
Generic Soft Pattern Models for Definitional Question
Answering

Hang Cui

Min-Yen Kan
Department of Computer Science

School of Computing
National University of Singapore

Tat-Seng Chua

{cuihang, kanmy, chuats}@comp.nus.edu.sg
ABSTRACT
This paper explores probabilistic lexico-syntactic pattern
matching, also known as soft pattern matching. While previous
methods in soft pattern matching are ad hoc in computing the
degree of match, we propose two formal matching models: one
based on bigrams and the other on the Profile Hidden Markov
Model (PHMM). Both models provide a theoretically sound
method to model pattern matching as a probabilistic process that
generates token sequences. We demonstrate the effectiveness of
these models on definition sentence retrieval for definitional
question answering. We show that both models significantly
outperform state-of-the-art manually constructed patterns. A
critical difference between the two models is that the PHMM
technique handles language variations more effectively but
requires more training data to converge. We believe that both
models can be extended to other areas where lexico-syntactic
pattern matching can be applied.

Categories and Subject Descriptors
I.2.7 [Artificial Intelligence]: Natural Language Processing;
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval - Retrieval Models;

General Terms
Algorithms, Measurement, Experimentation

Keywords
Definitional Question Answering, Soft Pattern, Probabilistic
Models

1. INTRODUCTION
Natural language texts often exhibit patterns, and thus lexico-
syntactic patterns are pervasive in natural language retrieval and
extraction tasks, such as information extraction (e.g., [11]). An
example of such a pattern is “<PersonIN> , NNP, BE$ named to
POST$”1, which may be used to extract the person name Bob
Lloyd from the sentence “…<PersonIN> Bob Lloyd
</PersonIN>, president and chief operating officer, was named
to the <POST> chief executive </POST>”. Besides information
extraction, such patterns have been applied to areas including:

1. Question answering (QA): Pattern matching is utilized to
improve precision in both factoid QA [12] and definitional QA
[19, 6, 1]. The former learns surface text patterns to extract
exact answers for simple questions about facts while the latter
utilizes more complicated definition patterns to identify
definition sentences to define a topic.

2. Retrieval of subjective expressions: Riloff and Wiebe [13]
applied an IE system to learn patterns of subjective expressions
so that opinions can be identified from news articles.

Lexico-syntactic patterns, which are either manually constructed
or machine learned, are often represented and matched as regular
expressions. They perform slot by slot matching against test
sentences, which we call hard matching. While these patterns are
highly precise, they often fare poorly in recall because of language
variations. For instance, the sample pattern given earlier cannot
match the sentence:

<PersonIN> Lee. Abraham </PersonIN>, 65 years old, former chairman
and chief executive officer of Associated Merchandising Corp., New
York, was named to the board of the footwear manufacturer.

which can be reduced to:

<PersonIN> , NUM$ NN ADJ, NNP, NNP, BE$ named to <POST>

The pattern fails to match the sentence due to additional tokens
(underscored in the above) that are not found in training samples.
Such mismatches are common in natural language texts because
authors can use diverse expressions to convey the same meaning.
We conjecture that current pattern matching applications may be
hindered due to the rigidity of hard matching. One promising
technique to circumvent this is soft pattern matching. Previously
examined by Cui et al. [2], soft patterns (SP) have shown to
significantly outperform hard patterns in extracting definition
sentences as they model language variations probabilistically.
While that work has demonstrated the performance of soft
patterns, it has not been anchored in a theoretically sound
framework.

In this paper, we build upon the earlier work in soft pattern
matching. Different from previous empirical work, we show how
soft pattern matching is achieved within the framework of two
standard probabilistic models. We take both patterns and test
instances as sequences of lexical and syntactic tokens. Here,
pattern matching can be considered probabilistic generation of
test sequences based on training sequences. The first model is
derived from a bigram language model with linear interpolation

1 NNP is a POS tag that represents a noun phrase. BE$ stands for all “be”

verbs. POST$ refers to the position involved in the management
succession.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGIR’05, August 15–19, 2005, Salvador, Brazil.
Copyright 2005 ACM 1-59593-034-5/05/0008...$5.00.

[7] of unigram and bigram probabilities. The second model is
based on the Profile Hidden Markov Model (PHMM). Parameters
in both models are estimated using Expectation Maximization
(EM). While the language model and the PHMM have been
studied in other areas, their use in modeling lexico-syntactic
pattern matching is a novel contribution of our work.

We choose the task of definition sentence retrieval within a typical
definitional QA system to demonstrate the models’ effectiveness.
The reason is two-fold: (1) Definition sentences are diversified in
exhibited patterns [2], and thus require flexible pattern matching
to achieve high recall; and (2) definitional QA remains one of the
least explored areas in QA research. To answer definition
questions, such as “Who is Aaron Copland” or “What are
prions”, a system is expected to generate a summary of all pieces
of salient information (or nuggets) about the given target. To
generate definitions for a target, a typical definitional QA system
first retrieves linguistic constructs (e.g., sentences, appositives or
relative clauses) that might contain salient information about the
target, and then summarizes these units into readable definitions.
To identify such constructs, current systems use definition
patterns to recognize definitions. Although a number of other
techniques influence the retrieval of such definition units,
component evaluations [2, 19] suggest that definition patterns are
the most important feature.

