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Abstract

In this paper we overview emotional speech recognition having in mind three goals. The first goal is to provide an up-to-
date record of the available emotional speech data collections. The number of emotional states, the language, the number
of speakers, and the kind of speech are briefly addressed. The second goal is to present the most frequent acoustic features
used for emotional speech recognition and to assess how the emotion affects them. Typical features are the pitch, the
formants, the vocal tract cross-section areas, the mel-frequency cepstral coefficients, the Teager energy operator-based fea-
tures, the intensity of the speech signal, and the speech rate. The third goal is to review appropriate techniques in order to
classify speech into emotional states. We examine separately classification techniques that exploit timing information from
which that ignore it. Classification techniques based on hidden Markov models, artificial neural networks, linear discrim-
inant analysis, k-nearest neighbors, support vector machines are reviewed.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Emotional speech recognition aims at automati-
cally identifying the emotional or physical state of
a human being from his or her voice. The emotional
and physical states of a speaker are known as
emotional aspects of speech and are included in
the so-called paralinguistic aspects. Although the
emotional state does not alter the linguistic content,
it is an important factor in human communication,
because it provides feedback information in many
applications as it is outlined next.
0167-6393/$ - see front matter � 2006 Elsevier B.V. All rights reserved

doi:10.1016/j.specom.2006.04.003

* Corresponding author. Tel./fax: +30 2310 998225.
E-mail address: costas@aiia.csd.auth.gr (C. Kotropoulos).
Making a machine to recognize emotions from
speech is not a new idea. The first investigations
were conducted around the mid-1980s using statisti-
cal properties of certain acoustic features (Van
Bezooijen, 1984; Tolkmitt and Scherer, 1986). Ten
years later, the evolution of computer architectures
made the implementation of more complicated
emotion recognition algorithms feasible. Market
requirements for automatic services motivate further
research. In environments like aircraft cockpits,
speech recognition systems were trained by employ-
ing stressed speech instead of neutral (Hansen and
Cairns, 1995). The acoustic features were estimated
more precisely by iterative algorithms. Advanced
classifiers exploiting timing information were
proposed (Cairns and Hansen, 1994; Womack and
.
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Hansen, 1996; Polzin and Waibel, 1998). Nowadays,
research is focused on finding powerful combina-
tions of classifiers that advance the classification
efficiency in real-life applications. The wide use of
telecommunication services and multimedia devices
paves also the way for new applications. For exam-
ple, in the projects ‘‘Prosody for dialogue systems’’
and ‘‘SmartKom’’, ticket reservation systems are
developed that employ automatic speech recognition
being able to recognize the annoyance or frustration
of a user and change their response accordingly (Ang
et al., 2002; Schiel et al., 2002). Similar scenarios are
also presented for call center applications (Petrushin,
1999; Lee and Narayanan, 2005). Emotional speech
recognition can be employed by therapists as a diag-
nostic tool in medicine (France et al., 2000). In psy-
chology, emotional speech recognition methods can
cope with the bulk of enormous speech data in
real-time extracting the speech characteristics that
convey emotion and attitude in a systematic manner
(Mozziconacci and Hermes, 2000).

In the future, the emotional speech research will
primarily be benefited by the on-going availability
of large-scale emotional speech data collections,
and will focus on the improvement of theoretical
models for speech production (Flanagan, 1972) or
models related to the vocal communication of emo-
tion (Scherer, 2003). Indeed, on the one hand, large
data collections which include a variety of speaker
utterances under several emotional states are neces-
sary in order to faithfully assess the performance of
emotional speech recognition algorithms. The
already available data collections consist only of
few utterances, and therefore it is difficult to demon-
strate reliable emotion recognition results. The data
collections listed in Section 2 provide initiatives to
set up more relaxed and close to real-life specifica-
tions for recording large-scale emotional speech
data collections that are complementary to the
already existing resources. On the other hand, theo-
retical models of speech production and vocal
communication of emotion will provide the neces-
sary background for a systematic study and will
deploy more accurate emotional cues through time.
In the following, the contributions of the paper are
identified and its outline is given.

1.1. Contributions of the paper

Several reviews on emotional speech analysis
have already appeared (Van Bezooijen, 1984;
Scherer et al., 1991; Cowie et al., 2001, 2003;
Scherer, 2003; Douglas-Cowie et al., 2003). How-
ever, as the research towards understanding human
emotions increasingly attracts the attention of the
research community, the short list of 19 data collec-
tions appeared in (Douglas-Cowie et al., 2003) does
not adequately cover the topic. In this tutorial, 64
data collections are reviewed. Furthermore, an up-
to-date literature survey is provided, complementing
the previous studies in (Van Bezooijen, 1984;
Scherer et al., 1991; Cowie et al., 2001). Finally,
the paper is focused on describing the feature
extraction methods and the emotion classification
techniques, topics that have not been treated in
(Scherer, 2003; Pantic and Rothkrantz, 2003).

1.2. Outline

In Section 2, a corpus of 64 data collections is
reviewed putting emphasis on the data collection
procedures, the kind of speech (natural, simulated,
or elicited), the content, and other physiological
signals that may accompany the emotional speech.
In Section 3, short-term features (i.e. features that
are extracted on speech frame basis) that are related
to the emotional content of speech are discussed. In
addition to short-term features, their contours are
of fundamental importance for emotional speech
recognition. The emotions affect the contour char-
acteristics, such as statistics and trends as is summa-
rized in Section 4. Emotion classification techniques
that exploit timing information and other tech-
niques that ignore it are surveyed in Section 5.
Therefore, Sections 3 and 4 aim at describing the
appropriate features to be used with the emotional
classification techniques reviewed in Section 5.
Finally, Section 6 concludes the tutorial by indicat-
ing future research directions.

2. Data collections

A record of emotional speech data collections is
undoubtedly useful for researchers interested in
emotional speech analysis. An overview of 64 emo-
tional speech data collections is presented in Table
1. For each data collection additional information
is also described such as the speech language, the
number and the profession of the subjects, other
physiological signals possibly recorded simulta-
neously with speech, the data collection purpose
(emotional speech recognition, expressive synthe-
sis), the emotional states recorded, and the kind of
the emotions (natural, simulated, elicited).



Table 1
Emotional speech data collections (in alphabetical ordering of the related references)

Reference Language Subjects Other signals Purpose Emotions Kind

Abelin and Allwood (2000) Swedish 1 Native – Recognition Ar, Fr, Jy, Sd, Se, Dt, Dom, Sy Simulated
Alpert et al. (2001) English 22 Patients,

19 healthy
– Recognition Dn, Nl Natural

Alter et al. (2000) German 1 Female EEG Recognition Ar, Hs, Nl Simulated
Ambrus (2000), Interface English,

Slovenian
8 Actors LG Synthesis Ar, Dt, Fr, Nl, Se Simulated

Amir et al. (2000) Hebrew 40 Students LG,M, G,H Recognition Ar, Dt, Fr, Jy, Sd Natural
Ang et al. (2002) English Many – Recognition An, At, Nl, Fd, Td Natural
Banse and Scherer (1996) German 12 Actors V Recognition H/C Ar, Hs, Sd, . . . Simulated
Batliner et al. (2004) German,

English
51 Children – Recognition Ar, Bm, Jy, Se Elicited

Bulut et al. (2002) English 1 Actress – Synthesis Ar, Hs, Nl, Sd Simulated
Burkhardt and Sendlmeier (2000) German 10 Actors V, LG Synthesis Ar, Fr, Jy, Nl, Sd,

Bm, Dt
Simulated

Caldognetto et al. (2004) Italian 1 Native V, IR Synthesis Ar, Dt, Fr, Jy,
Sd, Se

Simulated

Choukri (2003), Groningen Dutch 238 Native LG Recognition Unknown Simulated
Chuang and Wu (2002) Chinese 2 Actors – Recognition Ar, Ay, Hs, Fr,

Se, Sd
Simulated

Clavel et al. (2004) English 18 From TV – Recognition Nl, levels of Fr Simulated
Cole (2005), Kids’ Speech English 780 Children V Recognition, Synthesis Unknown Natural
Cowie and Douglas-Cowie
(1996), Belfast Structured

