking

σ, the Spearman footrule distance of σ to PR is given by
F (σ, PR) =

∑n

j=1 F (σ,Âj).

Cook and Kress [8] proposed a similar method which con-
sists in optimizing the distance D(Âj ,Âj′) = 1

2

∑nd

i,i′=1 |r
j

i,i′
−

r
j′

i,i′
|, where r

j

i,i′
= r

j

i′
−r

j
i . This formulation has the advan-

tage that it considers the intensity of preferences.

2.2.4 Probabilistic Methods
This kind of methods assume that the performance of the

input methods on a number of training queries is indicative
of their future performance. During the training process,
probabilities of relevance are calculated. For subsequent
queries, documents are ranked based on these probabilities.
For instance, in [20], each input ranking Âj is divided into a
number of segments, and the conditional probability of rel-
evance (R) of each document di depending on the segment
k it occurs in, is computed, i.e. prob(R|di, k,Âj). For sub-
sequent queries, the score of each document di is given by
∑n

j=1

prob(R|di,k,Âj)

k
. Le Calve and Savoy [18] suggest using

a logistic regression approach for combining scores. Training
data is needed to infer the model parameters.

2.3 Majoritarian Methods

2.3.1 Condorcet Procedure
The original Condorcet rule [7] specifies that a winner of

the election is any item that beats or ties with every other
item in a pairwise contest. Formally, let C(diσdi′) = {Âj∈
PR : di Âj di′} be the coalition of rankings that are con-
cordant with establishing diσdi′ , i.e. with the proposition
di ‘should be ranked better than’ di′ in the final ranking σ.
di beats or ties with di′ iff |C(diσdi′)| ≥ |C(di′σdi)|.

The repetitive application of the Condorcet algorithm can
produce a ranking of items in a natural way: select the Con-
dorcet winner, remove it from the lists, and repeat the pre-
vious two steps until there are no more documents to rank.
Since there is not always Condorcet winners, variations of
the Condorcet procedure have been developed within the
multiple criteria decision aid theory, with methods such as
ELECTRE [26].

2.3.2 Kemeny Optimal Aggregation
As in section 2.2.3, a consensus ranking minimizes a geo-

metric distance from the input rankings, where the Kendall
tau distance is used instead of the Spearman footrule dis-
tance. Formally, given two full lists Âj and Âj′ , the Kendall

tau distance is given by K(Âj ,Âj′) = |{(di, di′) : i < i′, r
j
i <

r
j

i′
, r

j′

i > r
j′

i′
}|, i.e. the number of pairwise disagreements be-

tween the two lists. It is easy to show that the consensus
ranking corresponds to the geometric median of the input
rankings and that the Kemeny optimal aggregation problem
corresponds to the minimum feedback edge set problem.

2.3.3 Markov Chain Methods
Markov chains (MCs) have been used by Dwork et al. [11]

as a ‘natural’ method to obtain a consensus ranking where
states correspond to the documents to be ranked and the
transition probabilities vary depending on the interpretation
of the transition event. In the same reference, the authors
proposed four specific MCs and experimental testing had
shown that the following MC is the best performing one
(see also [24]):



• MC4: move from the current state di to the next state
di′ by first choosing a document di′ uniformly from D.
If for the majority of the rankings, we have r

j

i′
≤ r

j
i ,

then move to di′ , else stay in di.

The consensus ranking corresponds to the stationary distri-
bution of MC4.

3. SPECIFICITIES OF THE RANK AGGRE-
GATION PROBLEM IN THE IR CONTEXT

3.1 Limited Significance of the Rankings
The exact positions of documents in one input ranking

have limited significance and should not be overemphasized.
For instance, having three relevant documents in the first
three positions, any perturbation of these three items will
have the same value. Indeed, in the IR context, the complete
order provided by an input method may hide ties. In this
case, we call such rankings semi orders. This was outlined in
[13] as the problem of aggregation with ties. It is therefore
important to build the consensus ranking based on robust
information:

• Documents with near positions in Âj are more likely
to have similar interest or relevance. Thus a slight
perturbation of the initial ranking is meaningless.