In addition to our theoretical work, we also assess the
performance of the formal soft matching models by empirical
evaluation. We conduct a series of extrinsic experiments using
the two soft pattern models on TREC definitional QA task test
data. Our experiments show that the performance of both models
significantly outperform state-of-the-art manually constructed
hard matching patterns by 11.67% and 9.18% in automatic
ROUGE score, and by 9.83% and 7.30% in the manual F3
measure used by TREC, respectively. Moreover, the two models
achieve better performance compared to the original soft matching
method proposed in Cui et al. [2]. The evaluation results also
reveal that the PHMM model is more tolerant to variations in
model length but requires more training data for it to converge.

In Section 2, we present a typical definitional QA system with
which our experiments are performed, and we give the necessary
background for understanding the proposed models. In Section 3,
we discuss the two proposed generic soft matching models and
our adaptation in detail. We present the evaluation results in
Section 4 and conclude the paper with future work in Section 5.

2. SYSTEM ARCHITECTURE AND
BACKGROUND

The recent development of definitional QA has been boosted by
the Text REtrieval Conference (TREC). TREC-12 and TREC-13
conducted systematic evaluations for definition questions. We use
a standard definitional QA system that structurally conforms to
those top performing TREC systems [19, 20]. Its architecture is
illustrated in Figure 1.

Document Retrieval: Given a definition question such as “Who
is X” or “What is X”, the search target, i.e., “X” in the question, is
fed as query into a standard document retrieval system. The
retrieved documents are split into sentences.

Question

Document Retrieval

Preprocessing

Definition Sentence
Retrieval

Redundancy Removal

Definition Pattern
Matching

Bag-of-Words Similarity
Ranking

Definition

Figure 1. Architecture of the definitional QA system.

Preprocessing of Sentences: We then process the sentences into
pattern instances, on which soft pattern generation and matching
are performed. First, words specific to the search targets are
replaced with their general syntactic (POS or chunk) tags.
Remaining words are stemmed. We refer to these remaining
lexical words and substituted general syntactic tags as tokens.
Definition patterns are expressed by sequences of such tokens.
Second, we crop the windows surrounding the search target as
instances according to model length L. The following box
illustrates the process:

T he channel Iqra is ow ned by the A rab R adio and T elevision com pany
and is the b rainchild o f the Saudi m illionaire, Saleh K am el.

PO S tagg ing , chunking and
substitu tion

D T $ N N < SC H _T E R M > B E $ ow ned by D T $ N P and
B E $ D T $ brainchild of N P .

Cropp ing (L= 3)

D T $ N N <SC H _T E R M > B E $ ow ned by
An instance is further split into left and right sequences based on
the position of <SCH_TERM>. We model the left and right
sequences separately using soft pattern models. In the above
example, “DT$ NN” is the left sequence and “BE$ owned by” is
the right sequence.

Definition Sentence Retrieval: The definition sentence retrieval
module identifies and extracts definition sentences from the
relevant document set. Systems fielded at TREC rank definition
sentences using two sets of features: definition patterns and bag-
of-words pertinent to the target. Definition pattern matching is the
most important feature used for identifying definitions. Xu et al.
[19] and Hildebrandt et al. [6] employed various manually
constructed definition patterns at both lexical and syntactic levels
to identify specific linguistic constructs and assign different
weights to the types of patterns. Other TREC systems [5, 20] also
employ various manual definition patterns but they treat all
patterns equally. All these systems use hard pattern matching. In
contrast, soft matching patterns compute a probabilistic match for
a test instance by combining individual slot and sequence
probabilities. Cui et al. [2] experimentally demonstrated that soft
pattern matching outperforms hard pattern matching in the
definition sentence retrieval task. In this paper, we also adopt the
soft pattern matching approach, but we augment the previous
model with a rigorous mathematical foundation for soft pattern
matching.

In addition to pattern matching, definitional QA systems also use
the bag-of-words approach to rank extracted constructs. Blair-
Goldensohn et al. [1] and Xu et al. [19] constructed a profile for
the target by selecting centroid words, i.e., words that frequently
co-occur with the target. The profile is then used to rank definition
sentences by their cosine similarity with the profile. Many systems
also reinforce such profiles by exploiting word statistics from
external resources, such as biographical web sites and
encyclopedias. We follow the literature in constructing our
system, by adopting the centroid method reinforced by existing
definitions from biography.com and wikipedia.com. To retrieve
definition sentences, we linearly combine the scores of pattern
matching and bag-of-words ranking in the experiments [3].

Redundancy Removal: The redundancy removal module takes a
list of ranked definition sentences as input. It produces the final
answer by removing redundant sentences. A sentence is removed
if its cosine similarity with any sentence already selected for the
answer exceeds a predefined threshold [2].