English 40 Native – Recognition Ar, Fr, Hs, Nl, Sd Natural

Douglas-Cowie et al.
(2003), Belfast Natural

English 125 From TV V Recognition Various Semi-natural

Edgington (1997) English 1 Actor LG Synthesis Ar, Bm, Fr, Hs, Nl, Sd Simulated
Engberg and Hansen (1996), DES Danish 4 Actors – Synthesis Ar, Hs, Nl, Sd, Se Simulated
Fernandez and Picard (2003) English 4 Drivers – Recognition Nl, Ss Natural
Fischer (1999), Verbmobil German 58 Native – Recognition Ar, Dn, Nl Natural
France et al. (2000) English 70 Patients,

40 healthy
– Recognition Dn, Nl Natural

Gonzalez (1999) English,
Spanish

Unknown – Recognition Dn, Nl Elicited

Hansen (1996), SUSAS English 32 Various – Recognition Ar, Ld eff., Ss, Tl Natural, simulated
Hansen (1996), SUSC-0 English 18 Non-native H,BP,R Recognition Nl, Ss A-stress
Hansen (1996), SUSC-1 English 20 Native – Recognition Nl, Ss P-stress
Hansen (1996), DLP English 15 Native – Recognition Nl, Ss C-stress
Hansen (1996), DCIEM English Unknown – Recognition Nl, Sleep deprive Elicited
Heuft et al. (1996) German 3 Native – Synthesis Ar, Fr, Jy, Sd, . . . Simulated, elicited
Iida et al. (2000), ESC Japanese 2 Native – Synthesis Ar, Jy, Sd Simulated
Iriondo et al. (2000) Spanish 8 Actors – Synthesis Fr, Jy, Sd, Se, . . . Simulated

(continued on next page)
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Table 1 (continued)

Reference Language Subjects Other signals Purpose Emotions Kind

Kawanami et al. (2003) Japanese 2 Actors – Synthesis Ar, Hs, Nl, Sd Simulated
Lee and Narayanan (2005) English Unknown – Recognition Negative–positive Natural
Liberman (2005), Emotional Prosody English Actors – Unknown Anxty, H/C Ar, Hs, Nl,

Pc, Sd, Se, . . .

Simulated

Linnankoski et al. (2005) English 13 Native – Recognition An, Ar, Fr, Sd, . . . Elicited
Lloyd (1999) English 1 Native – Recognition Phonological stress Simulated
Makarova and Petrushin (2002), RUSSLANA Russian 61 Native – Recognition Ar, Hs, Se, Sd, Fr, Nl Simulated
Martins et al. (1998), BDFALA Portuguese 10 Native – Recognition Ar, Dt, Hs, Iy Simulated
McMahon et al. (2003), ORESTEIA English 29 Native – Recognition Ae, Sk, Ss Elicited
Montanari et al. (2004) English 15 Children V Recognition Unknown Natural
Montero et al. (1999), SES Spanish 1 Actor – Synthesis Ar, Dt, Hs, Sd Simulated
Mozziconacci and Hermes (1997) Dutch 3 Native – Recognition Ar, Bm, Fr, Jy, Iy, Nl, Sd Simulated
Niimi et al. (2001) Japanese 1 Male – Synthesis Ar, Jy, Sd Simulated
Nordstrand et al. (2004) Swedish 1 Native V, IR Synthesis Hs, Nl Simulated
Nwe et al. (2003) Chinese 12 Native – Recognition Ar, Fr, Dt, Jy, . . . Simulated
Pereira (2000) English 2 Actors – Recognition H/C Ar, Hs, Nl, Sd Simulated
Petrushin (1999) English 30 Native – Recognition Ar, Fr, Hs, Nl, Sd Simulated, Natural
Polzin and Waibel (2000) English Unknown – Recognition Ar, Fr, Nl, Sd Simulated
Polzin and Waibel (1998) English 5 Drama

students
LG Recognition Ar, Fr, Hs, Nl, Sd Simulated

Rahurkar and Hansen (2002), SOQ English 6 Soldiers H, R, BP, BL Recognition 5 Stress levels Natural
Scherer (2000b), Lost Luggage Various 109 Passengers V Recognition Ar, Hr, Ie, Sd, Ss Natural
Scherer (2000a) German 4 Actors – Ecological Ar, Dt, Fr, Jy, Sd Simulated
Scherer et al. (2002) English, German 100 Native – Recognition 2 Tl, 2 Ss Natural
Schiel et al. (2002), SmartKom German 45 Native V Recognition Ar, Dfn, Nl Natural
Schröder and Grice (2003) German 1 Male – Synthesis Soft, modal, loud Simulated
Schröder (2000) German 6 Native – Recognition Ar, Bm, Dt, Wy, . . . Simulated
Slaney and McRoberts (2003), Babyears English 12 Native – Recognition Al, An, Pn Natural
Stibbard (2000), Leeds English Unknown – Recognition Wide range Natural, elicited
Tato (2002), AIBO German 14 Native – Synthesis Ar, Bm, Hs, Nl, Sd Elicited
Tolkmitt and Scherer (1986) German 60 Native – Recognition Cognitive Ss Elicited
Wendt and Scheich (2002), Magdeburger German 2 Actors – Recognition Ar, Dt, Fr, Hs, Sd Simulated
Yildirim et al. (2004) English 1 Actress – Recognition Ar, Hs, Nl, Sd Simulated
Yu et al. (2001) Chinese Native

from TV
– Recognition Ar, Hs, Nl, Sd Simulated

Yuan (2002) Chinese 9 Native – Recognition Ar, Fr, Jy, Nl, Sd Elicited

Abbreviations for emotions: The emotion categories are abbreviated by a combination of the first and last letters of their name. At: Amusement, Ay: Antipathy, Ar: Anger, Ae:
Annoyance, Al: Approval, An: Attention, Anxty: Anxiety, Bm: Boredom, Dfn: Dissatisfaction, Dom: Dominance, Dn: Depression, Dt: Disgust, Fd: Frustrated, Fr: Fear, Hs:
Happiness, Ie: Indifference, Iy: Irony, Jy: Joy, Nl: Neutral, Pc: Panic, Pn: Prohibition, Se: Surprise, Sd: Sadness, Ss: Stress, Sy: Shyness, Sk: Shock, Td: Tiredness, Tl: Task load stress,
Wy: Worry. Ellipses denote that additional emotions were recorded.
Abbreviations for other signals: BP: Blood pressure, BL: Blood examination, EEG: Electroencephalogram, G: Galvanic skin response, H: Heart beat rate, IR: Infrared Camera, LG:
Laryngograph, M: Myogram of the face, R: Respiration, V: Video.
Other abbreviations: H/C: Hot/cold, Ld eff.: Lombard effect, A-stress, P-stress, C-stress: Actual, Physical, and Cognitive stress, respectively, Sim.: Simulated, Elic.:Elicited, N/A: Not
available.
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From Table 1, it is evident that the research on
emotional speech recognition is limited to certain
emotions. The majority of emotional speech data
collections encompasses five or six emotions,
although the emotion categories are much more in
real life. For example, many words ‘‘with emotional
connotation’’, originally found in the semantic
Atlas of Emotional Concepts, are enlisted in (Cowie
and Cornelius, 2003). In the early 1970s, the pallet
theory was proposed by Anscombe and Geach in
an attempt to describe all emotions as a mixture
of some primary emotions like what exactly hap-
pens with colors (Anscombe and Geach, 1970). This
idea has been rejected and the term ‘‘basic emotions’’
is now widely used without implying that such emo-
tions can be mixed to produce others (Eckman,
1992). It is commonly agreed that the basic emo-
tions are more primitive and universal than the
others. Eckman proposed the following basic emo-
tions: anger, fear, sadness, sensory pleasure, amuse-
ment, satisfaction, contentment, excitement,
disgust, contempt, pride, shame, guilt, embarrass-
ment, and relief. Non-basic emotions are called
‘‘higher-level’’ emotions (Buck, 1999) and they are
rarely represented in emotional speech data collec-
tions.