• Assuming that document di is better ranked than doc-
ument di′ in a ranking Âj , di is more likely to be defini-
tively more relevant than di′ in Âj when the number
of intermediate positions between di and di′ increases.

3.2 Partial Lists
In real world applications, such as metasearch engines,

rankings provided by the input methods are often partial
lists. This was outlined in [14] as the problem of having to
merge top-k results from various input lists. For instance,
in the experiments carried out by Dwork et al. [11], authors
found that among the top 100 best documents of 7 input
search engines, 67% of the documents were present in only
one search engine, whereas less than two documents were
present in all the search engines.

Rank aggregation of partial lists raises four major diffi-
culties which we state hereafter, proposing for each of them
various working assumptions:

1. Partial lists can have various lengths, which can favour
long lists. We thus consider the following two working
hypotheses:
H1

k : We only consider the top k best documents from
each input ranking.
H1

all: We consider all the documents from each input
ranking.

2. Since there are different documents in the input rank-
ings, we must decide which documents should be kept
in the consensus ranking. Two working hypotheses are
therefore considered:
H2

k : We only consider documents which are present in
at least k input rankings (k > 1).
H2

all: We consider all the documents which are ranked
in at least one input ranking.
Hereafter, we call documents which will be retained
in the consensus ranking, candidate documents, and

documents that will be excluded from the consensus
ranking, excluded documents. We also call a candidate
document which is missing in one or more rankings, a
missing document.

3. Some candidate documents are missing documents in
some input rankings. Main reasons for a missing doc-
ument are that it was not indexed or it was indexed
but deemed irrelevant ; usually this information is not
available. We consider the following two working hy-
potheses:
H3

yes: Each missing document in each Âj is assigned
a position.
H3

no: No assumption is made, that is each missing doc-
ument is considered neither better nor worse than any
other document.

4. When assumption H2
k holds, each input ranking may

contain documents which will not be considered in the
consensus ranking. Regarding the positions of the can-
didate documents, we can consider the following work-
ing hypotheses:
H4

init: The initial positions of candidate documents
are kept in each input ranking.
H4

new: Candidate documents receive new positions in
each input ranking, after discarding excluded ones.

In the IR context, rank aggregation methods need to de-
cide more or less explicitly which assumptions to retain
w.r.t. the above-mentioned difficulties.

4. OUTRANKING APPROACH FOR RANK
AGGREGATION

4.1 Presentation
Positional methods consider implicitly that the positions

of the documents in the input rankings are scores giving thus
a cardinal meaning to an ordinal information. This consti-
tutes a strong assumption that is questionable, especially
when the input rankings have different lengths. Moreover,
for positional methods, assumptions H3 and H4, which are
often arbitrary, have a strong impact on the results. For
instance, let us consider an input ranking of 500 documents
out of 1000 candidate documents. Whether we assign to
each of the missing documents the position 1, 501, 750 or
1000 -corresponding to variations of H3

yes- will give rise to
very contrasted results, especially regarding the top of the
consensus ranking.

Majoritarian methods do not suffer from the above-mentio-
ned drawbacks of the positional methods since they build
consensus rankings exploiting only ordinal information con-
tained in the input rankings. Nevertheless, they suppose
that such rankings are complete orders, ignoring that they
may hide ties. Therefore, majoritarian methods base con-
sensus rankings on illusory discriminant information rather
than less discriminant but more robust information.

Trying to overcome the limits of current rank aggregation
methods, we found that outranking approaches, which were
initially used for multiple criteria aggregation problems [26],
can also be used for the rank aggregation purpose, where
each ranking plays the role of a criterion. Therefore, in
order to decide whether a document di should be ranked
better than di′ in the consensus ranking σ, the two following
conditions should be met:



• a concordance condition which ensures that a major-
ity of the input rankings are concordant with diσdi′

(majority principle).

• a discordance condition which ensures that none of the
discordant input rankings strongly refutes dσd′ (re-
spect of minorities principle).

Formally, the concordance coalition with diσdi′ is

Csp(diσdi′) = {Âj∈ PR : r
j
i ≤ r

j

i′
− sp}

where sp is a preference threshold which is the variation
of document positions -whether it is absolute or relative to
the ranking length- which draws the boundaries between an
indifference and a preference situation between documents.