2.1 Soft Pattern Matching
After preprocessing, each definition sentence is converted into a
pattern instance that consists of left and right token sequences
relative to the search target. At the training phase, token
sequences are aligned and represented as a single vector P:
<S1,S2, …, Sl> that combines information over all of the training
sequences, where Si represents the ith slot (or position) left or right
of the search target and contains tokens appearing in that position.
Unlike hard matching patterns that generalize training instances
into pattern rules, soft matching patterns model each token’s
distribution statistics in each slot over all training instances. Given
a test sequence T with length l:<t1, t2 …… tl> where ti is the token
corresponding to the ith slot, soft pattern models are used to model
the generative probability of sequence T, given training sequences
represented in vector P. In the next two sub-sections, we briefly
review the background to our new soft pattern models before
proposing the models in Section 3.

2.1.1 Language Modeling
Language modeling has been extensively studied in speech
recognition, part-of-speech tagging and syntactic parsing [14]. N-
gram language modeling is one important approach which models
local sequential dependencies between adjacent tokens. Trigrams
(n=3) are a common choice when large training corpora are
available. We use a bigram (n=2) model in this paper, as we have
a limited amount of training data. We also remedy problems with
sparse data by smoothing n-gram probabilities. The first soft
matching pattern model we introduce is based on n-gram language
models, in which we incorporate linear interpolation [7] of
unigrams and bigrams.

2.1.2 Hidden Markov Models in Information
Extraction and Biological Sequence Modeling

Hidden Markov Models (HMMs) have been widely applied to
speech recognition and various natural language processing
applications [10], including information extraction (IE) and
biological sequence modeling, which are most relevant to
definition pattern matching.

IE relies heavily on patterns at the lexical, syntactic and semantic
levels. Two types of extraction patterns are exploited in current IE

systems: machine-induced hard matching rules [11] and
probabilistic models such as HMMs. Skounakis et al. [15] applied
hierarchical HMMs to the task of extracting binary relations in
biomedical texts. They constructed two types of HMMs to
represent words and phrases, which are two levels of emission
units. Although these variations of HMMs also model pattern
matching as token sequence generation, the topology they employ
are more task specific and not general enough to be extended to
other applications such as definition pattern matching.

HMMs recently have also been applied in computational biology
to model protein families. Krogh et al. [8] utilized an HMM with
a generic topology, called the Profile HMM (PHMM) (see Figure
2), to model multiple sequence alignment of protein families.
PHMMs can be considered a probabilistic implementation of edit
distance. It has different states for match, insertion and deletion
operations. As it demonstrates flexible matching of lexico-
syntactic patterns, we can easily adapt PHMMs for soft pattern
matching by changing “amino acids” to “words and syntactic
tags”. The PHMM approach is our second model proposed.

3. GENERIC SOFT PATTERN MATCHING
MODELS

In this section, we describe the derivation of our two soft pattern
models and parameter estimation in detail.

3.1 Bigram Soft Pattern Model
We first adopt a bigram model to model pattern instances. While
the original bigram model is simply a product of probabilities of
all bigrams in a sequence, we apply linear interpolation of
unigrams and bigrams to represent probability of bigrams. The
reason is two-fold: (1) to smooth probability distribution to
generate more accurate statistics for unseen data, and (2) to
incorporate conditional probability of individual tokens appearing
in specific slots. In particular, we model a sequence of pattern
tokens as:

∏ −+=

∏ −+=

=
−

=
−

L

i
iiii

L

i
iiiL

StPttPStP

tPttPtPttP

2
111

2
111

))|()1()|(()|(

)),()1(),|(()|()(

λλ

µλµλµK
 (1)

where µ stands for the bigram model and P(ti|Si) stands for the
conditional probability of token ti appearing in slot Si. λ is the
mixture weight combining the unigram and bigram probabilities.
Note that we use the conditional probability of a unigram being in
a slot to represent unigram probability. This is because the
position of a token is important in modeling: for instance, a
comma always appears in the first slot right of the target in an
appositive expression. Incorporating individual slots’ probabilities
enables the bigram model to allow partial matching, which is a
characteristic of soft pattern matching. In other words, even if
some slots cannot be matched, the bigram model can still yield a
high match score by combining those matched slots’ unigram
probabilities.
As test instances are often different in length, we normalize the
log-likelihood of Equation (1) by the length l of the test instance:

)))|()1()|(log()|((log1
2

111 ∑
=

− −++=
l

i
iiiinorm StPttPStP

l
P λλ (2)

where l denotes the number of tokens in the test instance.

Next, we estimate unigram and bigram probabilities by their
maximum likelihood (ML) estimates:

∑
=

k
ik

ii
MLii St

StStP
|)(|

|)(|)|((3)

|)(|
|)()(|)|(11

1
ii

iiii
MLii St

StStttP −−
− = (4)

where ti(Si) denotes that token ti appears in slot Si and |t| denotes
the frequency of the token t. In language modeling, ML estimates
often suffer from the sparse data problem. It is even worse in our
scenario because we count tokens with respect to slot positions,
which makes the training data even sparser. As such, we need to
employ some smoothing technique to counter the problem. For
simplicity, we use Laplace smoothing on unigram probabilities
(recall that bigram probabilities have already been smoothed by
interpolation):

