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Abstract. This paper looks at integrating dependency and constituency into a common framework,
using the TAG formalism and a different perspective on the meta-level grammar of Dras (1999a) in
which the meta level models dependencies and the object level models constituency. This framework
gives consistent dependency analyses of raising verbs interacting with bridge verbs, additionally
giving a solution to a problem in Synchronous TAG, and gives appropriate analyses of subject-
auxiliary inversion. This and other evidence suggests the integration of dependency and constituency
is a useful avenue to explore.
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1. Introduction

1.1. BACKGROUND

English-language linguistics has been dominated since the middle of the last
century by grammar formalisms based on constituency. However, dependency-
based formalisms also have a long history, arguably longer than constituency
grammars. In addition there is a strong body of work in modern times on
dependency by Europeans such as Tesnière (1959), Sgall et al. (1986) and Mel’čuk
(1988); and there is now something of a resurgence of interest in them in the
English-speaking world – in particular, in combining the two in some way to take
advantage of both.

Methods for combining dependency and constituency can be categorized into
three broad classes. First, there are applications that use dependency (possibly
along with constituency) just for practical reasons: for example, the statistical
parsing of Magerman (1995), Collins (1997) and others which uses dependency
relations between words; the translation methodology of Palmer et al. (1998); the
multilingual generation of Iordanskaja et al. (1992); and so on.

Second, there are systems and formalisms which are ‘augmented’ by selecting
aspects of dependency and incorporating them into constituency, and vice versa.
This augmentation has a long history as well, before its application to English: the
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modistic school of grammar of Paris in the late 13th and 14th centuries was a funda-
mentally dependency-based formalism1 – and notably the source of the notion
of government (Covington, 1984) – but several of its proponents acknowledged
that constituency was necessary to handle aspects of language like conjunction,
sentence embedding, and impersonal constructions. More recent attempts include
the work of Gladkij (1980) on Eastern European languages, reported by Mel’čuk
and Pertsov (1987). In the other direction – augmenting mostly constituency-
based analyses of English by dependency – Abney (1995) describes a technique
of robust parsing, ‘chunking’, which partially groups words into constituents and
then joins these by dependency links; his work covers both a theoretical founda-
tion for this combination based on psycholinguistic and prosodic evidence, and a
system for broad-coverage parsing. Other robust parsing systems, such as those
based on supertags (Srinivas, 1997), can be viewed as operating similarly. And
on the formal side, Hudson’s daughter-dependency grammar (Hudson, 1976) adds
dependency to constituency; and more generally, the notions of government and of
heads of construction have been adapted from dependency grammar into standard
Chomskyan analyses (Robinson, 1970).

Finally, there are attempts to integrate constituency and dependency into a
single formalism; the difference from the ‘augmentations’ is that constituency and
dependency representations both continue to exist separately but linked in some
manner. Early in the recent prominence of constituency-based linguistics, Gaifman
(1965) and Hays (1964) expressed dependency grammars using phrase structure
rules, and restricted themselves only to projective dependency grammars,2 showing
that these are weakly equivalent to context-free grammars. Then, as part of the
Transformational Grammar program, there were proposals to use dependency
grammars, rather than context-free or context-sensitive grammars, as the base of
a transformational grammar (Robinson, 1970; Vater, 1975), on various grounds
including that it allows a neater description of, for example, case phrases than a
phrase-structure grammar does (Anderson, 1971), and that it is a weaker theory
(Hays, 1964). It was ultimately not adopted because of criticism such as that given
in, for instance, Bauer (1979), where it is noted that it is difficult to determine
what should be the ultimate head of the sentence, although the determination of
the distinguished symbol in phrase structure grammars, and later headedness, has
been the subject of similar discussion. Bauer also noted that, given the result of
Peters and Ritchie (1973), where transformations are shown to make Transforma-
tional Grammar unrestricted in formal power, the base is actually not significant
as it is dominated by the transformations. It is, however, interesting to note that
some incarnations of Chomskyan theory nonetheless have a ‘base’ D-Structure
component which has properties quite similar to those of dependency grammar:
e.g. “We have been tacitly assuming throughout that D-structure is a ‘pure’
representation of theta structure, where all and only the θ-positions are filled by
arguments” (Chomsky, 1986); c.f. the labeled dependency structures of Mel’čuk
(1988), which are structures representing headedness and arguments. In all of these,
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it is possible to view the formalism as consisting of multiple layers, of which one
is constituent-oriented, and another is dependent-oriented.

In this paper we explore an integration of formalisms into a common framework
in the spirit of this last type of melding of constituency and dependency grammars.

Tree Adjoining Grammar (TAG) is a good candidate for such a framework.
Although it does not intrinsically say anything about dependency, TAG assigns
derivation trees to sentences which are commonly interpreted as dependency struc-
tures (Rambow and Joshi, 1997). However, many cases have been pointed out for
which TAG derivation trees do not successfully capture linguistic dependencies
(Becker et al. 1991; Schabes and Shieber, 1994; Rambow et al. 1995). Schabes
and Shieber (1994) revised the standard notion of TAG derivation to better match
derivation trees to dependencies, but mismatches still remain.

A related line of research in finding such a framework has been in formalisms
which are more powerful than TAG, like set-local multicomponent TAG (Weir,
1988), V-TAG (Rambow, 1994), and most recently, D-tree Substitution Grammar
(Rambow et al., 1995). These have been quite successful in modeling the problem-
atic phenomena. However, the philosophy behind TAG and similar formalisms,
and the one behind our work in this paper, is that language should be modeled
by as tightly-constraining a formalism as possible. The formalisms just mentioned
all have formal power beyond that of TAG, which generally adds to parsing and
processing difficulty.