The discordance coalition with diσdi′ is

Dsv (diσdi′) = {Âj∈ PR : r
j
i ≥ r

j

i′
+ sv}

where sv is a veto threshold which is the variation of doc-
ument positions -whether it is absolute or relative to the
ranking length- which draws the boundaries between a weak
and a strong opposition to diσdi′ .

Depending on the exact definition of the preceding con-
cordance and discordance coalitions leading to the definition
of some decision rules, several outranking relations can be
defined. They can be more or less demanding depending on
i) the values of the thresholds sp and sv, ii) the importance
or minimal size cmin required for the concordance coalition,
and iii) the importance or maximum size dmax of the dis-
cordance coalition.

A generic outranking relation can thus be defined as fol-
lows:

diS(sp,sv,cmin,dmax)di′ ⇔ |Csp(diσdi′)| ≥ cmin

AND |Dsv (diσdi′)| ≤ dmax

This expression defines a family of nested outranking re-
lations since S(sp,sv,cmin,dmax) ⊆ S(s′p,s′v,c′

min
,d′

max) when

cmin ≥ c′min and/or dmax ≤ d′
max and/or sp ≥ s′p and/or

sv ≤ s′v. This expression also generalizes the majority rule
which corresponds to the particular relation S(0,∞, n

2
,n). It

also satisfies important properties of rank aggregation meth-
ods, called neutrality, Pareto-optimality, Condorcet prop-
erty and Extended Condorcet property, in the social choice
literature [29].

Outranking relations are not necessarily transitive and do
not necessarily correspond to rankings since directed cycles
may exist. Therefore, we need specific procedures in order to
derive a consensus ranking. We propose the following proce-
dure which finds its roots in [27]. It consists in partitioning
the set of documents into r ranked classes.

Each class Ch contains documents with the same relevance
and results from the application of all relations (if possible)
to the set of documents remaining after previous classes are
computed. Documents within the same equivalence class are
ranked arbitrarily.

Formally, let

• R be the set of candidate documents for a query,

• S1, S2, . . . be a family of nested outranking relations,

• Fk(di, E) = |{di′ ∈ E : diS
kdi′}| be the number of

documents in E(E ⊆ R) that could be considered
‘worse’ than di according to relation Sk,

• fk(di, E) = |{di′ ∈ E : di′S
kdi}| be the number of

documents in E that could be considered ‘better’ than
di according to Sk,

• sk(di, E) = Fk(di, E) − fk(di, E) be the qualification
of di in E according to Sk.

Each class Ch results from a distillation process. It corre-
sponds to the last distillate of a series of sets E0 ⊇ E1 ⊇ . . .

where E0 = R \ (C1 ∪ . . . ∪ Ch−1) and Ek is a reduced sub-
set of Ek−1 resulting from the application of the following
procedure:

1. compute for each di ∈ Ek−1 its qualification according
to Sk, i.e. sk(di, Ek−1),

2. define smax = maxdi∈Ek−1{sk(di, Ek−1)}, then

3. Ek = {di ∈ Ek−1 : sk(di, Ek−1) = smax}

When one outranking relation is used, the distillation pro-
cess stops after the first application of the previous proce-
dure, i.e., Ch corresponds to distillate E1. When different
outranking relations are used, the distillation process stops
when all the pre-defined outranking relations have been used
or when |Ek| = 1.

4.2 Illustrative Example
This section illustrates the concepts and procedures of

section 4.1. Let us consider a set of candidate documents
R = {d1, d2, d3, d4, d5}. The following table gives a profile
PR of different rankings of the documents of R: PR = (Â1

,Â2,Â3,Â4).