∑ ×+
+=

k
jk

ii
ii tNSt

StStP
|)(||)(|

|)(|)|(
δ

δ (5)

where |N(t)| gives the total number of unique tokens in our
training data and δ is a constant, which is 2 in our experiments.
Note that we count frequencies of words and general syntactic
tags separately. General tags typically have a much higher
frequency compared to individual words, and would thus skew the
distribution if combined with words. Thus we need to separate the
two types and estimate each token’s unigram probability against
its own set.
Estimating the mixture weight λ: We use the Expectation
Maximization (EM) algorithm [4] to find optimal settings of λ.
Specifically, we estimate λ by maximizing the likelihood of all
training instances, given the bigram model:

))|()1()|((log
1

1maxarg

)|(maxarg

)()()(
1

)(
||

1 2

||

1

)(
)(

)(
1

j
i

j
i

j
i

j
i

INS

j

jl

ij

INS

j

j
jl

j

StPttP
l

ttP

λλ

µλ

λ

λ

−+
−

=

=

−
= =

=

∑ ∑

∑ K
 (6)

P(t1|S1) is ignored because it does not affect λ. λ can be estimated
using the EM iterative procedure:
1. Initialize λ to a random estimate between 0 and 1, say 0.5.
2. Update λ using:

∑ ∑
−+−

×=
= =

−

−
)(

1 2)()()(
1

)(

)(
1

)(

)|()1()|(
)|(

1
1

||
1'

INSf

j

jl

i j
i

j
i

j
i

j
i

j
i

j
i

j StPttP
ttP

lINS λλ
λλ (7)

where INS denotes all training instances and |INS| is the number of
training instances which is used as a normalization factor.

3. Repeat Step 2 until λ converges.

We set λ to 0.3 according to the experimental results.

3.2 PHMM Soft Pattern Model
Although the bigram model allows partial matching, it lacks the
ability to deal with gaps in test instances. For instance, given
training instances such as “<SCH_TERM> which is known for
…”, the trained bigram model cannot give reasonable match
scores to test instances such as “<SCH_TERM> which is best
known for …” or “<SCH_TERM> , whose xxx is known for …”
even though they are simple variants of the training instances in

which insertions or deletions occur. The gaps can be captured by
PHMMs, which allow insertion and deletion operations in the
matching process. Figure 2 shows the topology of a PHMM.

Start M1 M2 M3 M 4 End

D2 D3 D4D1

I0 I1 I2
I3

I4

Figure 2. Illustration of the Profile HMM (L=4). Matching
states are represented by Mi in squares, insertion states by Ii in
diamonds, and deletion states by Di in circles. Start and End
states occupy the positions of 0 and L+1.
The PHMM contains a sequence of match states, which are
denoted by Mi (i=1..L). These match states correspond to slots in
pattern instances and determine model length L. Each match state
can emit a token t from all tokens in the training instances with the
emission probability P(t|Mi). For each match state, there is a
deletion state, denoted by Di, which does not emit a token and is
used to skip the corresponding match state. Insertion states emit a
token t with the emission probability P(t|Ii). Insertion states insert
tokens after match or deletion states, as with the word “best” in
the earlier example. While transitions from match states and
deletion states always move forward in the model, insertion states
allow self-loops, corresponding to multiple insertions. A token
sequence representing a pattern instance can be generated by
moving through this model with state transition probabilities
P(Si|Sj). The deletion and insertion states allow the PHMM to
model missing or unobserved words in training. Specifically, the
probability of a sequence of tokens t1 … tN that are generated by
moving through the states S0 … SL+1 (the Start and End states are
S0 and SL+1) is as follows:

∏=
=

−++

L

i
iiiinLLLN SSTStPSSTSSttob

1
1)(1101)|()|()|(),|(Pr µKK (8)

where µ stands for the model. P(tn(i)|Si) is set to 1 when Si is a
deletion state. To recognize a definition pattern, we choose the
most probable state path in the above equation to approximate the
probability of the sequence being given all possible state paths.
The rationale is that most often, the most probable state path gives
a much higher probability than any other paths. Equation (8) can
be efficiently calculated by the forward-backward algorithm [10].
We employ the Viterbi algorithm [10] to find the most probable
state path. In Figure 3, we show an example to illustrate how the
PHMM finds the optimal path to account for the “gaps” between
training instances and the test instance. Although the training data
does not contain any instance that has “known” in Slot 1 and
“NNP” in Slot 4, the PHMM automatically selects the path that
goes through a deletion state to skip Slot 1 and uses an insertion
state to emit “NNP”. Thus, the tokens are re-aligned with their
most probable occurring slots such that the unseen test instance
can still obtain a reasonable generative probability.
Estimation of the model: During training, we need to estimate
transition and emission probabilities for the PHMM. The training
process, also called the estimation process, can be accomplished
by employing the standard Baum-Welch algorithm [10].
Corresponding to our adaptation to the calculation of sequence
probability, we use the Viterbi algorithm to determine the path

with the highest probability during the re-estimation process,
unlike the standard Baum-Welch algorithm which considers all
possible paths which are weighted by their probabilities.