Yet another line of research has focused on squeezing as much strong generative
capacity as possible out of weakly TAG-equivalent formalisms, as an alternative
way of modeling these problematic phenomena (see, for example, Joshi (2000)
on what it means to extract more strong generative capacity out of a formalism
without increasing its weak generative capacity): tree-local multicomponent TAG
(Weir, 1988), nondirectional composition (Joshi and Vijay-Shanker, 1999), and
segmented adjunction (Kulick, 1998). We follow this approach.

1.2. MULTI-LEVEL TAGS

One area where the mismatch of TAG derivations and linguistic dependencies has
been notably problematic has been in synchronous TAG as defined in Shieber
(1994). The languages generated by S-TAGs are of pairs of strings; the formalism
can thus represent translation, syntax–semantics mapping, and so on. Under the
definition of Shieber (1994) the pairings of strings are induced by isomorphisms
between derivation trees. Because of the isomorphism requirement, and TAG’s
inability to describe certain dependencies, synchronous TAG’s ability to define
pairings of strings is also limited. These limitations are serious in practice, both for
translation (Shieber, 1994) and paraphrase (Dras, 1999b). This was the motivation
for (Dras, 1999a) to show that these difficulties could be resolved by the use of a
meta-level grammar.



284 MARK DRAS ET AL.

A TAG is generally thought of as a set of elementary trees which combine by
substitution and adjunction to form a derived tree. The process of combining the
elementary trees together is recorded (modulo order of application of rewrite steps)
in a derivation tree.

Let us refine this view somewhat. Weir (1988) showed that the derivation trees
of a TAG can be generated by a context-free grammar. We can therefore think of the
derivation process as the building up of a context-free derivation tree, followed by
the application of a yield function fG, dependent on the grammar G, to produce
a derived tree. That is, the derivation tree is a record of the substitutions and
adjunctions to be performed, and the yield function actually performs them.

Now, since a TAG yield function maps from trees to trees, nothing prevents
us from applying more than one of them. A k-level TAG (Weir, 1988) has k yield
functions fG, fG′, . . . , fG(k) (dependent on grammars G,G′, . . . G(k)) which apply
successively to trees generated by a context-free grammar.

In the case of 2-Level TAG, we call G the meta-level grammar and G′ the
object-level grammar, because the meta-level grammar generates the derivation
trees for the object-level grammar. A regular form 2-Level TAG (RF-2LTAG) is a
2-Level TAG whose meta-level grammar is in the regular form of Rogers (1994);
this regular form results in a TAG with the weak generative capacity of a CFG, but
with greater strong generative capacity (that is, the ability to associate structures
with strings). It can be shown that RF-2LTAG is weakly equivalent to TAG (Dras,
1999a).

In synchronous RF-2LTAG (Dras, 1999a), pairings of strings are induced
by isomorphisms between meta-level derivation trees. Even though RF-2LTAG
is weakly equivalent to TAG, its additional strong generative capacity enables
synchronous RF-2LTAG to generate more pairings of strings than synchronous
TAG can (Chiang et al., 2000).

In this paper we seek to use this extra strong generative capacity to better
describe linguistic dependencies. To do this, we interpret the meta-level deriva-
tion trees as dependency structures, instead of attempting to make the object-level
derivation trees fit dependencies. In doing this, our approach has similarities to the
use of dependency grammars as a base for transformational grammars, in that a
dependency representation and a constituency representation are related by TAG
yield functions on the one hand and transformations on the other. However, unlike
transformational generative grammar our approach is computationally tractable,
and, moreover, can be seen as integrating the two representations into a single
multidimensional structure, in the sense of Rogers (1997).

We give formal details in Section 2, and then some linguistic applications of this
combination of dependency and constituency in Section 3, with further discussion
in Section 4.
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2. The Formalism

2.1. TAGS

A TAG is a tuple 〈�,NT, I,A, F, V, S〉 where � is a set of terminal symbols, NT

is a set of non-terminal symbols (with � ∩NT = ∅), I and A are sets of initial and
auxiliary elementary trees, F is a finite set of features, V is a finite set of feature
values, and S ⊂ NT is a set of distinguished symbols, respectively.3 Elementary
trees are trees whose internal nodes are labeled with symbols from NT , and whose
leaf nodes are labeled with symbols from both NT and �. Auxiliary trees differ
from initial trees by additionally having a distinguished leaf node, the foot node,
which shares the same label as the root.

Elementary trees may be composed into larger trees by the the operations of
substitution and adjunction (see Figure 1). Substitution is the attachment of an
initial tree (such as that for John) at the frontier of another tree, by identifying
the root of the initial tree with one of the host tree’s leaf nodes (marked with ↓);
the identified nodes must have the same label. Adjunction is the attachment of an
auxiliary tree (such as that for quietly) into the interior of another tree, by removing
the entire subtree at one of the host tree’s internal nodes, inserting the auxiliary tree
in its place, and re-attaching the removed subtree at the auxiliary tree’s foot node
(marked with ∗); the root and foot nodes of the auxiliary tree, and the node at which
the adjunction takes place, are again required to have the same label. Nodes can be
additionally labeled with an NA constraint, which prevents adjunction at that node.