Table 1: Rankings of documents

r
j
i Â1 Â2 Â3 Â4

d1 1 3 1 5
d2 2 1 3 3
d3 3 2 2 1
d4 4 4 5 2
d5 5 5 4 4

Let us suppose that the preference and veto thresholds
are set to values 1 and 4 respectively, and that the concor-
dance and discordance thresholds are set to values 2 and 1
respectively. The following tables give the concordance, dis-
cordance and outranking matrices. Each entry csp(di, di′)
(dsv (di, di′)) in the concordance (discordance) matrix gives
the number of rankings that are concordant (discordant)
with diσdi′ , i.e. csp(di, di′) = |Csp(diσdi′)| and dsv (di, di′) =
|Dsv (diσdi′)|.

Table 2: Computation of the outranking relation
d1 d2 d3 d4 d5

d1 - 2 2 3 3
d2 2 - 2 3 4
d3 2 2 - 4 4
d4 1 1 0 - 3
d5 1 0 0 1 -

Concordance Matrix

d1 d2 d3 d4 d5
d1 - 0 1 0 0
d2 0 - 0 0 0
d3 0 0 - 0 0
d4 1 0 0 - 0
d5 1 1 0 0 -

Discordance Matrix

d1 d2 d3 d4 d5
d1 - 1 1 1 1
d2 1 - 1 1 1
d3 1 1 - 1 1
d4 0 0 0 - 1
d5 0 0 0 0 -

Outranking Matrix (S1)

For instance, the concordance coalition for the assertion
d1σd4 is C1(d1σd4) = {Â1,Â2,Â3} and the discordance
coalition for the same assertion is D4(d1σd4) = ∅. There-
fore, c1(d1, d4) = 3, d4(d1, d4) = 0 and d1S

1d4 holds.
Notice that Fk(di, R) (fk(di, R)) is given by summing the

values of the ith row (column) of the outranking matrix. The



consensus ranking is obtained as follows: to get the first class
C1, we compute the qualifications of all the documents of
E0 = R with respect to S1. They are respectively 2, 2, 2, -2
and -4. Therefore smax equals 2 and C1 = E1 = {d1, d2, d3}.
Observe that, if we had used a second outranking relation
S2(⊇ S1), these three documents could have been possi-
bly discriminated. At this stage, we remove documents of
C1 from the outranking matrix and compute the next class
C2: we compute the new qualifications of the documents of
E0 = R \ C1 = {d4, d5}. They are respectively 1 and -1. So
C3 = E1 = {d4}. The last document d5 is the only docu-
ment of the last class C3. Thus, the consensus ranking is
{d1, d2, d3} → {d4} → {d5}.

5. EXPERIMENTS AND RESULTS

5.1 Test Setting
To facilitate empirical investigation of the proposed metho-

dology, we developed a prototype metasearch engine that
implements a version of our outranking approach for rank
aggregation. In this paper, we apply our approach to the
Topic Distillation (TD) task of TREC-2004 Web track [10].
In this task, there are 75 topics where only a short descrip-
tion of each is given. For each query, we retained the rank-
ings of the 10 best runs of the TD task which are provided
by TREC-2004 participating teams. The performances of
these runs are reported in table 3.

Table 3: Performances of the 10 best runs of the TD
task of TREC-2004

Run Id MAP P@10 S@1 S@5 S@10

uogWebCAU150 17.9% 24.9% 50.7% 77.3% 89.3%

MSRAmixed1 17.8% 25.1% 38.7% 72.0% 88.0%

MSRC04C12 16.5% 23.1% 38.7% 74.7% 80.0%

humW04rdpl 16.3% 23.1% 37.3% 78.7% 90.7%

THUIRmix042 14.7% 20.5% 21.3% 58.7% 74.7%

UAmsT04MWScb 14.6% 20.9% 36.0% 66.7% 76.0%

ICT04CIIS1AT 14.1% 20.8% 33.3% 64.0% 78.7%

SJTUINCMIX5 12.9% 18.9% 29.3% 57.3% 72.0%

MU04web1 11.5% 19.9% 33.3% 64.0% 76.0%

MeijiHILw3 11.5% 15.3% 30.7% 54.7% 64.0%

Average 14.7% 21.2% 34.9% 66.8% 78.94%

For each query, each run provides a ranking of about 1000
documents. The number of documents retrieved by all these
runs ranges from 543 to 5769. Their average (median) num-
ber is 3340 (3386). It is worth noting that we found similar
distributions of the documents among the rankings as in
[11].

