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Abstract

The management of hierarchically organized data is starting to play a key role in the knowledge man-

agement community due to the proliferation of topic hierarchies for text documents. The creation and

maintenance of such organized repositories of information requires a great deal of human intervention.
The machine learning community has partially addressed this problem by developing hierarchical super-

vised classifiers that help people categorize new resources within given hierarchies. The worst problem of

hierarchical supervised classifiers, however, is their high demand in terms of labeled examples. The number

of examples required is related to the number of topics in the taxonomy. Bootstrapping a huge hierarchy

with a proper set of labeled examples is therefore a critical issue.

This paper proposes some solutions for the bootstrapping problem, that implicitly or explicitly use tax-

onomy definition: a baseline approach that classifies documents according to the class terms, and two clus-

tering approaches, whose training is constrained by the a priori knowledge encoded in the taxonomy
structure, which consists of both terminological and relational aspects. In particular, we propose the Tax-

SOM model, that clusters a set of documents in a predefined hierarchy of classes, directly exploiting the

knowledge of both their topological organization and their lexical description. Experimental evaluation

was performed on a set of taxonomies taken from the GoogleTM and LookSmartTM web directories, obtain-

ing good results.
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1. Introduction

Recent trends in knowledge management highlight the interest on the organization of docu-
ments or other sources of knowledge into hierarchies of concepts [6]. Web directories represent
a widespread scenario where the most relevant web pages are classified with respect to a prede-
fined set of categories organized into a hierarchy. GoogleTM [16], Yahoo!TM [30] and LookSmartTM

[22] are well-known examples of such hierarchical organization of knowledge. This categorization
approach is strategic within company Intranets, too, because knowledge management platforms
very often support the hierarchical organization of information. Actually, taxonomic structures
are considered a shallow representation of knowledge. The interest and the relevance of document
organization into taxonomies is well represented by the dmoz.org initiative, an open source initia-
tive raised to promote a comprehensive web directory (see the Open Directory Project [11]).

A taxonomy is mainly defined by two components: a hierarchy of categories and a collection
of documents. Each node detects a category, and the categories are described both by linguistic
labels that denote the ‘‘meaning’’ of the nodes, and by the relationships with other categories.
Documents are classified under one or more categories according to a single or multiple organi-
zation strategy. Most of the time, hierarchical indexes are treated as discrimination trees, where
the intermediate nodes do not necessarily refer to a specific category. In this kind of hierarchical
structure, documents are annotated with respect to the leaves only. Taxonomies and web directo-
ries differ from such hierarchical indexes, because even interior nodes in the hierarchies refer to a
specific concept. Documents are also annotated to interior nodes.

Document annotation is a typical task in the management of web directories. Given a prede-
fined taxonomy, the goal is to identify the category related to the content of an unclassified docu-
ment. In this perspective the categorization task can be conceived as a problem of finding the right
location in the hierarchy. Many supervised document classifiers that enable the automation of this
task have been designed (see for example [7–9,12,13,18,20,26,27,29]). However, most of them have
a common restrictive precondition: for each category a training set made of a significant amount
of labeled documents is required. This issue is known in literature as the bootstrapping problem
[23].

Bootstrapping a hierarchical structure of categories with a correct set of labeled examples is a
critical point in the deployment of automated classifiers. Actually, the number of labeled examples
required to train a supervised learning algorithm is related to the size of the taxonomy. For exam-
ple, the most popular web directories, like Google, Yahoo!, and LookSmart, have large hierarchi-
cal structures with many thousands of nodes, i.e., categories. It is worthwhile to remember that
hierarchies nodes tend to grow exponentially.

Although in real world scenarios the creation of structured indexes is an evolving process (i.e.,
document classification and structure definition are interleaved steps), this paper is focused on the
early stage of the process. In this stage, a bootstrapping model plays a key role in supporting the
preliminary annotation of a taxonomy. In the beginning, the taxonomy is empty, i.e., there are no
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categorized documents. Hence, the tool used to automatically annotate the documents has no
annotation examples. A first categorization hypothesis has to be formulated only using the taxon-
omy definition.