Nodes also have non-recursive top and bottom feature structures which must
unify for a complete derivation (see Vijay-Shanker, 1987): each node η has top
and bottom feature structures η.t and η.b, with the exception of substitution nodes,
which have only top feature structures, η.t . If a new auxiliary tree with root η1 and
foot η2 is adjoined at η, then η1.t unifies with η.t and η2.b unifies with η.b; if a
new initial tree with root η3 is substituted at η, then η.t unifies with η3.t .

In this paper we will use the following definitions to talk about trees and the
results of composition:

A derived tree is a tree consisting of multiple elementary trees composed
together. A completed derived tree is a derived tree with no non-terminals at
frontier nodes. In a completed derived tree top and bottom feature structures at
each node are required to unify.

The tree set of a grammar G is the set of all derived trees generated by G;
the completed tree set of G is the set of all completed derived trees. The string
language of G is the set of all strings on the frontier of trees in the completed tree
set.

Each derived tree also has a corresponding derivation tree recording the deriva-
tion history, analogous to the derivation tree of a context-free grammar. A node
η′ of a derivation tree is the child of another node η if the elementary tree corre-
sponding to η′ is substituted or adjoined into the elementary tree corresponding to
η during the derivation. The derivation tree also records the Gorn address in the
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Figure 1. Substitution and adjunction.

elementary tree at which the substitution or adjunction takes place.4 In Figure 1 the
derivation tree is the topmost tree.

The yield function of G, f (G), is a way of viewing the process of applying the
substitutions and adjunctions specified in the derivation tree in order to produce the
tree set of G.

TAGs used for linguistic analysis conventionally take terminal symbols to be
words and non-terminal symbols to be part-of-speech or phrasal categories. In
this paper we modify this slightly, so that NT contains only a single element,
and the part-of-speech or phrasal category is contained in a feature label, although
graphically we represent this in the traditional way with the node depicted by this
label. More detail is in the Appendix; but broadly speaking, the effect is to relax the
requirement that nodes that are identified during attachment must have the same
part-of-speech or phrasal category label. In making the part-of-speech label part
of the node’s feature structure, we follow other work in the area (Kasper et al.,
95). Diagrammatically, we write a node with top and bottom part-of-speech or
phrasal category labels X as X, and a node with top label X and bottom label Y as
X/Y .

2.2. 2LTAGS

A 2LTAG is a pair of TAGs 〈G,G′〉 = 〈〈�,NT, I,A, F, V, S〉, 〈∅, NT , I ′ ,
A′, F ′, Ī ∪ Ā ∪ N

∗, S ′〉〉. We call the first member of the pair the object-level
grammar, and the second member the meta-level grammar. Both grammars have
the same standard TAG composition operations of substitution and adjunction,
although below (and in the Appendix) we note some special features of the use
of TAG in this paper.

The meta-level grammar has the following properties:
• the set of ‘terminals’ is empty;
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A: α
ε

β

B: βOUTER NA
2

βINNER
2

β∗ NA

Figure 2. Meta-level grammar for {an
1 . . . an

8 |n ≥ 1}.

• the set of ‘nonterminals’ consists of only a single element (which we will call
X);

• the set of feature values consists of the names of the trees of G (in the
tuple these are denoted by Ī and Ā, the names for the trees in I,A ⊂ G,
respectively) and of Gorn addresses in G;

• the set of features, F ′, has two distinguished elements, tree and addr;
• tree has a ground value in the bottom feature structure of each node;
• addr has a ground value in the top feature structure of each node.

Under this definition we can view the yield function fG′ as reading the feature
values of the nodes in derived trees in G′ in order to produce derived trees of G.

Given the above, a node can be represented schematically as:

X
[addr : η][
tree : γ

]

For diagrammatic convenience, however, we will write meta-level elementary
trees using the following shorthand:

η

γ
≡ X

[addr : η][
tree : γ

]

More detailed explanation is in the Appendix.
The result that we want from this definition is that the trees produced by G′

look like derivation trees of G. We define the tree set of 〈G,G′〉, T (〈G,G′〉), to
be fG[T (G′)], where fG is the yield function of G and T (G′) is the tree set of
G′. Thus, when the elementary trees in the meta-level grammar G′ are combined,
using the substitution and adjunction operations as defined for TAG, the derived
trees can be interpreted as derivations for the object-level grammar G.

We present a simple formal example in Figure 2 (the meta-level grammar) and
Figure 3 (the object-level grammar). This grammar generates the string language
COUNT-8 = {an

1 . . . an
8 |n ≥ 1}. Figure 4 gives a sample derivation for the string

a2
1 . . . a2

8 (with meta-level derivation at the top left, object-level derivation at the
top right, and composition of object-level elementary trees at the bottom).

By way of explanation about the notation: we choose to encode the labels of
trees in G as feature values in G′ because we want ‘fundamentally related’ nodes
to be able to be identified by substitution or adjunction – for example, we want to
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βOUTER: SNA

a S

d SNA,∗ e

h

βINNER: SNA

b S

c SNA,∗ f

g

β: S∗ α: S

Figure 3. Object-level grammar for {an
1 . . . an

8 |n ≥ 1}.

allow the βOUTER-rooted tree B to adjoin at β in Figure 2 – and if their labels were
the strings ‘βOUTER’ and ‘β’ this would preclude strict adjunction. A node in the
object-level derivation has the tree label in the bottom feature structure because,
when another meta-level tree is inserted, we want that elementary tree label to end
up below the newly inserted tree; addresses are in the top feature structure because
the new object-level trees are inserted at the same address as the tree that has just
been ‘displaced’ by the adjunction. This is compatible with seeing the top feature
structure as a ‘view from above’ – the Gorn address is relative to the root of the
object-level tree – and the bottom feature structure as a ‘view from below’ – the
tree name is the identity of the auxiliary tree (Vijay-Shanker, 1987).