For evaluation, we used the ‘trec eval’ standard tool which
is used by the TREC community to calculate the standard
measures of system effectiveness which are Mean Average
Precision (MAP) and Success@n (S@n) for n=1, 5 and 10.

Our approach effectiveness is compared against some high
performing official results from TREC-2004 as well as against
some standard rank aggregation algorithms. In the experi-
ments, significance testing is mainly based on the t-student
statistic which is computed on the basis of the MAP values of
the compared runs. In the tables of the following section,
statistically significant differences are marked with an as-
terisk. Values between brackets of the first column of each
table, indicate the parameter value of the corresponding run.

5.2 Results
We carried out several series of runs in order to i) study

performance variations of the outranking approach when
tuning the parameters and working assumptions, ii) com-
pare performances of the outranking approach vs standard
rank aggregation strategies , and iii) check whether rank
aggregation performs better than the best input rankings.

We set our basic run mcm with the following parameters.
We considered that each input ranking is a complete or-
der (sp = 0) and that an input ranking strongly refutes
diσdi′ when the difference of both document positions is
large enough (sv = 75%). Preference and veto thresholds
are computed proportionally to the number of documents re-
tained in each input ranking. They consequently may vary
from one ranking to another. In addition, to accept the
assertion diσdi′ , we supposed that the majority of the rank-
ings must be concordant (cmin = 50%) and that every input
ranking can impose its veto (dmax = 0). Concordance and
discordance thresholds are computed for each tuple (di, di′)
as the percentage of the input rankings of PRi∩PRi′ . Thus,
our choice of parameters leads to the definition of the out-
ranking relation S(0,75%,50%,0).

To test the run mcm, we had chosen the following assump-
tions. We retained the top 100 best documents from each
input ranking (H1

100), only considered documents which are
present in at least half of the input rankings (H2

5 ) and as-
sumed H3

no and H4
new. In these conditions, the number of

successful documents was about 100 on average, and the
computation time per query was less than one second.

Obviously, modifying the working assumptions should have
deeper impact on the performances than tuning our model
parameters. This was validated by preliminary experiments.
Thus, we hereafter begin by studying performance variation
when different sets of assumptions are considered. After-
wards, we study the impact of tuning parameters. Finally,
we compare our model performances w.r.t. the input rank-
ings as well as some standard data fusion algorithms.

5.2.1 Impact of the Working Assumptions
Table 4 summarizes the performance variation of the out-

ranking approach under different working hypotheses. In

Table 4: Impact of the working assumptions
Run Id MAP S@1 S@5 S@10

mcm 18.47% 41.33% 81.33% 86.67%
mcm22 (H3

yes) 17.72% (-4.06%) 34.67% 81.33% 86.67%

mcm23 (H4
init) 18.26% (-1.14%) 41.33% 81.33% 86.67%

mcm24 (H1
all) 20.67% (+11.91%*) 38.66% 80.00% 86.66%

mcm25 (H2
all) 21.68% (+17.38%*) 40.00% 78.66% 89.33%

this table, we first show that run mcm22, in which missing
documents are all put in the same last position of each input
ranking, leads to performance drop w.r.t. run mcm. More-
over, S@1 moves from 41.33% to 34.67% (-16.11%). This
shows that several relevant documents which were initially
put at the first position of the consensus ranking in mcm, lose
this first position but remain ranked in the top 5 documents
since S@5 did not change. We also conclude that documents
which have rather good positions in some input rankings are
more likely to be relevant, even though they are missing in
some other rankings. Consequently, when they are missing
in some rankings, assigning worse ranks to these documents
is harmful for performance.



Also, from Table 4, we found that the performances of
runs mcm and mcm23 are similar. Therefore, the outranking
approach is not sensitive to keeping the initial positions of
candidate documents or recomputing them by discarding
excluded ones.