It follows that the output of the bootstrapping model is a labeling hypothesis for a given set of
candidate documents. The ultimate goal of this model is to meet the preconditions required to suc-
cessfully train a supervised classifier. There is no need for a highly accurate unsupervised classi-
fication. The real challenge is to semi-automatically determine the proper amount of labeled
examples for each category, thereby reducing the user effort required to classify the documents.

Analysing the bootstrapping problem from scratch, the perspective is twofold. The task can be
conceived as a classification problem, since an hypothesis of classification for a set of unlabeled
documents must be given on the basis of the node�s labels. At the same time, it can be conceived
of as a constrained clustering task, where the number, the type, and the relationships of clusters
are defined in advance. In the following, the paper will propose how to reconcile these two con-
flicting perspectives to effectively support the bootstrapping process.

We conceive bootstrapping as a task within a more complex process where machine and human
effort are interleaved. The basic idea is to support and alleviate the manual labeling of a set of
unlabeled examples, providing the user with an automatically determined preliminary hypothesis
of classification. The idea is to exploit the linguistic and the relational information encoded within
a taxonomy through an unsupervised learning model. The paper illustrates how Self-Organizing
Maps (SOMs) [19] can be revised to influence the learning process with the knowledge encoded
within a taxonomy.

In Section 2 a model of the bootstrapping process is introduced. This model covers all the steps
underlying the deployment of a fully automated hierarchical document classifier. Section 3 illus-
trates the unsupervised model referred to as TaxSOM, used to provide a preliminary classification.
Section 4 describes the datasets used to test the models, their preprocessing and encoding, and the
criteria used to evaluate the models. Results of the model evaluation and the respective discussion
are reported in Sections 5 and 6 respectively. Finally, Section 7 presents a discussion on the differ-
ences between the proposed approach and previous solutions proposed in the literature.
2. The bootstrapping process

The term bootstrapping refers to the sequence of steps that, starting from an empty taxonomy of
concepts, enables the delivery of an automated document classifier. Detailing the process permits
us to understand how human and machine roles can be combined to decrease manual effort and to
increase the quality of the final classification result. Fig. 1 sketches a bootstrapping process, detail-
ing the different steps and the intermediate results. The diagram shows the tasks assigned to user
and machine.

Step 1: Taxonomy editing. The first step of the process consists in the definition of a taxonomy of
concepts, where the categories are encoded through linguistic labels and the hierarchical
relationships are encoded into a tree-structured directed graph. For an example, see the
left-hand side graph of Fig. 2. After this stage, the system has an empty taxonomy that
needs to be ‘‘populated’’ with a set of candidate documents.
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Fig. 2. TaxSOM is a graph of computational units connected according to the topology of the given taxonomy. The

above taxonomy is a snapshot of a small part of the Google web directory.
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Fig. 1. A model of the bootstrapping process. The schema illustrates a mixed-initiative strategy combining machine and
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Step 2: Unsupervised bootstrapping. The second step concerns the elaboration of a preliminary
labeling hypothesis for the candidate documents. In this phase, the goal of the task is
to locate (classify) the documents in a node of the taxonomy. The result of this bootstrap-
ping step is an annotated taxonomy, i.e., a hierarchy of classes where all the candidate
documents have been classified in a corresponding node (category) of the taxonomy.

Step 3: Document deletion. In this phase, the expert (editor of the taxonomy) manually checks the
hypothesis formulated by the machine. The expert has to deal with two simple alterna-
tives: confirm the classification hypothesis for a given document or discard it. At the
end of this step, a certified annotated taxonomy is obtained, with a set of labeled docu-
ments for each category.

Step 4: Supervised training. The last step concerns the supervised training of a hierarchical clas-
sifier, which can use both the taxonomic information and the set of labeled examples.

The core problem of the bootstrapping process consists on the unsupervised step that can be
formally defined as a function taking an empty taxonomy and a set of documents as input,
and returning an association between documents and nodes of the taxonomy.

The working hypothesis underlying the proposed approach is that, once presented with a doc-
ument, the taxonomy editor would prefer to deal with a Boolean decision (confirm/discard) on the
given labeling hypothesis rather than examining all possible labeling alternatives. Notice that the
sketched model does not specify the deletion policy. Actually, many different policies are allowed.
For example, it is conceivable to ask the user for a selection between various alternatives when the
categorization hypothesis is wrong. Anyway, considering complex strategies requires to model the
cognitive effort of the taxonomy editor, and this is out of the scope of the paper.