Three kinds of speech are observed. Natural
speech is simply spontaneous speech where all emo-
tions are real. Simulated or acted speech is speech
expressed in a professionally deliberated manner.
Finally, elicited speech is speech in which the
emotions are induced. The elicited speech is neither
neutral nor simulated. For example, portrayals of
non-professionals while imitating a professional
produce elicited speech, which can also be an
acceptable solution when an adequate number of
professionals is not available (Nakatsu et al.,
1999). Acted speech from professionals is the most
reliable for emotional speech recognition because
professionals can deliver speech colored by emo-
tions that possess a high arousal, i.e. emotions with
a great amplitude or strength.

Additional synchronous physiological signals
such as sweat indication, heart beat rate, blood pres-
sure, and respiration could be recorded during the
experiments. They provide a ground truth for the
degree of subjects’ arousal or stress (Rahurkar and
Hansen, 2002; Picard et al., 2001). There is a direct
evidence that the aforementioned signals are related
more to the arousal information of speech than to
the valence of the emotion, i.e. the positive or nega-
tive character of the emotions (Wagner et al., 2005).
As regards other physiological signals, such as EEG
or signals derived from blood analysis, no sufficient
and reliable results have been reported yet.

The recording scenarios employed in data collec-
tions are presumably useful for repeating or
augmenting the experiments. Material from radio
or television is always available (Douglas-Cowie
et al., 2003). However, such material raises copy-
right issues and impedes the data collection distribu-
tion. An alternative is speech from interviews with
specialists, such as psychologists and scientists spe-
cialized in phonetics (Douglas-Cowie et al., 2003).
Furthermore, speech from real-life situations such
as oral interviews of employees when they are exam-
ined for promotion can be also used (Rahurkar and
Hansen, 2002). Parents talking to infants, when they
try to keep them away from dangerous objects can
be another real-life example (Slaney and McRoberts,
2003). Interviews between a doctor and a patient
before and after medication was used in (France
et al., 2000). Speech can be recorded while the
subject faces a machine, e.g. during telephone calls
to automatic speech recognition (ASR) call centers
(Lee and Narayanan, 2005), or when the subjects
are talking to fake-ASR machines, which are oper-
ated by a human (wizard-of-OZ method, WOZ)
(Fischer, 1999). Giving commands to a robot is
another idea explored (Batliner et al., 2004). Speech
can be also recorded during imposed stressed situa-
tions. For example when the subject adds numbers
while driving a car at various speeds (Fernandez
and Picard, 2003), or when the subject reads
distant car plates on a big computer screen (Steene-
ken and Hansen, 1999). Finally, subjects’ readings of
emotionally neutral sentences located between emo-
tionally biased ones can be another manner of
recording emotional speech.

3. Estimation of short-term acoustic features

Methods for estimating short-term acoustic fea-
tures that are frequently used in emotion recogni-
tion are described hereafter. Short-term features
are estimated on a frame basis

fsðn; mÞ ¼ sðnÞwðm� nÞ; ð1Þ

where s(n) is the speech signal and w(m � n) is a
window of length Nw ending at sample m (Deller
et al., 2000). Most of the methods stem from the
front-end signal processing employed in speech rec-
ognition and coding. However, the discussion is
focused on acoustic features that are useful for



6 D. Ververidis, C. Kotropoulos / Speech Communication xxx (2006) xxx–xxx

ARTICLE IN PRESS
emotion recognition. The outline of this section is as
follows. Methods for estimating the fundamental
phonation or pitch are discussed in Section 3.1. In
Section 3.2 features based on a non-linear model
of speech production are addressed. Vocal tract
features related to emotional speech are described
in Section 3.3. Finally, a method to estimate speech
energy is presented in Section 3.4.

3.1. Pitch

The pitch signal, also known as the glottal wave-
form, has information about emotion, because it
depends on the tension of the vocal folds and the
subglottal air pressure. The pitch signal is produced
from the vibration of the vocal folds. Two features
related to the pitch signal are widely used, namely
the pitch frequency and the glottal air velocity at
the vocal fold opening time instant. The time
elapsed between two successive vocal fold openings
is called pitch period T, while the vibration rate of
the vocal folds is the fundamental frequency of the

phonation F0 or pitch frequency. The glottal volume
velocity denotes the air velocity through glottis dur-
ing the vocal fold vibration. High velocity indicates
a music like speech like joy or surprise. Low velocity
is in harsher styles such as anger or disgust (Nogue-
iras et al., 2001). Many algorithms for estimating
the pitch signal exist (Hess, 1992). Two algorithms
will be discussed here. The first pitch estimation
algorithm is based on the autocorrelation and it is
the most frequent one. The second algorithm is
based on a wavelet transform. It has been designed
for stressed speech.

A widely spread method for extracting pitch is
based on the autocorrelation of center-clipped frames
(Sondhi, 1968). The signal is low filtered at 900 Hz
and then it is segmented to short-time frames of
speech fs(n;m). The clipping, which is a non-linear
procedure that prevents the first formant interfering
with the pitch, is applied to each frame fs(n;m)
yielding

f̂ sðn; mÞ ¼
fsðn; mÞ � Cthr if jfsðn; mÞj > Cthr;

0 if jfsðn; mÞj < Cthr;

�
ð2Þ

where Cthr is set at the 30% of the maximum value
of fs(n;m). After calculating the short-term
autocorrelation

rsðg; mÞ ¼ 1

N w

Xm

n¼m�Nwþ1

f̂ sðn; mÞf̂ sðn� g; mÞ; ð3Þ
where g is the lag, the pitch frequency of the frame
ending at m can be estimated by

bF 0ðmÞ ¼
F s

Nw

argmax
g
fjrðg; mÞjgg¼NwðF h=F sÞ

g¼NwðF l=F sÞ ; ð4Þ

where Fs is the sampling frequency, and Fl, Fh are
the lowest and highest perceived pitch frequencies
by humans, respectively. Typical values of the
aforementioned parameters are Fs = 8000 Hz,
Fl = 50 Hz, and Fh = 500 Hz. The maximum value

of the autocorrelation maxfjrðg; mÞjgg¼NwðF h=F sÞ
g¼NwðF l=F sÞ

� �
is

used as a measurement of the glottal velocity volume
during the vocal fold opening (Nogueiras et al.,
2001).

The autocorrelation method for pitch estimation
was used with low error in emotion classification
(Tolkmitt and Scherer, 1986; Iida et al., 2003). How-
ever, it is argued that this method of extracting pitch
is affected by the interference of the first formant in
the pitch frequency, no matter which the parameters
of the center clipping are (Tolkmitt and Scherer,
1986). The clipping of small signal values may not
remove the effect of the non-linear propagation of
the air through the vocal tract which is an indication
of the abnormal spectral characteristics during
emotion.

The second method for estimating the pitch uses
the wavelet transform (Cairns and Hansen, 1994). It
is a derivation of the method described in (Kad-
ambe and Boudreaux-Bartels, 1992). The pitch per-
iod extraction is based on a two pass dyadic wavelet
transform over the signal. Let b denote a time index,
2j be a scaling parameter, s(n) be the sampled speech
signal, and /(n) be a cubic spline wavelet generated
with the method in (Mallat and Zhong, 1989). The
dyadic wavelet transform is defined by

DyWT ðb; 2jÞ ¼ 1

2j

Xn¼þ1
n¼�1

sðnÞ/ n� b

2j

� �
: ð5Þ

It represents a convolution of the time-reversed
wavelet with the speech signal. This procedure is re-
peated for three wavelet scales. In the first pass, the
result of the transform is windowed by a 16 ms rect-
angular window shifted with a rate of 8 ms. The
pitch frequency is found by estimating the maxima
of DyWT(b, 2j) across the three scales. Although
the method tracks the pitch epochs for neutral
speech, it skips epochs for stressed speech. For
marking the speech epochs in stressed speech, a sec-
ond pass of wavelets is invented. In the second pass,
the same wavelet transform is applied only in the



D. Ververidis, C. Kotropoulos / Speech Communication xxx (2006) xxx–xxx 7

ARTICLE IN PRESS
intervals between the first pass pitch periods found
to have a pitch epoch greater than 150% of the med-
ian value of the pitch epochs measured during the
first pass. The result of the second wavelet trans-
form is windowed by a 8 ms window with a 4 ms
skip rate to capture the sudden pitch epochs that
occur often in stressed speech.