The choice of Gorn addresses on nodes versus on arcs is a minor notational
variant: the original on nodes, from Weir (1988), is more suitable for our purposes
definitionally, although in diagrams we have used the notationally more popular arc
labeling. The reasoning can be seen particularly clearly with linguistic examples;
see Section 3.1.

2.3. RF-2LTAGS

By itself, 2LTAG has greater generative capacity and recognition complexity than
TAG – it can be thought of as ‘TAG2’, and as seen in Figures 2 and 3 is able
to generate the language COUNT-8 = {an

1 . . . an
8 | n ≥ 1} (whereas TAG can only

generate COUNT-4), and is also able to generate a broader copy language {wwww |
w ∈ �∗} (whereas TAG can only generate the copy language {ww | w ∈ �∗}).
However, if the meta-level derivations are restricted to a regular form (Rogers,
1994), the object-level derivations will be restricted to a recognizable set like
ordinary TAG derivations, so the generative capacity and recognition complexity
of the formalism will be constrained to that of TAG (Dras, 1999b).

The regular form condition of Rogers (1994) holds for any TAG if the
elementary trees of that grammar do not allow internal spine adjunction (either
directly or indirectly) in derivation – that is, adjunction on the path from the root to
the foot but not at the root or the foot of an elementary tree. Since the only auxiliary
meta-level trees used in our linguistic analyses of Section 3 do not have any internal
nodes (unlike in our formal analysis of Section 2.2), our linguistic grammars meet
this condition.
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2.4. SYNCHRONOUS RF-2LTAGS

Grammars can be paired by some relation, giving rise to a formalism that can be
used to model, for example, translation. An early example of this is the formalism
of paired context-free rules of Aho and Ullman (1969), which consists of tuples
such as the following, where the diacritics indicate a relation pairing non-terminals
such that they are rewritten simultaneously:

〈α → β1�
1 β2�

2, α′ → β ′
2
�2 β1�

1 〉
〈β1 → β3�

1 β4�
2, β ′

1 → β ′
3
�1 β ′

4
�2 〉

In the first pair, for example, when β1 is rewritten then β ′
1, sharing the diacritic

�1 , must also be rewritten.
A TAG-related formalism similar to this is the Synchronous TAG of Shieber

(1994). An early formulation of Synchronous TAG allowed the formalism to
generate a language of pairs of strings whose projections were not Tree Adjoining
Languages (TALs), even though the component grammars were TAGs: that is,
pairing the TAGs increased their formal power (violating what has been termed the
weak language preservation property by Rambow and Satta (1996)). The revised
definition, by pairing the grammars by an isomorphism between derivation trees,
leaves the formal power of the grammars unaltered. The S-TAG definition is as
follows:

A Synchronous TAG (S-TAG) is a tuple G = 〈GL,GR,�〉, where GL is a
TAG, GR is a TAG, and � is a relation specifying linking of addresses in paired
elementary trees from GL and GR. An S-TAG derivation is a pair 〈DL,DR〉 such
that the following hold.
• DL is a well-formed derivation tree relative to GL.
• DR is a well-formed derivation tree relative to GR.
• DL and DR are isomorphic. That is, there is a one-to-one onto mapping f

from the nodes of DL to the nodes of DR that preserves dominance, i.e. for
some nodes ηL ∈ DL, ηR ∈ DR, if f (ηL) = ηR, then f (parent(ηL)) =
parent(ηR), where parent(ηL) is the parent node of ηL in DL (respectively
ηR).

• The isomorphic operations are sanctioned by links in the paired elementary
trees. That is, if f (ηL) = ηR , then there is a tree pair 〈tree(ηL), tree(ηR),� 〉
in G, where tree(η) is the elementary tree corresponding to the deriva-
tion tree name η. Furthermore, if addr(ηL) �= ε, then there is a tree
pair 〈parent(ηL), parent(ηR),�〉 in G and addr(ηL) � addr(ηR), where
addr(η) is the Gorn address at which tree(η) is substituted or adjoined into
tree(parent(η)).

However, by requiring this isomorphism, S-TAG is limited in the linguistic
phenomena it can model; Shieber (1994) notes the problematic case of clitics.5

Schuler (1999) notes a similar problem in English-Portuguese translation, and
attributes it to a mismatch between derivation and dependency structures; we
discuss this example in Section 3.2.
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We can define the notion of Synchronous RF-2LTAG to resolve this problem.
The basic idea is, as before, that dependencies are represented by the highest
level of the formalism; then the isomorphism between grammars is established
at this level. Formally, the definition is the same as for S-TAG, with the following
differences:

A Synchronous RF-2LTAG (S-RF-2LTAG) is a tuple 〈GL,GR,�〉, where GL

is an RF-2LTAG, GR is an RF-2LTAG, and � is a relation as before such that if
DL is a well-formed meta-level derivation tree relative to GL, and DR is a well-
formed meta-level derivation tree relative to GR , then the conditions between DL

and DR for S-TAG hold. Under these conditions, Dras (1999b) shows that the
weak language preservation property holds, and the projections of the object-level
grammar of pairs are still TAGs.