Start M1 M2 M3 M4 End

D2 D3 D4D1

NNP
NN
 ,

,
known
known

known
as
as

as
“

DT$

Training instances:

 NNP , known as <SCH_TERM>
 NN known as “ <SCH_TERM>
 , known as DT$ <SCH_TERM>

I0 I1 I2 I3 I4

NNP

known as DT$

Known as DT$ NNP <SCH_TERM>

Figure 3. Generating a test instance with gaps using the
PHMM. The optimal path is in bold, and words or tags
emitted are shown in callouts.
Initialization of the model: Although probabilities in a PHMM
can be estimated automatically using an iterative EM algorithm
starting with random or uniform probabilities, the re-estimation
process can only guarantee that the model reaches local maxima.
In addition, in capturing definition patterns, definition expressions
are diverse and sparse in terms of both lexical tokens and POS
tags. If we start with random or uniform setting of the model, we
would likely end up with an unsatisfactory model that gives close
estimates of different possibilities. To make training manageable
given our small training set, we assume that the most probable
state path for a sequence should go through as many match states
as possible. The reason is that although insertion and deletion
states add flexibility, they may hurt generalization of underlying
definition patterns if the model gives high probabilities of going
through them. Specifically, we set the emission probabilities for
each match and insertion state using the smoothed maximum
likelihood estimate of the emission probabilities (Equation 5). We
adjust the value of δ such that the probability of emitting a token
from match states is higher than that of insertion states. We set the
initial state transition probabilities to the inverse proportion of the
number of transition links from a state.

3.3 Combining Left and Right Sequences
The pattern matching score for a test instance against definition
patterns is obtained by combining the soft pattern matching scores
for both the left and right sequences in the context of the search
target. We use the linear combination of the scores:

)|_()1()|_()|(RL SPseqrightPSPseqleftPCinsP αα −+= (9)

where ins represents a test instance and C denotes the context
model. P(left_seq|SPL) and P(right_seq|SPR) give the probabilistic
pattern matching scores of the left and right sequences of the
instance, given the corresponding soft pattern (SP) matching
models. α is the mixture weight. We adopt an EM algorithm
similar to that in Section 3.1 to estimate the value of α. We set α
to 0.3 in our experiments.

3.4 Discussions on the Two Generic Soft
Matching Models

We have presented two generic soft pattern models: Bigram SP
and PHMM SP. These two models differ in their complexity. The
bigram model can be considered a simplified first-order Markov
model with one state for each token. It directly captures sequence
information using bigram probabilities. In contrast, PHMM has a
more complicated topology that aggregates token sequence
probability into state transition probabilities. Theoretically, the
PHMM needs more training data to converge to an accurate model
as it has more parameters to estimate. Appropriate initialization
(as shown in Section 3.2) for the PHMM also aids convergence to
the global maxima. An advantage is that PHMMs are less
sensitive to model settings, e.g., model length, because it makes
its transitions between hidden states which correspond to
aggregations of tokens rather than directly between surface tokens.
We present experiments in Section 4 to validate these conjectures.
Despite their differences, the two models are inherently connected
because both the models deem definition patterns as sequences of
tokens. They model the same structural information for patterns:
First, both models capture the importance of a token’s position in
the context of a search target: the bigram model uses unigram
probabilities while the PHMM model uses emission probabilities
to represent a token’s independent probability of appearing in
each position. Second, both models account for the sequential
order of tokens. This sequential information is captured by
bigram probability in the bigram model and state transition
probability in the PHMM model. Thus, the soft matching method
proposed in Cui et al. [2] may be considered a special case of our
Bigram SP model.
Our assumption is that all definition pattern instances embedded
in definition sentences are generated by a single model. Although
it may be advantageous if we could train separate probabilistic
models for different types of definition patterns, limited training
prevents this, and such models impair the objective of establishing
a uniform matching model for definition patterns.

4. EVALUATIONS
We have three goals in our evaluations: (1) to compare the
performance of our soft matching models against other state-of-
the-art pattern matching techniques in the context of a standard
definitional QA system, and to study the two models’ sensitivity
to: (2) model length, and (3) amount of training data.

4.1 Evaluation Setup
4.1.1 Data Set
We employ the data set from the TREC-13 Question Answering
Task. It includes the AQUAINT corpus of over one million news
articles and 64 definition question1 and answer pairs. We use the
data set from the TREC-12 definitional QA task as training data,
which shares the same corpus with TREC-13 and includes an
additional 50 definition question and answer pairs. Based on the
answer nuggets (ground truth, manually labeled data) provided by
TREC for these 50 questions, we manually label all sentences that
cover the nuggets from the corpus as definition sentences. In total,

1 The test data for TREC-13 includes 65 definition questions. NIST drops

one in the official evaluation.

we obtain 761 labeled definition sentences as training data for
estimating the soft matching models.

4.1.2 Evaluation Metrics
We adopt the evaluation metrics used in the TREC definitional
question answering task [16, 17]. TREC provides a list of
essential and acceptable nuggets for answering each question. We
use these nuggets to assess the various QA systems in our
evaluation in both manual and automatic assessments. In the
manual assessment used in official TREC evaluations, an assessor
examines how many essential and acceptable nuggets are covered
in the returned answer. Each definition is scored using nugget
recall (NR) and an approximation to nugget precision (NP) based
on answer length. These scores are combined using the F3 measure
with recall being weighted three times as important as precision
[17].