The pitch period and the glottal volume velocity
at the time instant of vocal fold opening are not the
only characteristics of the glottal waveform. The
shape of the glottal waveform during a pitch period
is also informative about the speech signal and
probably has to do with the emotional coloring of
the speech, a topic that has not been studied ade-
quately yet.

3.2. Teager energy operator

Another useful feature for emotion recognition is
the number of harmonics due to the non-linear air
flow in the vocal tract that produces the speech
signal. In the emotional state of anger or for
stressed speech, the fast air flow causes vortices
located near the false vocal folds providing addi-
tional excitation signals other than the pitch (Teager
and Teager, 1990; Zhou et al., 2001). The additional
excitation signals are apparent in the spectrum as
harmonics and cross-harmonics. In the following,
a procedure to calculate the number of harmonics
in the speech signal is described.

Let us assume that a speech frame fs(n;m) has a sin-
gle harmonic which can be considered as an AM–FM
sinewave. In discrete time, the AM–FM sinewave
fs(n;m) can be represented as (Quatieri, 2002)

fsðn; mÞ ¼ aðn; mÞ cosðUðn; mÞÞ ¼ aðn; mÞ

� cos xcnþ xh

Z n

0

qðkÞdk þ h

� �
ð6Þ

with instantaneous amplitude a(n;m) and instanta-

neous frequency

xiðn;mÞ ¼ dUðn;mÞ
dn

¼xcþxhqðnÞ; jqðnÞj6 1; ð7Þ

where xc is the carrier frequency, xh 2 [0,xc] is the
maximum frequency deviation, and h is a constant
phase offset.

The Teager energy operator (TEO) (Teager and
Teager, 1990)

W½fsðn;mÞ�¼ ðfsðn;mÞÞ2�fsðnþ1;mÞfsðn�1;mÞ ð8Þ
when applied to an AM–FM sinewave yields the
squared product of the AM–FM components
W½fsðn; mÞ� ¼ a2ðn; mÞ sinðx2
i ðn; mÞÞ: ð9Þ

The unknown parameters a(n;m) and xi(n;m)
can be estimated approximately with

xiðn; mÞ � arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W½D2�

4W½fsðn; mÞ�

s !
ð10Þ

and

aðn; mÞ � 2W½fsðn; mÞ�ffiffiffiffiffiffiffiffiffiffiffiffi
W½D2�

p ; ð11Þ

where D2 = fs(n + 1;m) � fs(n � 1;m). Let us as-
sume that within a speech frame each harmonic
has an almost constant instantaneous amplitude
and constant instantaneous frequency. If the signal
has a single harmonic, then from (9) it is deduced
that the TEO profile is a constant number. Other-
wise, if the signal has more than one harmonic then
the TEO profile is a function of n.

Since it is certain that more than one harmonic
exist in the spectrum, it is more convenient to break
the bandwidth into 16 small bands, and study each
band independently. The polynomial coefficients,
which describe the TEO autocorrelation envelope
area, can be used as features for classifying the
speech into emotional states (Zhou et al., 2001).
This method achieves a correct classification rate
of 89% in classifying neutral versus stressed speech
whereas MFCCs yield 67% in the same task.

Pitch frequency also affects the number of
harmonics in the spectrum. Less harmonics are
produced when the pitch frequency is high. More
harmonics are expected when the pitch frequency is
low. It seems that the harmonics from the additional
excitation signals due to vortices are more intense
than those caused by the pitch signal. The interac-
tion of the two factors is a topic for further research.
A method which can be used to alleviate the presence
of harmonics due to the pitch frequency factor is to
normalize the speech so that it has a constant pitch
frequency (Cairns and Hansen, 1994).

3.3. Vocal tract features

The shape of the vocal tract is modified by the
emotional states. Many features have been used to
describe the shape of the vocal tract during emo-
tional speech production. Such features include

• the formants which are a representation of the
vocal tract resonances,
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• the cross-section areas when the vocal tract is
modeled as a series of concatenated lossless tubes
(Flanagan, 1972),

• the coefficients derived from frequency trans-
formations.

The formants are one of the quantitative charac-
teristics of the vocal tract. In the frequency domain,
the location of vocal tract resonances depends upon
the shape and the physical dimensions of the vocal
tract. Since the resonances tend to ‘‘form’’ the over-
all spectrum, speech scientists refer to them as
formants. Each formant is characterized by its
center frequency and its bandwidth. It has been
found that subjects during stress or under depres-
sion do not articulate voiced sounds with the same
effort as in the neutral emotional state (Tolkmitt
and Scherer, 1986; France et al., 2000). The
formants can be used to discriminate the improved
articulated speech from the slackened one. The
formant bandwidth during slackened articulated
speech is gradual, whereas the formant bandwidth
during improved articulated speech is narrow with
steep flanks. Next, we describe methods to estimate
formant frequencies and formant bandwidths.

A simple method to estimate the formants relies
on linear prediction analysis. Let an M-order all-pole
vocal tract model with linear prediction coefficients
(LPCs) âðiÞ be

bHðzÞ ¼ 1

1�
PM

i¼1âðiÞz�i
: ð12Þ

The angles of bHðzÞ poles which are further from the
origin in the z-plane are indicators of the formant
frequencies (Atal and Schroeder, 1967; Markel
and Gray, 1976). When the distance of a pole from
the origin is large then the bandwidth of the corre-
sponding formant is narrow with steep flanks,
whereas when a pole is close to the origin then the
bandwidth of the corresponding formant is wide
with gradual flanks. Experimental analysis has
shown that the first and second formants are af-
fected by the emotional states of speech more than
the other formants (Tolkmitt and Scherer, 1986;
France et al., 2000).

A problem faced with the LPCs in formant track-
ing procedure is the false identification of the for-
mants. For example, during the emotional states of
happiness and anger, the second formant (F2) is con-
fused with the first formant (F1) and F1 interferes
with the pitch frequency (Yildirim et al., 2004). A
formant tracking method which does not suffer from
the aforementioned problems is proposed in (Cairns
and Hansen, 1994), which was originally developed
by Hanson et al. (1994). Hanson et al. (1994) found
that an approximate estimate of a formant location,
xi(n;m) calculated by (10), could be used to itera-
tively refine the formant center frequency via

f lþ1
c ðmÞ ¼

1

2pNw

Xm

n¼m�Nwþ1

xiðn; mÞ; ð13Þ

where f lþ1
c ðmÞ is the formant center frequency dur-

ing iteration l + 1. If the distance between f lþ1
c ðmÞ

and f l
c ðmÞ is smaller than 10 Hz, then the method

stops and f lþ1
c is the formant frequency estimate.

In detail, f 1
c ðmÞ is estimated by the formant fre-

quency estimation procedure that employs LPCs.
The signal is filtered with a bandpass filter in order
to isolate the band which includes the formant. Let
Gl(n) be the impulse response of a Gabor bandpass
filter

GlðnÞ ¼ exp½�ðbnT Þ2� cosð2pf l
c TnÞ; ð14Þ

where f l
c is the center frequency, b the bandwidth of

the filter, and T is the sampling period. If
f l

c < 1000 Hz, then b equals to 800 Hz, otherwise
b = 1100 Hz. The value of b is chosen small enough
so as not to have more than one formant inside the
bandwidth and large enough to capture the change
of the instantaneous frequency. Then, f lþ1

c is esti-
mated by (13). If the criterion jf lþ1

c � f l
c j < 10 is sat-

isfied, then the method stops, otherwise the frame is
refiltered with the Gabor filter centered at f lþ1

c . The
latter is re-estimated with (13) and the criterion is
checked again. The method stops after a few itera-
tions. However, it is reported that there are a few
exceptions where the method does not converge.
This could be a topic for further study.

The second feature is the cross-section areas of
the vocal tract modeled by the multi-tube lossless
model (Flanagan, 1972). Each tube is described by
its cross-section area and its length. To a first
approximation, one may assume that there is no loss
of energy due to soft wall vibrations, heat conduc-
tion, and thermal viscosity. For a large number of
tubes, the model becomes a realistic representation
of the vocal tract, but it is not possible to be com-
puted in real time. A model that can easily be com-
puted is that of 10 cross-section areas of fixed length
(Mrayati et al., 1988). The cross-section area near
the glottis is indexed by A1 and the others are
following sequentially until the lips. The back vocal
tract area A2 can be used to discriminate the neutral
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speech from that by anger colored, as A2 is greater
in the former emotion than in the latter one
(Womack and Hansen, 1996).