3. Linguistic Analyses Using RF-2LTAG

In this section we present analyses of some linguistic phenomena where TAG
has difficulties, and demonstrate how RF-2LTAG, by modeling dependencies, can
resolve these problems.

3.1. BRIDGE AND RAISING VERBS

Substitution and adjunction are typically used6 in linguistic analyses to represent
the attachment of arguments and modifiers to the predicates they modify (as in
the example in Figure 1), but adjunction can also be used in the other direction,
to represent the attachment of bridge and raising predicates to the arguments they
predicate over. For example, in an analysis of the sentence,

(1) What does Mary think that John seems to like?

the raising construction seems adjoins into the tree for like between the subject and
the verb; then the bridge construction Mary thinks adjoins onto the initial tree on
the other side of the subject (see Figure 5).7 A derivation tree, shown in the top
left of the figure, represents the process by which each derived tree was obtained,
using nodes for elementary trees and arcs for the substitutions and adjunctions that
occurred between them.

One problem with this kind of derivation, first pointed out in Rambow et
al. (1995), is that although it comes close to matching the traditional notion of
dependency, the derivation for a sentence such as (1) will connect the bridge verb
and the lower verb, between which there is no semantic dependency, and will not
connect the bridge verb and the raising verb, between which a semantic dependency
should exist.

At this point before presenting our analysis it is necessary to clarify the nature
of the dependencies we are using. In order to decide which of a pair of words
is the governor and which the dependent there are several criteria used (see e.g.
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Hudson, 1984), and different conclusions can be drawn. (Compare for example the
methodologies of Mel’čuk (1979) and Hudson (1984) in assigning analyses.) We
choose the semantic relation between words as our primary criterion; in this our
work is similar to Candito and Kahane (1998). Thus like is the governor of seem
and seem the governor of think, rather than the reverse which would be the case if
various syntactic criteria were primary. In any case, the key aspect of dependen-
cies is the pairwise relations between the elements, and the representation in this
paper captures these faithfully. Moreover, for applications like translation or statis-
tical modeling, the particular choice of direction is usually immaterial, since the
directions are consistently inverted with respect to the syntactic criteria analyses.

In RF-2LTAG we can produce a meta-level derivation tree for (1) which repre-
sents the desired dependencies. Given this meta-level derivation, the object-level
trees will be somewhat different from those in Figure 5. In part this is because
it gives us a neater RF-2LTAG analysis (although it is not necessary for an RF-
2LTAG analysis); but additionally, the object-level elementary trees no longer
project downward below the lexical predicate of a tree (e.g. that in the think tree
of Figure 5); Frank (2000) argues that this should be the case for TAG elementary
trees as a consequence of the Extended Projection Principle.

Now, in our analysis the meta-level auxiliary tree B[seem] adjoins into the
initial tree A[like] to derive a tree where the node labeled β[seem] is between
α[like] and β[like] (see Figure 6). Viewed as an object-level derivation, this
resulting tree has β[seem] adjoined at node 2 of α[like], and β[like] adjoined
at node 2 of β[seem]. Then A[think] substitutes into B[seem] to complete the
meta-level derivation, adjoining β[think] at the root (address ε) of β[seem] in the
object-level derivation (Figure 7).

A noteworthy characteristic of this analysis, and one that appears in other
analyses in this paper, occurs in the A[like] tree. We split the tree describing
the predicate-argument structure for like into two parts: the major part α[like]
containing the verb, and a separate subject β[like]; the meta tree is what ties the
two together.8 This β[like] can be considered to ‘float’ – in the derivation level it
can move arbitrarily far down, which allows us to group structures at the object
level differently. (If it were not there, it would not be possible to have that seems
grouped together, and the analysis would fail.) Interestingly, this makes subjects
look like adjuncts, an idea already discussed in Kayne (1994). It also raises ques-
tions about the nature of the lexicalization. We take the trees to be lexicalized at the
meta level: for example, A[like] is lexicalized (through αS[like]) even if its object-
level component βS/VP[like] is not. As a consequence of this, Frank’s Condition on
Elementary Tree Minimality (CETM) Frank (1992) holds at the meta level rather
than at the object level.
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α[like]: S

NP↓ S

NP↓ VP

V

to

VP

V

like

NP

e

α[what]: NP

what

α[John]: NP

John

β[think]: S

V

does

S

NP↓ VP

V

think

S

C

that

S∗

α[Mary]: NP

Mary

β[seems]: VP

V

seems

VP∗

α[like]

β[think]

2

α[Mary]

2 · 1

β[seem]

2 · 2

α[John]

2 · 1

α[what]

1

Figure 5. TAG derivation for What does Mary think that John seems to like?.

A[like]

B[seem]

1

A[think]

1

A[Mary]

1

A[John]

1 · 1

A[what]

2 A[like]: αS[like]

βS/VP[like]

2

αNP↓
1

αNP↓

1

A[John]: αNP[John] A[what]: αNP[what]

B[seem]: βS/VP[seem]NA

βS↓

ε

βS/VP
∗

2

A[think]:βS[think]

αNP↓
1A[Mary]: αNP[Mary]

Figure 6. 2LTAG meta-level derivation for What does Mary think that John seems to like?.
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αS[like]

βS/VP[seem]

2

βS[think]

ε

αNP[Mary]

1

βS/VP[like]

2

αNP[John]

1

αNP[what]

1

βS/VP[seem]: S

C

that

S/VP

V

seems

VP∗

βS[think]: S

V

does

S

NP↓ VP

V

think

S∗αNP[Mary]: NP

MaryαS[like]: S

NP↓ S/VP

V

to

VP

V

like

NP

e

αNP[what]: NP

what

βS/VP[like]: S

NP↓ VP∗

αNP[John]: NP

John

Figure 7. 2LTAG object-level derivation for What does Mary think that John seems to eat?.