In addition to manual assessment, we perform automated
evaluation using ROUGE [9]. Automatic scores can be a good
supplement to manual evaluations for two reasons. First, as Xu et
al. [19] suggested, ROUGE gives automatic scores that are highly
correlated with manual counting of nuggets. Second, the manual
checking of nuggets is subject to inconsistent scoring across runs
[16]. ROUGE is a metric originally designed for summarization
evaluation and has previously been adapted for definitional QA
evaluation [19]. We use the metric ROUGE-3, which counts the
trigrams shared between the official answer and the system
answer.

To perform automatic scoring, for each search target, we construct
five groups of sentences as the gold standard. According to
TREC-13 guidelines, gold standard sentences are selected based
on answers to the factoid/list questions about the target and
“other” information about the target, which includes essential and
acceptable nuggets. We give details of how to construct the gold
standard in the Appendix. We use two ROUGE metrics: ROUGE-
3-ALL (R3A) for evaluations against all sentences in the gold
standard and ROUGE-3-ESSENTIAL (R3E) for evaluations
against those sentences that contain only factoid/list answers and
essential nuggets in the gold standard list. The final ROUGE
scores are the average scores obtained by running the evaluation
tool over the five groups of gold standard lists.

4.1.3 Comparison Systems
In our experiments, the base definition generation system used is
the system discussed in Section 2 and illustrated in Figure 1. In
evaluations, we only vary the definition pattern matching module
while holding constant all other components and their parameters.
For comparison, we apply a set of manually constructed hard
matching definition patterns which has demonstrated state-of-the-
art performance as the baseline system. The patterns combine
those used in Cui et al. [2] and Hildebrandt et al. [6], which
comprise the most complete published list of patterns to our
knowledge. In particular, we use the following comparison
systems:

(1) HP-Filter: This system employs the method used in Xu et al.
[19] and Hildebrandt et al. [6] where bag-of-words is used to rank
those constructs matched by any manual definition pattern.

(2) Original SP: We also use the soft pattern matching method
proposed in Cui et al. [2], and adopt the same parameter settings.

In our evaluations, we set answer length N to 14 sentences for all
systems to approximate the desirable answer length used in
successful TREC systems [19, 6, 2].

4.2 Performance Evaluation
In the first evaluation, we assess the performance obtained by the
two soft matching models against that of the comparison systems.
We set model length L to optimal values based on experiments
which we will present in the next subsection. We list the
evaluation results in Table 1. We take HP-Filter as the baseline
system for comparison with the soft pattern matching models.

Table 1. F3 performance comparison (percentage improvement
shown in brackets; ** and * represent different significance
levels by t-test: p ≤ 0.01 and 0.05, respectively)

Configurations HP-Filter
(Baseline) Original SP Bigram SP PHMM SP

R3A 0.2106 0.2233
(+6.00%)

0.2303
(+9.37%)

0.2234
(+6.08%)

R3E 0.2286 0.2378
(+4.00%)

0.2553
(+11.67%)*

0.2496
(+9.18%)

NR 0.5027 0.5376 0.5519 0.5420

NP 0.3159 0.3238 0.3403 0.3264

F3 0.4633 0.4937
(+6.56%)**

0.5088
(+9.83%)**

0.4971
(+7.30%)**

Correlation
F3, R3A 0.63 0.63 0.66 0.61

Correlation
F3, R3E 0.63 0.69 0.67 0.60

From Table 1, we arrive at the following:

1. We reaffirm the conclusion drawn by Cui et al. [2] that soft
matching patterns outperform manually constructed hard matching
patterns in both manual and automatic evaluations. With the
manual F3 measure, all three soft pattern models perform
significantly better than the baseline (p ≤ 0.01). The significance
measures change slightly when ROUGE scores are used. With
R3E, only the bigram and PHMM models achieve significant
improvement over the baseline (p=0.03 and p=0.08). The original
and PHMM models achieve similar performance in R3A scores
while the bigram model achieves some improvement. We
conjecture that the differences among the significance tests are
due to the long standard answers. Recall that we have compiled a
list of sentences as the gold standard for ROUGE evaluation.
While the human assessor is able to figure out the real answer
nuggets embedded in the system-returned answers, the ROUGE
evaluation tool is likely to overestimate recall due to the long
standard answers.

2. We note that both Bigram SP and PHMM SP outperform
Original SP in all scores. Bigram SP outperforms Original SP by
7.36% (p=0.09) and 3.05% (p=0.1) in R3E and F3 scores,
respectively. PHMM SP achieves 5.00% improvement over
Original SP in R3E scores. These results show that the
preliminary soft matching method is not optimized in parameter
setting. Finding best parameters is often tedious and difficult for
such ad hoc systems. In contrast, Bigram SP and PHMM SP
provide a sound framework for parameter estimation. This should

facilitate the migration of the two generic soft matching models to
other applications.

3. We observe that the manual F3 scores are highly correlated
with the automatic metrics R3A and R3E despite that the ROUGE
scores might have minor disturbance due to the long gold standard
answers. We calculate statistical correlation between F3 and
ROUGE scores. Correlation measures vary from -1 (perfectly anti-
correlated) to 1 (perfectly correlated). All the correlation measures
in our evaluations are between 0.6 and 0.7, which indicate strong
correlations between the metrics.