From the same Table 4, performance of the outranking
approach increases significantly for runs mcm24 and mcm25.
Therefore, whether we consider all the documents which are
present in half of the rankings (mcm24) or we consider all
the documents which are ranked in the first 100 positions in
one or more rankings (mcm25), increases performances. This
result was predictable since in both cases we have more de-
tailed information on the relative importance of documents.
Tables 5 and 6 confirm this evidence. Table 5, where val-
ues between brackets of the first column give the number
of documents which are retained from each input ranking,
shows that selecting more documents from each input rank-
ing leads to performance increase. It is worth mentioning
that selecting more than 600 documents from each input
ranking does not improve performance.

Table 5: Impact of the number of retained docu-
ments

Run Id MAP S@1 S@5 S@10

mcm (100) 18.47% 41.33% 81.33% 86.67%
mcm24-1 (200) 19.32% (+4.60%) 42.67% 78.67% 88.00%
mcm24-2 (400) 19.88% (+7.63%*) 37.33% 80.00% 88.00%
mcm24-3 (600) 20.80% (+12.62%*) 40.00% 80.00% 88.00%
mcm24-4 (800) 20.66% (+11.86%*) 40.00% 78.67% 86.67%
mcm24 (1000) 20.67% (+11.91%*) 38.66% 80.00% 86.66%

Table 6 reports runs corresponding to variations of H2
k .

Values between brackets are rank hits. For instance, in
the run mcm32, only documents which are present in 3 or
more input rankings, were considered successful. This ta-
ble shows that performance is significantly better when rare
documents are considered, whereas it decreases significantly
when these documents are discarded. Therefore, we con-
clude that many of the relevant documents are retrieved by
a rather small set of IR models.

Table 6: Performance considering different rank hits
Run Id MAP S@1 S@5 S@10

mcm25 (1) 21.68% (+17.38%*) 40.00% 78.67% 89.33%
mcm32 (3) 18.98% (+2.76%) 38.67% 80.00% 85.33%
mcm (5) 18.47% 41.33% 81.33% 86.67%
mcm33 (7) 15.83% (-14.29%*) 37.33% 78.67% 85.33%
mcm34 (9) 10.96% (-40.66%*) 36.11% 66.67% 70.83%
mcm35 (10) 7.42% (-59.83%*) 39.22% 62.75% 64.70%

For both runs mcm24 and mcm25, the number of successful
documents was about 1000 and therefore, the computation
time per query increased and became around 5 seconds.

5.2.2 Impact of the Variation of the Parameters
Table 7 shows performance variation of the outranking ap-

proach when different preference thresholds are considered.
We found performance improvement up to threshold values
of about 5%, then there is a decrease in the performance
which becomes significant for threshold values greater than
10%. Moreover, S@1 improves from 41.33% to 46.67% when
preference threshold changes from 0 to 5%. We can thus
conclude that the input rankings are semi orders rather than
complete orders.

Table 8 shows the evolution of the performance measures
w.r.t. the concordance threshold. We can conclude that in
order to put document di before di′ in the consensus ranking,

Table 7: Impact of the variation of the preference
threshold from 0 to 12.5%

Run Id MAP S@1 S@5 S@10

mcm (0%) 18.47% 41.33% 81.33% 86.67%
mcm1 (1%) 18.57% (+0.54%) 41.33% 81.33% 86.67%
mcm2 (2.5%) 18.63% (+0.87%) 42.67% 78.67% 86.67%
mcm3 (5%) 18.69% (+1.19%) 46.67% 81.33% 86.67%
mcm4 (7.5%) 18.24% (-1.25%) 46.67% 81.33% 86.67%
mcm5 (10%) 17.93% (-2.92%) 40.00% 82.67% 86.67%
mcm5b (12.5%) 17.51% (-5.20%*) 41.33% 80.00% 86.67%

at least half of the input rankings of PRi ∩ PRi′ should be
concordant. Performance drops significantly for very low
and very high values of the concordance threshold. In fact,
for such values, the concordance condition is either fulfilled
rather always by too many document pairs or not fulfilled at
all, respectively. Therefore, the outranking relation becomes
either too weak or too strong respectively.