VP

V
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VP

V

supposed

VP

V

to

VP∗

S

NP

pro

VP

V

é

VP

V

pressuposto

VP

V

que

S∗

VP

V

have

VP

V

to

VP∗

VP

V

ter

VP

V

que

VP∗

S

NP↓ VP

V

fly

S

NP↓ VP

V

voar

Figure 8. Elementary trees for sentences (2) and (3).
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α[fly]
1

α[X]

2

βV P [have]
ε

...
ε

βV P [going]
ε

βV P [supposed]

α[voar]

1

α[X]

2

βV P [ter]
ε

...
ε

βV P [vai]

ε

βS[pressuposto]

Figure 9. Derivation trees demonstrating supposed/pressuposto non-isomorphism.

3.2. TRANSLATION

As mentioned in Section 2.4, there are cases that S-TAG cannot describe because
of mismatches in the derivation structure. To solve some of these, Shieber suggests
relaxing the requirement that derivations be isomorphic by treating bounded
subderivations as elementary, but there are a few cases which remain problematic
because they involve ‘unbounded non-isomorphisms’; this is illustrated by a case
described by Schuler (1999) and reproduced here. If a predicate is analyzed as
a VP-adjunct in one language but an S-adjunct in another, then an unbounded
non-isomorphism will arise when this predicate interacts with other VP-adjuncts.
Consider the following sentences from English and Portuguese:

(2) X is supposed to (be going to . . .) have to fly.

(3) É pressuposto que X (vai . . .) tem/ter que voar.

We might analyze these sentences (as Schuler does) with the trees in Figure 8,
but the resulting derivations for (2) and (3) would be non-isomorphic (see Figure
9).

The unbounded nature of the non-isomorphism can be seen by the nodes
βVP[supposed] and βS[presupposto] (which would be paired in a synchronous
grammar): in the Portuguese tree βS[presupposto] is immediately dominated by
the root α[voar], while in the English tree there is an unbounded number of nodes
between βVP[supposed] and the root α[fly].

Schuler (1999) describes a solution to this problem based on a compositional
semantics for TAG (Joshi and Vijay-Shanker, 1999) which relies on a mapping of
contiguous ranges of scope in source and target derivations. Alternatively, under
RF-2LTAG we can analyze the sentences using the trees in Figures 10 to 14;
this analysis is the same as in Section 3.1 of bridge and raising verbs. The meta-
level derivations in Figure 14 reflect the dependency structure, and are isomorphic.
In pairing the grammars in this way we are effectively using dependencies (or
at least predicate-argument structures) as an interlingua for translation, and this
conveniently satisfies the isomorphism requirement.
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A[fly]: α[fly]
ε

β[fly]
1

α ↓

B[supposed]: β[supposed] NA
ε

β∗

B[going/have/. . . ]: β[going/have/. . . ] NA
ε

β∗

Figure 10. 2LTAG meta-level grammar for sentence (2).

A[voar]: α[voar]
ε

β[voar]
1

α ↓

B[pressuposto]: β[pressuposto]

B[vai]: β[vai] NA
ε

β ↓
2

β∗

B[tem/. . . ]: β[tem/. . . ] NA
ε

β∗

Figure 11. 2LTAG meta-level grammar for sentence (3).

A reason for preferring this alternative is that in Schuler’s approach subderiva-
tions in the source are not mapped to subderivations in the target, this solution
can only be used on individual derivation trees and not (tractably) on entire shared
forests of possible derivations (Vijay-Shanker and Weir, 1993). Thus, for example,
it is not directly possible to parse a natural language utterance and prune the chart
using constraints on a semantic target. In our approach this is not the case.

3.3. RAISING AND SUBJECT-AUX INVERSION

A problem related to example (1) introduced in Section 3.1 occurs with the
sentence

(4) Does Gabriel seem to eat gnocchi?

This is problematic for TAG because it is generally assumed, following the CETM
of (Frank, 1992), that the functional head does must occur in the same elementary
tree as the lexical head seem with which it is associated. But this is impossible
in ordinary TAG because the subject stands in the way. This is exactly parallel to
example (1), where we wanted the complementizer that to be in the same tree as
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β[fly]: S

NP↓ VP∗

α[fly]: S/VP

V

to

VP

V

fly

β[supposed]: VP

V

is

VP

V

supposed

VP∗

β[going/have/. . . ]: VP

V

to

VP

V

have

VP∗

Figure 12. 2LTAG object-level grammar for sentence (3).

β[voar]: S

NP↓ VP∗

α[voar]: S/VP

V

que

VP

V

voar

β[pressuposto]: S

NP

pro

VP

V

é

VP

V

pressuposto

S∗

β[tem / . . .]: VP

V

tem / . . .

VP∗

β[vai]: S

COMP

que

S/VP

V

vai

VP∗

Figure 13. 2LTAG object-level grammar for sentence (3).

A[fly]
1

B[have]
1

...

B[going]
1

B[supposed]

A[voar]
1

B[tem]
1

...