The third feature is the energy of certain fre-
quency bands. There are many contradictions in
identifying the best frequency band of the power
spectrum in order to classify emotions. Many inves-
tigators put high significance on the low frequency
bands, such as the 0–1.5 kHz band (Tolkmitt and
Scherer, 1986; Banse and Scherer, 1996; France
et al., 2000) whereas other suggest the opposite
(Nwe et al., 2003). An explanation for both opinions
is that stressed or colored by anger speech may be
expressed with a low articulation effort, a fact which
causes formant peak smoothing and spectral flat-
ness as well as energy shifting from low to high fre-
quencies in the power spectrum. The Mel-frequency

cepstral coefficients (MFCCs) (Davis and Mermel-
stein, 1980) provide a better representation of the
signal than the frequency bands since they addition-
ally exploit the human auditory frequency response.
Nevertheless, the experimental results have demon-
strated that the MFCCs achieve poor emotion clas-
sification results (Zhou et al., 2001; Nwe et al.,
2003), which might be due to the textual dependency
and the embedded pitch filtering during cepstral
analysis (Davis and Mermelstein, 1980). Better
features than MFCCs for emotion classification in
practice are the log-frequency power coefficients
(LFPCs) which include the pitch information
(Nwe et al., 2003). The LFPCs are simply derived
by filtering each short-time spectrum with 12 band-
pass filters having bandwidths and center frequen-
cies corresponding to the critical bands of the
human ear (Rabiner and Juang, 1993).
3.4. Speech energy

The short-term speech energy can be exploited
for emotion recognition, because it is related to
the arousal level of emotions. The short-term energy
of the speech frame ending at m is

EsðmÞ ¼
1

N w

Xm

n¼m�Nwþ1

jfsðn; mÞj2: ð15Þ
4. Cues to emotion

In this section, we review how the contour of
selected short-term acoustic features is affected by
the emotional states of anger, disgust, fear, joy,
and sadness. A short-term feature contour is formed
by assigning the feature value computed on a frame
basis to all samples belonging to the frame. For
example, the energy contour is given by

eðnÞ ¼ EsðmÞ; n ¼ m� N w þ 1; . . . ;m: ð16Þ

The contour trends (i.e. its plateaux, its rising or
falling slopes) is a valuable feature for emotion rec-
ognition, because they describe the temporal char-
acteristics of an emotion. The survey is limited to
those acoustic features for which at least two refer-
ences are found in the literature (Van Bezooijen,
1984; Cowie and Douglas-Cowie, 1996; Pantic and
Rothkrantz, 2003; Gonzalez, 1999; Heuft et al.,
1996; Iida et al., 2000; Iriondo et al., 2000; Montero
et al., 1999; Mozziconacci and Hermes, 2000; Murray
and Arnott, 1996; Pollerman and Archinard, 2002;
Scherer, 2003; Ververidis and Kotropoulos, 2004;
Yuan, 2002). The following statistics are measured
for the extracted features:

• mean, range, variance, and the pitch contour
trends;

• mean and range of the intensity contour;
• rate of speech and transmission duration between

utterances.

The speech rate is calculated as the inverse dura-
tion of the voiced part of speech determined by the
presence of pitch pulses (Dellaert et al., 1996; Banse
and Scherer, 1996) or it can be found by the rate of
syllabic units. The speech signal can be segmented
into syllabic units using the maxima and the minima
of energy contour (Mermelstein, 1975).

In Table 2, the behavior of the most studied
acoustic features for the five emotional states under
consideration is outlined. Anger is the emotion of
the highest energy and pitch level. Angry males
show higher levels of energy than angry females. It
is found that males express anger with a slow speech
rate as opposed to females who employ a fast speech
rate under similar circumstances (Heuft et al., 1996;
Iida et al., 2000). Disgust is expressed with a low
mean pitch level, a low intensity level, and a slower
speech rate than the neutral state does. The emo-
tional state of fear is correlated with a high pitch
level and a raised intensity level. The majority of
research outcomes reports a wide pitch range. The
pitch contour has falling slopes and sometimes
plateaux appear. The lapse of time between speech
segments is shorter than that in the neutral state.
Low levels of the mean intensity and mean pitch



Table 2
Summary of the effects of several emotion states on selected acoustic features

Pitch Intensity Timing

Mean Range Variance Contour Mean Range Speech rate Transmission
duration

Anger >> > >> >>M,>F > <M,>F <
Disgust < >M,<F < �M,<F

Fear >> > % => <
Joy > > > & > > <
Sadness < < < % < < >M,<F >

Explanation of symbols: >: increases, <: decreases, =: no change from neutral,%: inclines,&: declines. Double symbols indicate a change
of increased predicted strength. The subscripts refer to gender information: M stands for males and F stands for females.
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are measured when the subjects express sadness.
The speech rate under similar circumstances is gen-
erally slower than that in the neutral state. The pitch
contour trend is a valuable parameter, because it
separates fear from joy. Fear resembles sadness hav-
ing an almost downwards slope in the pitch contour,
whereas joy exhibits a rising slope. The speech rate
varies within each emotion. An interesting observa-
tion is that males speak faster when they are sad
than when they are angry or disgusted.

The trends of prosody contours include discrimi-
natory information about emotions. However, very
few the efforts to describe the shape of feature con-
tours in a systematic manner can be found in the lit-
erature. In (Leinonen et al., 1997; Linnankoski et al.,
2005), several statistics are estimated on the syllables
of the word ‘Sarah’. However, there is no consensus
if the results obtained from a word are universal due
to textual dependency. Another option is to estimate
feature statistics on the rising or falling slopes of con-
tours as well as at their plateaux at minima/maxima

(McGilloway et al., 2000; Ververidis and Kotropou-
los, 2004; Bänziger and Scherer, 2005). Statistics
such as the mean and the variance are rather rudi-
mentary. An alternative is to transcribe the contour
into discrete elements, i.e. a sequence of symbols that
provide information about the tendency of a contour
on a short-time basis. Such elements can be provided
by the ToBI (Tones and Breaks Indices) system (Silv-
erman et al., 1992). For example, the pitch contour is
transcribed into a sequence of binary elements L, H,
where L stands for low and H stands for high values,
respectively. There is evidence that some sequences
of L and H elements provide information about
emotions (Stibbard, 2000). A similar investigation
for 10 elements that describe the duration and the
inclination of rising and falling slopes of pitch con-
tour also exists (Mozziconacci and Hermes, 1997).
Classifiers based on discrete elements have not been
studied yet. In the following section, several tech-
niques for emotion classification are described.

5. Emotion classification techniques

The output of emotion classification techniques is
a prediction value (label) about the emotional state
of an utterance. An utterance un is a speech segment
corresponding to a word or a phrase. Let un,
n 2 {1,2, . . . ,N} be an utterance of the data collec-
tion. In order to evaluate the performance of a clas-
sification technique, the cross-validation method is
used. According to this method, the utterances of
the whole data collection are divided into the design
set Ds containing NDs utterances and the test set Ts

comprised of NTs utterances. The classifiers are
trained using the design set and the classification
error is estimated on the test set. The design and
the test set are chosen randomly. This procedure is
repeated for several times defined by the user and
the estimated classification error is the average
classification error over all repetitions (Efron and
Tibshirani, 1993).

The classification techniques can be divided into
two categories, namely those employing

• prosody contours, i.e. sequences of short-time
prosody features;

• statistics of prosody contours, like the mean, the
variance, etc. or the contour trends.

The aforementioned categories will be reviewed
independently in this section.