Table 8: Impact of the variation of cmin

Run Id MAP S@1 S@5 S@10

mcm11 (20%) 17.63% (-4.55%*) 41.33% 76.00% 85.33%
mcm12 (40%) 18.37% (-0.54%) 42.67% 76.00% 86.67%
mcm (50%) 18.47% 41.33% 81.33% 86.67%
mcm13 (60%) 18.42% (-0.27%) 40.00% 78.67% 86.67%
mcm14 (80%) 17.43% (-5.63%*) 40.00% 78.67% 86.67%
mcm15 (100%) 16.12% (-12.72%*) 41.33% 70.67% 85.33%

In the experiments, varying the veto threshold as well as
the discordance threshold within reasonable intervals does
not have significant impact on performance measures. In
fact, runs with different veto thresholds (sv ∈ [50%; 100%])
had similar performances even though there is a slight ad-
vantage for runs with high threshold values which means
that it is better not to allow the input rankings to put their
veto easily. Also, tuning the discordance threshold was car-
ried out for values 50% and 75% of the veto threshold. For
these runs we did not get any noticeable performance varia-
tion, although for low discordance thresholds (dmax < 20%),
performance slightly decreased.

5.2.3 Impact of the Variation of the Number of Input
Rankings

To study performance evolution when different sets of in-
put rankings are considered, we carried three more runs
where 2, 4, and 6 of the best performing sets of the in-
put rankings are considered. Results reported in Table 9
are seemingly counter-intuitive and also do not support pre-
vious findings regarding rank aggregation research [3]. Nev-
ertheless, this result shows that low performing rankings
bring more noise than information to the establishment of
the consensus ranking. Therefore, when they are considered,
performance decreases.

Table 9: Performance considering different best per-
forming sets of input rankings

Run Id MAP S@1 S@5 S@10

mcm (10) 18.47% 41.33% 81.33% 86.67%
mcm27 (6) 18.60% (+0.70%) 41.33% 80.00% 85.33%
mcm28 (4) 19.02% (+2.98%) 40.00% 86.67% 88.00%
mcm29 (2) 18.33% (-0.76%) 44.00% 76.00% 88.00%

5.2.4 Comparison of the Performance of Different
Rank Aggregation Methods

In this set of runs, we compare the outranking approach
with some standard rank aggregation methods which were



proven to have acceptable performance in previous studies:
we considered two positional methods which are the Comb-
SUM and the CombMNZ strategies. We also examined
the performance of one majoritarian method which is the
Markov chain method (MC4). For the comparisons, we con-
sidered a specific outranking relation S∗ = S(5%,50%,50%,30%)

which results in good overall performances when tuning all
the parameters.

The first row of Table 10 gives performances of the rank
aggregation methods w.r.t. a basic assumption set A1 =
(H1

100, H
2
5 , H4

new): we only consider the 100 first documents
from each ranking, then retain documents present in 5 or
more rankings and update ranks of successful documents.
For positional methods, we place missing documents at the
queue of the ranking (H3

yes) whereas for our method as well
as for MC4, we retained hypothesis H3

no. The three follow-
ing rows of Table 10 report performances when changing
one element from the basic assumption set: the second row
corresponds to the assumption set A2 = (H1

1000, H
2
5 , H4

new),
i.e. changing the number of retained documents from 100
to 1000. The third row corresponds to the assumption set
A3 = (H1

100, H
2
all, H4

new), i.e. considering the documents
present in at least one ranking. The fourth row corresponds
to the assumption set A4 = (H1

100, H
2
5 , H4

init), i.e. keeping
the original ranks of successful documents.

The fifth row of Table 10, labeled A5, gives performance
when all the 225 queries of the Web track of TREC-2004 are
considered. Obviously, performance level cannot be com-
pared with previous lines since the additional queries are
different from the TD queries and correspond to other tasks
(Home Page and Named Page tasks [10]) of TREC-2004
Web track. This set of runs aims to show whether relative
performance of the various methods is task-dependent.

The last row of Table 10, labeled A6, reports performance
of the various methods considering the TD task of TREC-
2002 instead of TREC-2004: we fused the results of input
rankings of the 10 best official runs for each of the 50 TD
queries [9] considering the set of assumptions A1 of the first
row. This aims to show whether relative performance of the
various methods changes from year to year.