B[vai]
1

B[pressuposto]

Figure 14. Meta-level derivation figures for (2) and (3).
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A[eat]

B[likely]

1

B[seem]

1

A[Gabriel]

1 · 1

A[gnocchi]

2

B[seem]:βS/VP[seem]NA

βS/VP
∗

2

B[likely]:βS/VP[likely]NA

βS/VP
∗

2

A[eat]: αS[eat]

βS/VP[eat]

ε

αNP↓
1

αNP↓

2 · 2

A[Gabriel]:αNP[Gabriel]

A[gnocchi]:αNP[gnocchi]

Figure 15. 2LTAG meta-level derivation for Does Gabriel seem to be likely to eat gnocchi?.

seems. The solution employed there works here as well: we again simply assume
that the CETM applies to meta-level elementary trees instead of object-level
elementary trees.

A more familiar solution would be to use tree-local MCTAG (Figure 17), in
which a set of trees adjoins simultaneously into a single elementary tree (assuming
that the CETM applies to elementary tree sets instead of individual elementary
trees). But this solution does not extend to the following:

(5) a. I think that Gabriel seems to be likely to eat gnocchi.

b. Does Gabriel seem to be likely to eat gnocchi?

In both cases tree-locality is violated unless the the tree for likely adjoins at the
foot of the tree for seem(s), which is normally prohibited. More importantly for
present purposes, the derivation would not correctly reflect the dependencies: eat
would compose with the very highest raising verb.

But in a 2LTAG analysis we again model the dependencies at the meta level,
and such sentences are no longer problematic, as shown in Figures 15 and 16.

4. Discussion

4.1. THE OBJECT-LEVEL DERIVATION TREE

It is tempting to think of the object-level derivation tree as an intermediate struc-
ture, produced halfway through the transmogrification of the meta-level derivation
tree into the object-level derived tree.

But consider the case of context-free grammars. In a CFG derivation, rewrite
rules combine to form a derived string, and this process is recorded in a derivation
tree. It is reasonable to think of a CFG derivation as the building of a derivation
tree, followed by the application of a yield function to produce a derived string. But
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αS[eat]

βS/VP[likely]

ε

βS/VP[seem]

2

βS/VP[to eat]

2

αNP[Gabriel]

1

αNP[gnocchi]

2 · 2

αS[eat]: S/VP

V

to

VP

V

eat

NP↓ αNP[gnocchi]: NP

gnocchi

βS/VP[likely]: S/VP

V

to

VP

V

be

AdjP

Adj

likely

VP∗

βS/VP[seem]: S

V

does

S/VP

V

seem

VP∗

βS/VP[eat]: S

NP↓ VP∗

αNP[Gabriel]: NP

Gabriel

Figure 16. 2LTAG object-level derivation tree for “Does Gabriel seem to be likely to eat
gnocchi?”.




CP

C′

C

does

IP∗

,

I′

I

t

VP

V

seem

IP

I′∗




Figure 17. A multicomponent tree set for sentence (4).

it would be strange to conclude that the derivation tree comes prior to the derived
string, because the derivation tree contains the derived string on its leaves. All the
yield function does is read the leaves off in order; being grammar-independent, it
is not an extra step in the derivation but the means of recovering the result of the
derivation.

Similarly, Rogers (1997) introduces a notion of TAG derivation trees as three-
dimensional trees in which each node is not labeled with the name of an elementary
tree, but has a tree of children corresponding to an elementary tree, just as each
node in a CFG derivation tree has a string of children corresponding to a rewrite
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rule. The derived tree (and derived string) are recoverable from these three-
dimensional trees by means of a grammar-independent yield function. Thus they
integrate derivation trees and derived trees into a single structure. Under the view
that TAG derivation trees should represent dependencies, these structures provide
an integrated representation of dependency and constituency.

Rogers generalizes this idea further to an infinite hierarchy of multidimensional
trees and corresponding formalisms. This hierarchy of formalisms corresponds to
Weir’s multilevel TAG hierarchy. Thus we can think of a 2LTAG derivation as
the building of a four-dimensional structure, followed by successive applications
of grammar-independent yield functions to recover the information stored within
them. Like the three-dimensional trees produced by TAG, these four-dimensional
trees provide an integrated representation of dependency and constituency.

4.2. RELATED APPROACHES

RF-2LTAG follows other work in reconciling dependency and constituency
approaches to modeling natural language. One such early integration involved work
by Hays (1964) and Gaifman (1965), which showed that projective dependency
grammars could be represented by CFGs. However, it is known that there are
common phenomena which require non-projective dependency grammars – see
Kahane et al. (1998) for further references – so looking only at projective
dependency grammars is inadequate. Following the observation of TAG deriva-
tions’ similarity to dependency relations, other formalisms have also looked at
relating dependency and constituency approaches to grammar formalisms.

A more recent, TAG-related instance is D-Tree Substitution Grammars (DSG)
(Rambow et al., 1995). In this formalism the derivations are also interpreted as
dependency relations, and there is an object-level representation which combines
via the operations of subsertion and sister-adjunction. Thought of in the terms of
this paper, there is a clear parallel with RF-2LTAG, with a local set representing
dependencies having some yield function applied to it, although in the case of DSG
it is not explicitly presented this way, and it is not a composition of TAG yield
functions. The difference between the two is in the kinds of languages that they are
able to describe: DSG is both less and more restrictive than RF-2LTAG. DSG can
generate the language COUNT-k for some arbitrary k (that is, {an

1an
2 . . . an

k | n ≥ 1}),
which makes it extremely powerful (by comparison, RF-2LTAG can only generate
COUNT-4; and even if the meta-level grammar is not in regular form, 2LTAG can
only generate COUNT-8). However, unlike RF-2LTAG it cannot generate the copy
language (that is, {ww | w ∈ �∗} with � some terminal alphabet); this may be
problematic for a formalism modeling natural language, given the key role of the
copy language in demonstrating that natural language is not context-free (Shieber,
1985).