4.3 Analysis of Sensitivity to Model Length
As the parameters of the models are estimated automatically, we
vary the only arbitrarily set factor – model length – for the two
models. We list the ROUGE scores for both models when varying
their model length (number of slots) from 2 to 6 in Table 2.

In Table 2, we see that Bigram SP obtains the best performance
with the model length of 3 while PHMM SP achieves the highest
performance with the model length of 4. Both models slacken in
their performance when more slots are used.

We also compare percentage change in performance against the
highest score for each scoring metric. The performance of the
bigram model fluctuates more over different model lengths
compared to PHMM SP. This is evidence that PHMM SP may be
more stable amid changes in model typology.

Another observation is that with model lengths of 5 and 6,
PHMM SP performs better than the bigram model. We
hypothesize that the PHMM model may be more capable of
dealing with longer contexts.

Table 2. Performance with different model lengths. The
percentage values in parentheses are difference measures
compared to the maximum. Note that PHMM SP’s minimum
length for training is 3.

Model
Length (#
Slots)

2 3 4 5 6

PHMM SP
R3A N/A 0.2139

(-4.25%) 0.2234 0.2190
(-1.97%)

0.2125
(-4.88%)

PHMM SP
R3E N/A 0.2369

(-5.09%) 0.2496 0.2422
(-2.97%)

0.2367
(-5.17%)

BIGRAM
SP R3A

0.2128
(-7.60%) 0.2303 0.2165

(-6.00%)
0.2152

(-6.56%)
0.2086

(-9.42%)

BIGRAM
SP R3E

0.2340
(-8.34%) 0.2553 0.2363

(-7.44%)
0.2354

(-7.80%)
0.2346

(-8.11%)

4.4 Analysis of Sensitivity to Amount of
Training Data

In this evaluation, we experiment with different amounts of
training data. We divide the training data into two or three equal
portions. We train the bigram and PHMM models by using
different amounts of training data while testing on the same test
data set as before. We perform multiple runs with different
portions of training data, and average the scores obtained by the
system. Table 3 lists the results.

Table 3. Performance comparison across varying amounts of
training data.

Training Data size (fraction of whole training corpus)

1/3 1/2 1

PHMM R3A 0.2110 0.2179 (+3.24%) 0.2234 (+5.85%)

PHMM R3E 0.2311 0.2402 (+3.93%) 0.2496 (+8.00%)

Bigram R3A 0.2229 0.2269 (+1.76%) 0.2303 (+3.32%)

Bigram R3E 0.2478 0.2510 (+1.29%) 0.2553 (+3.03%)

Table 3 shows that PHMM SP achieves higher improvement than
Bigram SP when more training data is used. On the other hand,
comparing the performance difference between the PHMM and
bigram models with different amounts of training data reveals that
with more training data, the performance difference between the
two models narrows. For instance, the difference decreases from
7.22% to 2.28% and from 5.61% to 3.09% in R3E and R3A
scores respectively when we change from using one third to using
the full amount of training data. This observation supports our
conjecture that PHMM requires a larger amount of training data
for parameter estimation. Although Table 1 shows the bigram
model performing better, we believe that with enough training
data, PHMM SP may outperform the bigram model.

5. CONCLUSIONS AND FUTURE WORK
We have proposed two generic soft pattern models: one based on
a bigram language model and the other on the PHMM. Both
provide formal probabilistic methods to model lexico-syntactic
patterns represented by token sequences. In particular, we have
shown that PHMM overcomes the problem of gaps caused by
language variations in pattern matching. Our experiments show
both models obtaining significantly better performance than
carefully constructed hard matching patterns in a definitional QA
system. Although the bigram model shows slightly better
performance between the two new models in our evaluations, we
believe that the PHMM model can perform better with more
training data. Moreover, as the PHMM model has shown to be
more tolerant to language variations, it is likely to be suitable in
applications with diverse training and test instances.

Providing formal models for modeling contextual lexico-syntactic
patterns is the main contribution of this work. Our two soft
matching models are generic and can be extended to related areas
that require modeling of contextual patterns, such as information
extraction (IE). The pattern matching problem in IE tasks are
formally the same as definition sentence retrieval. When
conducted on free texts, an IE system can also suffer from various
unseen instances not being matched by trained patterns. Xiao et
al. [18] have demonstrated that soft pattern matching greatly
improves recall in an IE system. Although some HMM topologies
have been employed for IE tasks, our models are more generic and
require less configuration and parameter tuning with changing
domains. The models can help IE systems overcome difficulties
caused by language variations in pattern matching.

6. ACKNOWLEDGMENTS
The authors are grateful to Wee Sun Lee for enlightening us on
Profile HMM and for his valuable suggestions on the draft of the

paper. We also thank Alexia Leong for proofreading the paper.
Thanks also go to anonymous reviewers whose comments have
helped improve the final version of this paper. The first author is
supported by the Singapore Millennium Foundation Scholarship
in his PhD studies (ref no. 2003-SMS-0230).