5.1. Classification techniques that employ prosody

contours

The emotion classification techniques that
employ prosody contours exploit the temporal
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information of speech, and therefore could be useful
for speech recognition. Three emotion classification
techniques were found in the literature, namely a
technique based on artificial neural networks
(ANNs) (Womack and Hansen, 1996), the multi-

channel hidden Markov Model (Womack and Han-
sen, 1999), and the mixture of hidden Markov models

(Fernandez and Picard, 2003).
In the first classification technique, the short-time

features are used as an input to an ANN in order to
classify utterances into emotional states (Womack
and Hansen, 1996). The algorithm is depicted in
Fig. 1. The utterance un is partitioned into Q bins
containing K frames each. Q varies according to
the utterance length, whereas K is a constant
number. Let xnq denote a bin of un, where
q 2 {1, 2, . . . ,Q}. xnq is classified automatically to a
phoneme group, such as fricatives (FR), vowels
(VL), semi-vowels (SV), etc. by means of hidden
Markov Models (HMMs) (Pellom and Hansen,
1996). Let Hk denote the kth phoneme group, where
k = 1,2, . . . ,K. From each frame t = 1,2, . . . ,K of
the bin xnq, D features related to the emotional state
of speech are extracted. Let ynqtd be the dth feature
of the tth frame for the bin xnq, where
d 2 {1, 2, . . . ,D}. The K · D matrix of feature values
is rearranged to a vector of length KD, by lexico-
graphic ordering of the rows of the K · D matrix.
This feature vector of KD feature values extracted
from the bin xnq is input to the ANN described in
Section 5.2. Let Xc be an emotional state, where
c 2 {1, 2, . . . ,C}. An ANN is trained on the cth
emotional state of the kth phoneme group. The out-
put node of the ANN denotes the likelihood of xnq
Fig. 1. An emotion classification technique that employs HMMs
for phoneme classification and ANNs for emotion classification.
given the emotional state Xc and the phoneme group
Hk. The likelihood of an utterance un given the emo-
tional state Xc is the sum of the likelihoods for all
xnq 2 un given Xc and Hk

P ðunjXcÞ ¼
XQ

q¼1

XK

k¼1

P ðxnqjXc;HkÞP ðHkÞ: ð17Þ

The aforementioned technique achieves a correct
classification rate of 91% for 10 stress categories
using vocal tract cross-section areas (Womack and
Hansen, 1996). An issue for further study is the
evolution of the emotional cues through time. Such
a study can be accomplished through a new classifier
which employs as input the output of each ANN.

The second emotion classification technique is
called multi-channel hidden Markov model (Womack
and Hansen, 1999). Let si, i = 1,2, . . . ,V be a
sequence of states of a single-channel HMM. By
using a single-channel HMM, a classification system
can be described at any time as being in one of V

distinct states that correspond to phonemes, as is
presented in Fig. 2(a) (Rabiner and Juang, 1993).
The multi-channel HMM combines the benefits of
emotional speech classification with a traditional
single-channel HMM for speech recognition. For
example a C-channel HMM could be formulated to
model speech from C emotional states with one
dimension allocated for each emotional state, as is
depicted in Fig. 2(b). In detail, the multi-channel
Fig. 2. Two structures of HMMs that can be used for emotion
recognition: (a) a single-channel HMM and (b) a multi-channel
HMM.



Fig. 3. A clustering procedure that it is based on HMMs.
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HMM consists of states scv, v = 1,2, . . . ,V,
c = 1,2, . . . ,C. The states scv, c = 1,2, . . . ,C form a
disc. Transitions are allowed from left to right as in
a single-channel HMM, across emotional states
within the same disc, and across emotional states in
the next disc. It offers the additional benefit of a sub-
phoneme speech model at the emotional state level
instead of the phoneme level. The overall flexibility
of the multi-channel HMM is improved by allowing
a combined model where the integrity of each dimen-
sion is preserved (Womack and Hansen, 1999). In
addition to a C mixture single-channel HMM it offers
separate state transition probabilities.

The training phase of the multi-channel HMM
consists of two steps. The first step requires training
of each single-channel HMM to an emotional state,
and the second step combines the emotion-dependent
single-channel HMMs into a multi-channel HMM.
In order to classify an utterance, a probability mea-
surement is constructed. The likelihood of an utter-
ance given an emotional state Xc is the ratio of the
number of passes through states scv, v = 1,2, . . . ,V

versus the total number of state transitions. The
multi-channel HMM was used firstly for stress classi-
fication, and secondly for speech recognition on a
data collection consisting of 35 words spoken in four
stress styles. The correct stress classification rate
achieved was 57.6% using MFCCs, which was almost
equal to the stress classification rate of 58.6%
achieved by the single-channel HMM using the same
features. A reason for the aforementioned perfor-
mance deterioration might be the small size of the
data collection (Womack and Hansen, 1999). How-
ever, the multi-channel HMM achieved a correct
speech classification rate of 94.4%, whereas the
single-channel HMM achieved a rate of 78.7% in
the same task. The great performance of the multi-
channel HMM in speech recognition experiments
might be an indication that the proposed model can
be useful for stress classification in large data collec-
tions. A topic for further investigation would be to
model the transitions across the disks with an addi-
tional HMM or an ANN (Bou-Ghazale and Hansen,
1998).

The third technique used for emotion classifica-
tion is the so-called mixture of HMMs (Fernandez
and Picard, 2003). The technique consists of two
training stages. In the first stage, an unsupervised
iterative clustering algorithm is used to discover M

clusters in the feature space of the training data,
where it is assumed that the data of each cluster
are governed by a single underlying HMM. In the
second stage, a number of HMMs are trained on
the clusters. Each HMM is trained on the cth emo-
tional state of the mth cluster, where c = 1,2, . . . ,C

and m = 1,2, . . . ,M. Both training stages and the
classification of an utterance which belongs to the
test set are described next.

In the first training stage, the utterances of the
training set are divided into M clusters. Let CðlÞ ¼
fcðlÞ1 ; . . . ; cðlÞm ; . . . ; cðlÞM g be the clusters at the lth
iteration of the clustering algorithm, DðlÞ ¼
fdðlÞ1 ; . . . ; dðlÞm ; . . . ; dðlÞM g be the HMM parameters for
the cluster set C(l), P ðunjdðlÞm Þ be the likelihood of un

given the cluster with HMM parameters dðlÞm , and

P ðlÞ ¼
XM

m¼1

X
un2c

ðlÞ
m

log P ðunjdðlÞm Þ ð18Þ

be the log-likelihood of all utterances during the lth
iteration. The iterative clustering procedure is
described in Fig. 3. In the second training stage,
the utterances which have already been classified
into a cluster cm are used to train C HMMs, where
each HMM corresponds to an emotional state. Let
P(dmjXc) be the ratio of the utterances that were as-
signed to cluster cm and belong to Xc over the num-
ber of the training utterances. In order to classify a
test utterance un into an emotional state the Bayes
classifier is used. The probability of an emotional
state Xc given an utterance is

P ðXcjunÞ ¼
XM

m¼1

P ðXc; dmjunÞ

¼
XM

m¼1

P ðunjXc; dmÞP ðdmjXcÞP ðXcÞ; ð19Þ
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where P(unjXc,dm) is the output of the HMM which
was trained on the emotional state Xc of the cluster
cm, and P(Xc) is the likelihood of each emotional
state in the data collection. The correct classification
rate achieved for four emotional states by the mix-
ture of HMMs was 62% using energy contours in
several frequency bands, whereas a single-channel
HMM yields a smaller classification rate by 10%
using the same features. A topic of future investiga-
tion might be the clustering algorithm described in
Fig. 3. It is not clear what each cluster of utterances
represents. Also, the convergence of the clustering
procedure has not been investigated yet.