Candito and Kahane (1998) propose GAG, an extension of DSG that has a
semantic graph as its representation of dependency relations. Its formal properties
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are as yet unknown, but it seems reasonable to assume that it is more powerful than
DSG, given that the derivation graphs of GAG strictly contain the derivation trees
of DSG.

Another formalism of particular interest here is the Segmented Adjoining
Grammar of Kulick (2000). This generalization of TAG is characterized by
an extension of the adjoining operation, motivated by evidence in scrambling,
clitic climbing and subject-to-subject raising. Most interestingly, this extension
to TAG, proposed on empirical grounds, is defined by a composition operation
with constrained non-immediate dominance links that looks quite similar to the
behavior of the object level of the formalism described in this paper, which began
purely from formal considerations and was then applied to data.

5. Conclusion

From a theoretical perspective, integrating dependency and constituency into a
common framework is an interesting exercise. It also, however, proves to be useful
in modeling otherwise problematic constructions, such as subject-auxiliary inver-
sion and bridge and raising verb interleaving, one application of which resolves
difficulties with the Synchronous TAG formalism. There is much scope for further
exploration of the idea, looking at other problematic phenomena, incorporating
insights from other formalisms, and investigating more general properties of
meta-level grammars.
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6. Appendix: Categories as Features

Under TAG as it is typically used, the non-terminals are part-of-speech and phrasal
category labels. In our use of TAGs within 2LTAG, we encode the part-of-speech or phrasal
category into the node with a feature label, and call the symbol for the non-terminal the
signature. For the purposes of this paper, in an object-level grammar we do not need distinct
signatures; additionally, we adopt the convention that root and foot nodes of auxiliary trees
have null label features in their top and bottom feature structures respectively. Broadly
speaking, this says that any tree can potentially be adjoined to any other; what controls
whether this is valid is the meta-level grammar. Thus what we show diagrammatically as
Figure 18 is actually represented as Figure 19.

In the meta-level grammar, we do not have a label feature, but instead have addr and
tree features, which are in the top and bottom feature structures of a node respectively. The
tree feature indicates which more specific tree of a general signature type is used; the addr
feature indicates what address the node is attached to in the tree above it. The meta-level
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S

NP↓ VP
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VP

VP∗ Adv
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Figure 18. Diagrammatic representation of TAGs.
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]

[
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]
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[
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]

[
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]
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]
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label: NP
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Figure 19. Categories as features.

A: β B: βOUTER NA
2

βINNER
2

β∗ NA

Figure 20. Meta-level grammar for {an
1 . . . an

8 |n ≥ 1}.

A: β
[
addr:

]

[
tree:

] B:
β NA

[
addr:

]

[
tree: OUTER

]

β
[
addr: 2

]

[
tree: INNER

]

β NA

[
addr: 2

]

[
tree:

]

Figure 21. Meta-level grammar for {an
1 . . . an

8 |n ≥ 1}.
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grammar of Figure 2 is reproduced here in Figure 20, along with the actual feature structure
version in Figure 21.

Here, the signature is something that works much like the non-terminals in TAG as it
is standardly used, although in Figure 21 we only have β as the signature. In a larger-scale
grammar, however, we would typically use tree types for signatures (e.g. βnx0Vnx1, the
tree used in XTAG for standard transitive verbs), and the tree feature would be the specific
instance of that tree (as represented by, say, the lexical item anchoring that tree).

Notes
1 This use of a dependency formalism was fairly standard before the 20th-century focus on English,
and here could be seen as a natural consequence of the fact that the modistic grammarians studied
the relatively free word order syntax of Latin: Mel’čuk (1988) comments that constituency-based
formalisms only came to be seen as natural ways to describe language because of the English-
language focus, and resulting fixed word order bias, of much of modern linguistics.
2 Roughly, an arc representing a relation between two words x and its dependent y is projective
if, for every word w between x and y, w is a dependent (immediately or transitively) of x; a
grammar is projective if all of its arcs are projective. More precise definitions are found in the original
Lecerf (1960) and the more frequently quoted Robinson (1970). Some natural language phenomena,
however, such as English long-distance wh-extraction and clitic climbing in Romance, are known to
require non-projective analyses.
3 This is a simplified formulation of the Feature-based TAGs defined in Vijay-Shanker (1987),
which are used as standard in the world of TAGs; see e.g. XTAG Research Group (1998).
4 The Gorn address of a root node is the empty string ε; if a node has Gorn address η, then its ith
child has Gorn address η · i, with i ∈ N and · as string concatenation (Gorn, 1962).
5 Contra Shieber (1994), clitics in French are not a problem, although in Spanish they are; see Dras
and Bleam (2000).
6 For example, in the XTAG grammar (XTAG Research Group, 1998). This convention is widely
followed.
7 This analysis of bridge verbs was first proposed by Kroch and Joshi (1987) and is followed in
XTAG (XTAG Research Group, 1998). It is not the only possible analysis, but best captures the
recursive nature of the construction in the presence of extraction.
8 This is not dissimilar to the way a Multi-Component TAG groups together trees into elementary
sequences. However, an MCTAG used here would be non-local (see Weir, 1988), and hence formally
unconstrained. In addition, the MCTAG would not capture dependency structure.
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