7. REFERENCES
[1] S. Blair-Goldensohn, K.R. McKeown and A. Hazen

Schlaikjer, A Hybrid Approach for QA Track Definitional
Questions, Proc. of TREC 2003, 2003, pp. 336-343.

[2] H. Cui, M.-Y. Kan and T.-S. Chua, Unsupervised Learning
of Soft Patterns for Generating Definitions from Online
News, Proc. of WWW ’04, New York, 2004, pp. 90-99.

[3] H. Cui, M.-Y. Kan, T.-S. Chua and J. Xiao, A Comparative
Study on Sentence Retrieval for Definitional Question
Answering, SIGIR Workshop on Information Retrieval for
Question Answering (IR4QA), Sheffield, U.K., 2004.

[4] A.P. Dempster, N.M. Laird and D. B. Rubin, Maximum
likelihood from incomplete data via the EM algorithm,
Journal of the Royal Statistical Society, 39:1-38, 1977.

[5] S. Harabagiu, D. Moldovan, C. Clark, M. Bowden, J.
Williams and J. Bensley, Answer Mining by Combining
Extraction Techniques with Abductive Reasoning, Proc. of
TREC 2003, 2003.

[6] W. Hildebrandt, B. Katz and J. Lin, Answering Definition
Questions with Multiple Knowledge Sources, Proc. of
HLT/NAACL 2004, Boston, MA, 2004, pp. 49-56.

[7] F. Jelinek and R. L. Mercer, Interpolated estimation of
markov source parameters from sparse data, Proc. of the
Workshop Pattern Recognition in Practice, Amsterdam,
Holland, 1980, pp. 381-397.

[8] A. Krogh, M. Brown, I.S. Mian K. Sjolander and D.
Haussler, Hidden Markov Models in Computational Biology
- Applications to Protein Modeling, J. Mol. Biol. (1994) 235,
pp. 1501-1531.

[9] C.-Y. Lin and E.H. Hovy, Automatic Evaluation of
Summaries Using N-gram Co-occurrence Statistics, Proc. of
HLT-NAACL ’03, Edmonton, Canada, 2003, pp. 71-78.

[10] C.D. Manning and H. Schtze, editors. Foundations of
Statistical Natural Language Processing, The MIT Press,
Cambridge, MA, 1999.

[11] I. Muslea, Extraction patterns for information extraction
tasks: A survey, Proc. of AAAI-99 Workshop on Machine
Learning for Information Extraction, 1999, pp.1-6.

[12] D. Ravichandran and E. Hovy, Learning Surface Text
Patterns for a Question Answering System, Proc. of ACL
’02, Philadelphia, July 2002, pp. 41-47.

[13] E. Riloff, and J. Wiebe, Learning Extraction Patterns for
Subjective Expressions, Proc. of EMNLP ’03, 2003.

[14] R. Rosenfeld, Two decades of statistical language modeling:
Where do we go from here, Proc. of the IEEE, 88, August,
2000, pp. 1270-1278.

[15] M. Skounakis, M. Craven, and S. Ray, Hierarchical hidden
markov models for information extraction, Proc. of IJCAI
’03, 2003.

[16] E.M.Voorhees, Overview of the TREC 2003 question
answering track, Proc. of TREC 2003, 2003.

[17] E.M. Voorhees, Overview of the TREC 2004 question
answering track, Proc. of TREC 2004, 2004.

[18] J. Xiao, T.-S. Chua and H. Cui, Cascading Use of Soft and
Hard Matching Pattern Rules for Weakly Supervised
Information Extraction, Proc. of COLING ’04, Geneva,
Switzerland, 2004, pp.542-548.

[19] J. Xu, R. M. Weischedel and A. Licuanan, Evaluation of an
extraction-based approach to answering definitional
questions, Proc. of SIGIR ’04, Sheffield, UK, 2004, pp. 418-
424.

[20] H. Yang, H. Cui, M.-Y. Kan, M. Maslennikov, L. Qiu and
T.-S. Chua, QUALIFIER in TREC 12 QA Main Task, Proc.
of TREC 2003, 2003, pp. 54-63.

8. APPENDIX
According to TREC-13 QA guidelines (Voorhees 2004),
definitional QA systems are required to present “other”
information about the search target that is not covered by the
factoid or list questions related to the target. As our purpose is to
evaluate a definitional QA system, we perform the following
alterations to make the evaluation complete: We use a list of
answer patterns for the factoid and list questions about a target to
search for sentences that contain the answers. We treat these
factoid/list answers as essential nuggets and add the answer
sentences to the gold standard list. This is based on the guideline
that factoid/list questions are about the most essential information
about the target. We choose sentences because answers for
factoid/list questions are only phrases and other nuggets about the
target are often ungrammatical text fragments. The original form
of answers and nuggets cannot be matched by ROUGE in most
cases. As the same answer may be embedded in different
sentences, we search for up to five sentences for each factoid/list
answer and for each nugget in the definition part. Accordingly,
we create five groups of gold standard lists for each target.
Besides factoid and list answers, we also add sentences containing
essential and acceptable nuggets to “other” questions to the gold
standard list.