5.2. Classification techniques that employ statistics

of prosody contours

Statistics of prosody contours have also been
used as features for emotion classification tech-
niques. The major drawback of such classification
techniques is the loss of the timing information. In
this section, the emotion classification techniques
are separated into two classes, namely those that
estimate the probability density function (pdf) of
the features and those that discriminate emotional
states without any estimation of the feature distribu-
tions for each emotional state. In Table 3, the liter-
ature related to discriminant classifiers applied to
emotion recognition is summarized. First, the Bayes
classifier when the class pdfs are modeled either as
Gaussians, or mixtures of Gaussians, or estimated
via Parzen windows is described. Next, we briefly
discuss classifiers that do not employ any pdf
modeling such as the k-nearest neighbors, the
support vector machines, and the artificial neural

networks.
Table 3
Discriminant classifiers for emotion recognition

Classifier

With pdf modeling Bayes classifier using one Gaussian pdf
Bayes classifier using one Gaussian pdf wit
linear discriminant analysis
Bayes classifier using pdfs estimated by
Parzen windows
Bayes classifier using a mixture
of Gaussian pdfs

Without pdf modeling K-nearest neighbors
Support vector machines

Artificial neural networks
The features used for emotion classification are
statistics of the prosody contours such as the mean,
the variance, etc. A full list of such features can be
found in (Ververidis and Kotropoulos, 2004). Let
yn = (yn1yn2 � � � ynD)T be the measurement vector

containing ynd statistics extracted from un, where
d = 1,2, . . . ,D denotes the feature index.

According to the Bayes classifier, an utterance un

is assigned to emotional state Xĉ, if

ĉ ¼ arg maxC
c¼1fP ðynjXcÞPðXcÞg; ð20Þ

where P(yjXc) is the pdf of yn given the emotional
state Xc, and P(Xc) is the prior probability of having
the emotional state Xc. P(Xc) represents the knowl-
edge we have about the emotional state of an utter-
ance before the measurement vector of that
utterance is available. Three methods for estimating
P(yjXc) will be summarized, namely the single
Gaussian model, the mixture of Gaussian densities
model or Gaussian Mixture Model (GMM), and
the estimation via Parzen windows.

Suppose that a measurement vector yn coming
from utterances that belong to Xc is distributed
according to a single multi-variate Gaussian
distribution:

P ðyjXcÞ ¼ gðy; lc;RcÞ

¼
exp � 1

2
ðy� lcÞ

T
R�1

c ðy� lcÞ
h i
ð2pÞD=2j detðRcÞj1=2

; ð21Þ

where lc, Rc are the mean vector and the covariance
matrix, and det is the determinant of a matrix. The
Bayes classifier, when the class conditional pdfs of
the energy and pitch contour statistics are modeled
by (21), achieves a correct classification rate of a
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56% for four emotional states (Dellaert et al., 1996).
The benefit of the Gaussian model is that it is esti-
mated fast. Its drawback is that the assumption of
Gaussian distributed features may not be true for
real data. Linear discriminant analysis is a method
to improve the classification rates achieved by the
Bayes classifier, when each P(yjXc) is modeled as
in (21).

In linear discriminant analysis the measurement
space is transformed so that the separability
between the emotional states is maximized. We will
focus on the problem of two emotional states X1

and X2 to maintain simplicity. Let N1 and N2 be
the number of utterances that belong to X1 and
X2, respectively. The separability between the emo-
tional states can be expressed by several criteria.
One such criterion is the

J ¼ trðS�1
w SbÞ; ð22Þ

where Sw is the within emotional states scatter
matrix defined by

Sw ¼
N 1

N s

R1 þ
N 2

N s

R2; ð23Þ

and Sb is the between emotional states scatter
matrix given by

Sb ¼
N 1

N s

ðl1 � l0Þðl1 � l0Þ
T

þ N 2

N s

ðl2 � l0Þðl2 � l0Þ
T
; ð24Þ

where l0 is the gross mean vector. A linear transfor-
mation z = ATy of measurements from space Y to
space Z which maximizes J is sought. The scatter
matrices SbZ and SwZ in the Z-space are calculated
from Sb and Sw in the Y-space by

SbZ ¼ ATSbY A; ð25Þ
SwZ ¼ ATSwY A:

Thus, the problem of transformation is to find A

which optimizes J in the Z-space. It can be shown
that the optimum A is the matrix formed by the
eigenvectors that correspond to the maximal eigen-
values of S�1

wY SbY . A linear discriminant classifier
achieves a correct classification of 93% for two emo-
tional classes using statistics of pitch and energy
contours (Lee and Narayanan, 2005). Linear dis-
crimination analysis has a disadvantage. The crite-
rion in (22) may not be a good measure of
emotional state separability when the pdf of each
emotional state in the measurement space Y is not
a Gaussian (21) (Fukunaga, 1990).

In the GMM, it is assumed that the measurement
vectors yn of an emotional state Xc are divided into
clusters, and the measurement vectors in each clus-
ter follow a Gaussian pdf. Let Kc be the number
of clusters in the emotional state Xc. The complete
pdf estimate is

P ðyjXcÞ ¼
XKc

k¼1

gðy; lck;RckÞ ð26Þ

which depends on the mean vector lck, the covari-
ance matrix Rck, and the mixing parameter pckPKc

k¼1pck ¼ 1; pck P 0
� 	

of the kth cluster in the
cth emotional state. The parameters lck,Rck,pck are
calculated with the expectation maximization algo-
rithm (EM) (Dempster et al., 1977), and Kc can be
derived by the Akaike information criterion
(Akaike, 1974). A correct classification rate of
75% for three emotional states is achieved by the
Bayes classifier, when each P(yjXc) of pitch and en-
ergy contour statistics is modeled as a mixture of
Gaussian densities (Slaney and McRoberts, 2003).
The advantage of the Gaussian mixture modeling
is that it might discover relationships between the
clusters and the speakers. A disadvantage is that
the EM converges to a local optimum.

By using Parzen windows an estimate of the
P(yjXc) could also be obtained. It is certain that at
yn corresponding to un 2 Xc, p(ynjXc) 5 0. Since an
emotional state pdf is continuous over the measure-
ment space, it is expected that P(yjXc) in the neigh-
borhood of yn should also be non-zero. The further
we move away from yn, the less we can say about the
P(yjXc). When using Parzen windows for class pdf
estimation, the knowledge gained by the measure-
ment vector yn is represented by a function posi-
tioned at yn and with an influence restricted to the
neighborhood of yn. Such a function is called the
kernel of the estimator. The kernel function h(Æ)
can be any function from Rþ ! Rþ that admits a
maximum at yn and it is monotonically increasing
as y! yn. Let d(y,yn) be the Euclidean, Mahalan-
obis or any other appropriate distance measure.
The pdf of an emotional state Xc is estimated by
(van der Heijden et al., 2004)

P ðyjXcÞ ¼
1

Nc

X
yn2Xc

hðdðy; ynÞÞ: ð27Þ

A Bayes classifier achieves a correct classification
rate of 53% for five emotional states, when each
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Fig. 4. An one hidden layer feedforward neural network.
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P(yjXc) of pitch and energy contour statistics is esti-
mated via Parzen windows (Ververidis et al., 2004).
An advantage by estimating P(yjXc) via Parzen win-
dows is that a prior knowledge about the condi-
tional pdf of the measurement vectors is not
required. The pdfs of the measurement vector for
small data collections are hard to find. The execu-
tion time for modeling a conditional pdf by Parzen
windows is relatively shorter than by a GMM esti-
mated with the EM algorithm. A disadvantage is
that the estimate of P(yjXc) has a great number of
peaks that are not present in the real pdf.

A support vector classifier separates the emo-
tional states with a maximal margin. The margin c
is defined by the width of the largest ‘tube’ not
containing utterances that can be drawn around a
decision boundary. The measurement vectors that
define the boundaries of the margin are called
support vectors. We shall confine ourselves to a
two-class problem without any loss of generality.
A support vector classifier was originally designed
for a two-class problem, but it can be expanded to
more classes.

Let us assume that a training set of utterances is
denoted by fungNDs

n¼1 ¼ fðyn; lnÞgNDs
n¼1 , where ln 2

{�1,+1} is the emotional state membership of each
utterance. The classifier is a hyperplane

gðyÞ ¼ wTyþ b; ð28Þ

where w is the gradient vector which is perpendicu-
lar to the hyperplane, and b is the offset of the
hyperplane from the origin. It can be shown that
the margin is inversely proportional to kwk2/2.
The quantity lng(yn) can be used to indicate to which
side of the hyperplane the utterance belongs to.
lng(yn) must be greater than 1, if ln = +1 and smaller
than �1, if ln = �1. Thus, the choice of the hyper-
plane can be rephrased to the following optimiza-
tion problem in the separable case:

minimize 1
2
wTw

subject to lnðwTyþ bÞP 1; n ¼ 1; 2; . . . ;NDs :

ð29Þ

A global optimum for the parameters w,b is found
by using Lagrange multipliers (Shawe-Taylor and
Cristianini, 2004). Extension to the non-separable
case can be made by employing slack variables.
The advantage of support vector classifier is that it
can be extended to non-linear boundaries by the
kernel trick. For four stress styles, the support
vector classifier can achieve a correct classification
rate of 46% using energy contours in several
frequency bands (Fernandez and Picard, 2003).