Therefore, we are not interested in the process from the user point of view. Rather, we evaluate
the performance from the machine perspective. The objective of the bootstrapping process is two-
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fold: produce a good set of correct hypotheses, i.e., a significant number of correctly classified
examples, and achieve homogeneous coverage of all the categories. Hence, the ultimate goal of
the unsupervised model is the production of the proper amount of labeled examples for each class:
enough to train a supervised classifier without the need for a highly accurate hypothesis of clas-
sification. Of course, the overall performance of the bootstrapping process is a trade-off between
the amount of correctly labeled examples and the effort required to validate (by hand) the classi-
fication hypothesis. This paper does not consider the potential for reducing the classification
hypothesis adopting a rejection criterion in case of categorization ambiguity.

The bootstrapping process aims to be independent of the specific supervised classifier, and it
is not a goal of this paper to outperform existing supervised models. The goal is to assess
whether, given a supervised classifier such as a simple nearest neighbor rule, the supervised
training phase is more effective using a bootstrapping technique based on TaxSOM model
rather than a baseline solution. For the sake of exposition, any complex variation of the process,
such as the introduction of feedbacks repeating all steps as many times as needed, will not be
considered.

The model illustrated above does not make any assumption on the source of the candidate doc-
uments. Two alternative scenarios can be conceived making different assumptions:

• an open-world scenario traditionally related to the web;
• a closed-world scenario more related to the Intranets domain.

The two scenarios differ on a basic assumption. In the former case, only a portion of all unla-
beled documents are supposed to be related to the categories of the given taxonomy. In the latter
case, a strong hypothesis holds: all candidate documents are related to at least one category of the
given taxonomy. Clearly, the two different cases strongly influence the process. In the first sce-
nario, the problem is twofold. On the one hand, a ‘‘macro categorization’’ to assess the relevance
of a document with respect to the domain of the taxonomy is required. On the other hand, once a
document is found to be related to the taxonomy domain, a ‘‘micro categorization’’ to solve the
class ambiguity is required.

The closed-world scenario clearly does not require the ‘‘macro categorization’’, since all docu-
ments are known to belong to the taxonomy domain. A plausible example of this scenario is rep-
resented by a company promoting a revision of an internal structured organization of a given
collection of documents. A new taxonomy is arranged and, afterward, all documents need to
be indexed accordingly.

For simplicity, this second scenario will be examined. The assumption is that all the candidate
documents are related to at least one category of the given taxonomy. Therefore, the focus will be
on solving the ambiguity among different categorization alternatives rather than filtering docu-
ments not related with the topics of the taxonomy.
3. Exploitation of relational knowledge

The challenge of the bootstrapping task is the exploitation of the a priori knowledge encoded in
a taxonomy, that is, the linguistic labels describing the meaning of categories, and the topological
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structure referring to the relationships among categories. More formally, a taxonomy can be de-
fined as follows:

Definition 1 (Taxonomy). A taxonomy T ¼ ðN ;E; LN Þ is a labeled directed graph, where N and
E are finite sets of nodes and directed edges connecting nodes respectively, while LN are node
labels.

The nodes of the graph correspond to the categories (sometimes referred to as classes or con-
cepts as well), and the edges describe the relationships between the categories. A further assump-
tion is that labels (LN) are taken from the lexicon of natural language. In particular:

Definition 2 (Features set). Given a taxonomy T and a set of documents D, the feature set
FT;D is the set of all lexicon words appearing as either node labels in T, keywords in the
documents of D, or both.

and

Definition 3 (Labels and keywords sets). Given a taxonomy T and a set of documents D, the
label set LN is the set of lexicon words appearing as node labels in T, and the keywords set LD is
the set of lexicon words appearing in the documents of D but not as node labels of T. Hence,
LD [ LN ¼ FT;D and LD \ LN = ;.

In order to both simplify the computational complexity and increase the models generalization
during learning, a ‘‘reduced’’ vocabulary needs to be derived, performing a feature selection on
the above two sets LN and LD. This vocabulary is then used to encode the documents of dataset
D. A first important constraint on the vocabulary creation is that the resulting vocabulary must
contain all the keywords used to label the nodes. Another constraint is that the feature selection of
document keywords can only be performed with unsupervised techniques, since all documents are
unlabeled.