Values between brackets of Table 10 are variations of per-
formance of each rank aggregation method w.r.t. perfor-
mance of the outranking approach.

Table 10: Performance (MAP) of different rank ag-
gregation methods under 3 different test collections

mcm combSUM combMNZ markov

A1 18.79% 17.54% (-6.65%*) 17.08% (-9.10%*) 18.63% (-0.85%)
A2 21.36% 19.18% (-10.21%*) 18.61% (-12.87%*) 21.33% (-0.14%)
A3 21.92% 21.38% (-2.46%) 20.88% (-4.74%) 19.35% (-11.72%*)
A4 18.64% 17.58% (-5.69%*) 17.18% (-7.83%*) 18.63% (-0.05%)

A5 55.39% 52.16% (-5.83%*) 49.70% (-10.27%*) 53.30% (-3.77%)

A6 16.95% 15.65% (-7.67%*) 14.57% (-14.04%*) 16.39% (-3.30%)

From the analysis of table 10 the following can be estab-
lished:

• for all the runs, considering all the documents in each
input ranking (A2) significantly improves performance
(MAP increases by 11.62% on average). This is pre-
dictable since some initially unreported relevant docu-
ments would receive better positions in the consensus
ranking.

• for all the runs, considering documents even those pre-
sent in only one input ranking (A3) significantly im-

proves performance. For mcm, combSUM and combMNZ,
performance improvement is more important (MAP in-
creases by 20.27% on average) than for the markov run
(MAP increases by 3.86%).

• preserving the initial positions of documents (A4) or
recomputing them (A1) does not have a noticeable in-
fluence on performance for both positional and majori-
tarian methods.

• considering all the queries of the Web track of TREC-
2004 (A5) as well as the TD queries of the Web track
of TREC-2002 (A6) does not alter the relative perfor-
mance of the different data fusion methods.

• considering the TD queries of the Web track of TREC-
2002, performances of all the data fusion methods are
lower than that of the best performing input ranking
for which the MAP value equals 18.58%. This is because
most of the fused input rankings have very low perfor-
mances compared to the best one, which brings more
noise to the consensus ranking.

• performances of the data fusion methods mcm and markov

are significantly better than that of the best input
ranking uogWebCAU150. This remains true for runs
combSUM and combMNZ only under assumptions H1

all or
H2

all. This shows that majoritarian methods are less
sensitive to assumptions than positional methods.

• outranking approach always performs significantly bet-
ter than positional methods combSUM and combMNZ. It
has also better performances than the Markov chain
method, especially under assumption H2

all where dif-
ference of performances becomes significant.

6. CONCLUSIONS
In this paper, we address the rank aggregation problem

where different, but not disjoint, lists of documents are to
be fused. We noticed that the input rankings can hide ties,
so they should not be considered as complete orders. Only
robust information should be used from each input ranking.

Current rank aggregation methods, and especially posi-
tional methods (e.g. combSUM [15]), are not initially de-
signed to work with such rankings. They should be adapted
by considering specific working assumptions.

We propose a new outranking method for rank aggrega-
tion which is well adapted to the IR context. Indeed, it
ranks two documents w.r.t. the intensity of their positions
difference in each input ranking and also considering the
number of the input rankings that are concordant and dis-
cordant in favor of a specific document. There is also no
need to make specific assumptions on the positions of the
missing documents. This is an important feature since the
absence of a document from a ranking should not be neces-
sarily interpreted negatively.

Experimental results show that the outranking method
significantly out-performs popular classical positional data
fusion methods like combSUM and combMNZ strategies. It
also out-performs a good performing majoritarian methods
which is the Markov chain method. These results are tested
against different test collections and queries. From the ex-
periments, we can also conclude that in order to improve the
performances, we should fuse result lists of well performing



IR models, and that majoritarian data fusion methods per-
form better than positional methods.

The proposed method can have a real impact on Web
metasearch performances since only ranks are available from
most primary search engines, whereas most of the current
approaches need scores to merge result lists into one single
list.

Further work involves investigating whether the outrank-
ing approach performs well in various other contexts, e.g.
using the document scores or some combination of docu-
ment ranks and scores.
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