The k-nearest neighbor classifier (k-NN) assigns
an utterance to an emotional state according to
the emotional state of the k utterances that are clos-
est to un in the measurement space. In order to mea-
sure the distance between un and the neighbors, the
Euclidean distance is used. The k-NN classifier
achieves a correct classification rate of 64% for four
emotional states using statistics of pitch and energy
contours (Dellaert et al., 1996). The disadvantages
of k-NN is that systematic methods for selecting
the optimum number of the closest neighbors and
the most suitable distance measure are hard to find.
If k equals to 1, then the classifier will classify all the
utterances in the design set correctly, but its perfor-
mance on the test set will be poor. As k!1, a less
biased classifier is obtained. In the latter case, the
optimality is not feasible for a finite number of
utterances in the data collection (van der Heijden
et al., 2004).

ANN-based classifiers are used for emotion clas-
sification due to their ability to find non-linear
boundaries separating the emotional states. The
most frequently used class of neural networks is that
of feedforward ANNs, in which the input feature
values propagate through the network in a forward
direction on a layer-by-layer basis. Typically, the
network consists of a set of sensory units that con-
stitute the input layer, one or more hidden layers

of computation nodes, and an output layer of com-
putational nodes. Let us consider an one-hidden
layer feedforward neural network that has Q input
nodes, A hidden nodes, and B output nodes, as is
depicted in Fig. 4.

The neural network provides a mapping of the
form z = f(y) defined by

va ¼ g1ðwT
a yþ w0Þ; ð30Þ

zb ¼ g2ðuT
b vþ u0Þ; ð31Þ
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where W = [wqa] = [w1j� � �jwaj� � �jwA] is the weight
matrix, wa is its ath column, w0 is the bias, and
g1(Æ) is the activation function for the input layer.
Similarly U = [uab] = [u1j. . .jubj. . .juB] is the weight
matrix for the hidden layer, ub is its bth column,
u0 is the bias, and g2(Æ) is the activation function
for the hidden layer. Usually, g1(Æ) is the sigmoid
function described by

g1ðvÞ ¼
1

1þ expð�vÞ ; ð32Þ

and g2(Æ) is the softmax function defined by

g2ðvÞ ¼
expðvÞPB

b¼1 expðvbÞ
: ð33Þ

Activation functions for the hidden units are needed
to introduce a non-linearity into the network. The
softmax function guarantees that the outputs lie be-
tween zero and one and sum to one. Thus, the out-
puts of a network can be interpreted as posterior
probabilities for an emotional state. The weights
are updated with the back-propagation learning
method (Haykin, 1998). The objective of the learn-
ing method is to adjust the free parameters of the
network so that the mean square error defined by
a sum of squared errors between the output of the
neural network and the target is minimized:

JSE ¼ 1
2

XNDs

n¼1

XB

b¼1

ðfbðynÞ � ln;bÞ2; ð34Þ

where fb denotes the value of the bth output node.
The target is usually created by assigning ln,b = 1,
if the label of yn is Xb. Otherwise, lnb is 0. In emotion
classification experiments, the ANN-based classifi-
ers are used in two ways:

• an ANN is trained to all emotional states;
• a number of ANNs is used, where each ANN is

trained to a specific emotional state.

In the first case, the number of output nodes of
the ANN equals the number of emotional states,
whereas in the latter case each ANN has one output
node. An interesting property of ANNs is that by
changing the number of hidden nodes and hidden
layers we control the non-linear decision boundaries
between the emotional states (Haykin, 1998; van der
Heijden et al., 2004). The ANN-based classifiers
may achieve a correct classification rate of 50.5%
for four emotional states using energy contours in
several frequency bands (Fernandez and Picard,
2003) or 75% for seven emotional states using pitch
and energy contour statistics of another data collec-
tion (Schüller et al., 2004).

6. Concluding remarks

In this paper, several topics have been addressed.
First, a list of data collections was provided includ-
ing all available information about the databases
such as the kinds of emotions, the language, etc.
Nevertheless, there are still some copyright prob-
lems since the material from radio or TV is held
under a limited agreement with broadcasters.
Furthermore, there is a need for adopting protocols
such as those in (Douglas-Cowie et al., 2003;
Scherer, 2003; Schröder, 2005) that address issues
related to data collection. Links with standardiza-
tion activities like MPEG-4 and MPEG-7 concern-
ing the emotion states and features should be
established. It is recommended the data to be
distributed by organizations (like LDC or ELRA),
and not by individual research organizations or pro-
ject initiatives, under a reasonable fee so that the
experiments reported using the specific data collec-
tions could be repeated. This is not the case with
the majority of the databases reviewed in this paper,
whose terms of distribution are rather unclear.

Second, our survey has been focused on feature
extraction methods that are useful in emotion recog-
nition. The most interesting features are the pitch,
the formants, the short-term energy, the MFCCs,
the cross-section areas, and the Teager energy oper-
ator-based features. Features that are based on
voice production models have not fully been investi-
gated (Womack and Hansen, 1996). Non-linear
aspects of speech production also contribute to the
emotional speech coloring. Revisiting the funda-
mental models of voice production is expected to
boost further the performance of emotional speech
classification.

Third, techniques for speech classification into
emotional states have been reviewed. The classifica-
tion rates reported in the related literature are not
directly comparable with each other, because they
were measured on different data collections by
applying different experimental protocols. There-
fore, besides the availability of data collections,
common experimental protocols should be defined
and adopted, as for example in speech/speaker rec-
ognition, biometric person authentication, etc.
Launching competitions like those regularly hosted
by NIST (i.e. TREC, TRECVID, FERET, etc.)
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would be worth pursuing. The techniques were
separated into two categories, namely the ones that
exploit timing information and those ignoring any
timing information. In the former category, three
techniques based on ANNs and HMMs were
described. There are two differences between
HMM- and ANN-based classifiers. First, HMM-
based classifiers require strong assumptions about
the statistical characteristics of the input, such as
the parameterization of the input densities as
GMMs. In many cases, correlation between the
features is not included. This assumption is not
required for ANN-based classifiers. An ANN learns
something about the correlation between the acous-
tic features. Second, ANNs offer a good match with
discriminative objective functions. For example, it is
possible to maximize discrimination between the
emotional states rather than to most faithfully
approximate the distributions within each class
(Morgan and Bourlard, 1995). The advantage of
techniques exploiting timing information is that
they can be used for speech recognition as well. A
topic that has not been investigated is the evolution
of emotional cues through time. Such an investiga-
tion can be achieved by a classifier that uses timing
information for long speech periods. Well-known
discrimination classifiers that do not exploit timing
information have also been reviewed. Such classifi-
ers include the support vector machines, the Bayes
classifier with the class pdfs modeled as mixtures
of Gaussians, the k-nearest neighbors, etc. The tech-
niques that model feature pdfs may reveal cues
about the modalities of the speech, such as the
speaker gender and the speaker identities. One of
the major drawbacks of these approaches is the loss

of the timing information, because the techniques
employ statistics of the prosody features such as
the mean, the variance, etc. and neglect the sam-
pling order. A way to overcome the problem is to
calculate statistics over rising/falling slopes or dur-
ing the plateaux at minima/maxima (McGilloway
et al., 2000; Ververidis and Kotropoulos, 2005). It
appears that most of the contour statistics follow
the Gaussian distribution or the X2, or can be mod-
eled by mixture of Gaussians. However, an analyti-
cal study of the feature distributions has not been
undertaken yet.

Most of the emotion research activity has been
focused on advancing the emotion classification per-
formance. In spite of the extensive research in emo-
tion recognition, efficient speech normalization
techniques that exploit the emotional state informa-
tion to improve speech recognition have not been
developed yet.
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