Definition 4 (Vocabulary for TaxSOM). A vocabulary VT;D for a given taxonomy T and a set
of documents D is a subset of FT;D that contains all keywords in LN and a subset of keywords in
the documents. Hence, VT;D ¼ LN [ L0D where L0D � LD is determined with a feature selection
algorithm.

The main aim of this work is to find a model that—given a taxonomyT, a document set D, and a
vocabulary VT;D—returns a preliminary classification of documents in D according to the a pri-
ori knowledge on T. Therefore, we propose a new clustering model referred to as a Taxonomic

Self-Organizing Map (TaxSOM). The model and its training algorithm are partially derived from
the Self-Organizing Maps (SOMs) [19]. This new model organizes data in D according to a given
taxonomy T, using selected information encoded in the vocabulary VT;D. Notice that letting the
vocabulary be part of the model input makes the classification process and the feature-selection
process orthogonal to each other.

In contrast to the original SOM model, the topology describing the class relationships and the
set of labels describing the meaning of categories are part of the model input, and they are used
during learning as a bias on the way to exploit the contextual information. The basic idea is that a
taxonomy consists of a structured set of classes, related to each other according to a fixed topol-
ogy. This topology influences the training algorithm of the TaxSOM model. Moreover, the labels
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are also used to constrain the adaptation of the codebooks. 1 Therefore, forcing these two features
into the learning algorithm can be considered a way to perform a constrained clustering of docu-
ments. In the following, a brief review of some basic notions of SOM is given, following which the
TaxSOM model is presented.

3.1. Review of self organizing maps

A SOM consists of k computational units located on a regular low-dimensional grid A, usually
planar with rectangular or hexagonal connection schemes. Each unit is described by both a posi-
tion index in the lattice, and a codebook vector ~wi ¼ ½w1; . . . ;wm�, which is a cluster centroid in the
input space. SOMs are trained by alternating between a competitive and a cooperative phase for
each input pattern. During the competitive stage, the codebook most similar to the input vector
~x is chosen as the winner unit (like in a standard prototype-based minimum error classifier, where
documents are related to the cluster having the nearest prototype):
1 L

meani
i� ¼ argmax
i
fsimð~wi;~xÞg; ð1Þ
where simð~wi;~xÞ computes the similarity measure between the two objects ~wi and~x. In our exper-
iments, we adopted the cosine similarity metric:
simð~wi;~xÞ ¼
~wt

i �~x
k~wik � k~xk

: ð2Þ
In the cooperative stage, all codebooks are moved closer to the input vector, with a learning
rate (non-linearly) proportional to the inverse of their topological distance from the winner
unit:
~wiðt þ 1Þ ¼ ~wiðtÞ þ gðtÞhi;i�ðtÞ½~x�~wiðtÞ�; ð3Þ
where g(t) is the learning rate, and hi,i*(t) is a neighborhood function monotonically decreasing for
increasing topological distance between unit i and the winner unit i*. Usually, the neighborhood
function hi,i*(t) is a Gaussian function with decreasing variance:
hi;i�ðtÞ ¼ exp � distði; i�Þ2

2rðtÞ2

 !
; ð4Þ
where r(t) is the function range (width of the neighborhood) decreasing in time, and dist(i,i*) is
the topological distance between the two units i and i* in the discrete lattice A. Usually in the
SOM model such distance is computed as follows:
distði; i�Þ ¼ k~ri �~ri�k; ð5Þ

where~ri and~ri� are the coordinates of the two units i and i* respectively.
atter in this article, the terms codebook, prototype, and reference vector are used intermittently with the same

ng.
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3.2. The TaxSOM model

The main property of SOMs is that similarity relationships between patterns in the input space
are mapped into similarity relationships between codebooks. Specifically, similar documents are
mapped to the same unit or to near units in the lattice.

The idea of TaxSOM is to exploit this property, modeling the connections between the compu-
tational units according to the topology of the input taxonomy. Specifically, given a taxonomyT,
a TaxSOM is a collection of computational units connected so as to form a graph having the
shape isomorphic to the topology of T. For each node in T, a computational unit is created
in TaxSOM. For any directed edge connecting two nodes in T, an undirected edge connecting
the corresponding units in TaxSOM is created (see example in Fig. 2).

The conjecture is that once a TaxSOM has been trained by iterating on Eq. (3), the final con-
figuration of the codebooks describes a clustered organization of documents—that tailors the de-
sired relationships between concepts. Nevertheless, the model only exploits the topological
organization of classes and does not exploit the lexical information. A simple way to also handle
lexical information is derived from a standard artifice used to speed up the clustering processes:
The trick is to start the algorithms with the codebooks properly initialized [19].

A good starting point for codebooks is based on the exploitation of the a priori lexical knowl-
edge, i.e., the labels in LN ‘‘describing’’ the concepts in the taxonomyT. More specifically, for any
node in TaxSOM an initial codebook (a reference vector also referred to as ‘‘seed’’) is built
through the encoding of its labels, i.e., all elements of a given codebook are set to zero except
those elements that correspond to the node labels. In particular, because in the current task docu-
ments are represented by a set-of-words, 2 the elements of codebooks corresponding to the node
labels are set to 1. Notice that both documents and codebooks are represented with vectors of
length equal to the vocabulary dimension.

We observed that the described initialization criterion let TaxSOM quickly converge to a solu-
tion though one of poor quality in the sense that the node coverage 3 and the classification
hypothesis are of low quality. Actually, we noticed that the algorithm starts the clustering process
with a ‘‘good’’ classification accuracy, but during training the organization of documents changes
according to criteria that are different from classification purposes. This causes poor results. The
main problem is the lack of constraints during training.

To minimize inter-category variances while trying to preserve good classification accuracy, the
algorithm was modified to constantly preserve the lexical information in the codebooks. Specifi-
cally, the labels are forced in the codebooks throughout the entire training process. This occurs by
encoding the labels in the codebooks after each competitive step, setting to 1 all elements of the
codebooks corresponding to the concept labels. In this way, TaxSOM training is biased by the
knowledge of both the concepts relationships (topology), and the concepts descriptions (labels).

In the current implementation of TaxSOM, in order both to reduce the computational cost of
the simulations while addressing large data sets, and to smooth the convergence to a solution with
low variance, we designed a variation of the batch training algorithm originally designed for
2 Set-of-words corresponds to a binary representation that identifies the presence or the absence of the corresponding

keywords in a given vocabulary.
3 Node coverage is a measure of how well nodes are populated with correct examples.
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SOMs [19]. The batch algorithm requires a smaller number of iterations with respect to the one
described above. This is because the competitive phase is performed on the whole data set before
computing the cooperative step, and the cooperative phase is then performed with two computa-
tions per iteration.

The computation of any iteration of the proposed batch algorithm can be divided into three
main steps. In the first step, for any node i of a given taxonomy T, the training algorithm of Tax-
SOM computes a centroid~ciðtÞ. The centroid is determined averaging the documents that in the
previous iteration were classified in the corresponding node:
4 T

neighb
~ciðt þ 1Þ ¼ 1

niðtÞ
X

~x2DiðtÞ
~x; ð6Þ
where DiðtÞ is the Voronoi set of class i at time t (i.e., the set of documents classified in class i), and
ni(t) is the number of documents in DiðtÞ.

In the second step, a smoothing procedure is carried out on the centroids, obtaining an ‘‘uncon-
strained codebook’’:
~wu
i ðt þ 1Þ ¼

P
jnjðtÞ � hi;jðtÞ �~cjðt þ 1ÞP

jnjðtÞ � hi;jðtÞ
; ð7Þ
where hi,j(t) is the neighborhood function described by Eq. (4), whose distance measure dist(i, j) is
the length of shortest path between the two nodes i and j in T. Because the structures processed
are trees, the distance corresponds to the sum of the node depths with respect to their nearest com-
mon ancestor in the hierarchy. Notice however that the model can also be used for graphs with
cycles.

The constraining phase is then performed in a third step, where the ‘‘constrained codebooks’’
are computed by encoding the node labels into the corresponding ‘‘unconstrained codebooks’’.
This operation is carried out with the function f : Rn � L ! Rn that for any node i in T takes
as input an ‘‘unconstrained codebook’’ ~wu

i ðtÞ and a set of keywords LNi describing the correspond-
ing concept, and returns the final codebook ~wiðtÞ constrained as follows:
~wiðtÞ ¼ f ð~wu
i ðtÞ; LNiÞ s:t: 8j wi;jðtÞ ¼

1 if VT;D
j 2 LNi

wu
i;jðtÞ otherwise

(
; ð8Þ
where ~wiðtÞ and ~wu
i ðtÞ are respectively the constrained and unconstrained codebook vectors of

node i at time t, LNi is the corresponding set of labels, VT;D
j is the jth keyword in the vocabulary,

and wi,j(t) and wu
i;jðtÞ are the jth elements of vector ~wiðtÞ and ~wu

i ðtÞ respectively. Notice that the

initial point used to start TaxSOM learning (time t = 0) is determined using Eq. (8) with

~wu
i;jð0Þ ¼ 0 8i; j.
The above learning equations constrain the codebooks with the a priori knowledge localized on

the nodes, and the contextual information 4 is gathered by propagating the ‘‘documents content’’
from the nodes in the neighborhood (Eq. (7)). Notice that the node labels are not propagated to
he contextual information for a given node is the knowledge that can be collected from the nodes in its

orhood.
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the neighbor nodes, but their propagation could be useful as well. Hence, in order to also prop-
agate this type of information Eq. (7) needs to be changed as follows:
5 In
6 S

mean
~wu
i ðt þ 1Þ ¼

P
jnjðtÞ � hi;jðtÞ �~c

c
jðt þ 1ÞP

jnjðtÞ � hi;jðtÞ
; ð9Þ
where~ccjðt þ 1Þ is the jth centroid constrained by the set of labels of the corresponding node ðLNiÞ:

~ccjðt þ 1Þ ¼ f ð~cjðt þ 1Þ; LNjÞ; ð10Þ
where~cjðt þ 1Þ is computed using Eq. (6). Therefore, using Eqs. (8)–(10) labels are propagated to
the classes in the neighborhood, and are also used to constrain the codebooks.

Using the above learning equations, the codebooks start their learning from ‘‘good’’ initial
points in the input space determined by the set of labels of the corresponding nodes. Then, during
training, the prototype vectors learn a different position in the input space that better represents a
good clustering 5 of the input space. Interestingly, while the codebooks are able to learn an opti-
mal solution for the clustering task, they are continuously attracted by their initial point, main-
taining a linking between clusters and classes. This trade-off between constraints and clustering
of documents allows the codebooks to learn a solution which is constrained to be good for the
classification task.

In fact, when a clustering algorithm is used to classify, it is important to discover the correlation
between the desired classes and the clusters found with the algorithm. The proposed model, on the
contrary, anchors the clusters to the classes, forcing the required linking from the beginning, and
maintaining these links throughout training.
4. Experimental setup

The unsupervised bootstrapping of a taxonomy is achieved through a function that takes the tax-
onomy and a set of documents as input, and returns an association between documents and nodes of
the taxonomy. Since the task output should be a ‘‘significant’’ dataset of labeled documents, 6 the
proposed model needs to be evaluated by looking at both the classification accuracy and the quality
of the labeling produced. For this reason the model was evaluated with two different criteria:

• The TaxSOM model was evaluated against other basic models looking at the accuracy of the
classification results.

• The model was evaluated looking at the quality of the whole process that combines unsuper-
vised and supervised models. Specifically, the accuracy of a simple non-parametric supervised
model was evaluated on the results of TaxSOM. This was to verify how the results of the unsu-
pervised bootstrapping model influence the whole process.

The description of the evaluation methods together with a detailed description of the datasets
used to evaluate the model follows in this section.
this case the term ‘‘good’’ is related to the concept of classification.

ignificant dataset means that the set of correctly classified examples generated by the model is statistically

ingful in terms of the quality of the supervised model training.



G. Adami et al. / Data & Knowledge Engineering 54 (2005) 301–325 311
4.1. The datasets

In order to experimentally evaluate the TaxSOM model, a set of labeled and annotated taxo-
nomies were needed. Specifically, the evaluation should be performed using hierarchies of classes,
where each node (both interior and leaves) is labeled with linguistic keywords describing the class
content, and populated with a set of labeled documents. Web directories are meaningful examples
of such type of taxonomies. Hence, to evaluate the proposed model in a real-world scenario, we
created a benchmark dataset made up of a set of taxonomies selecting some domains from two
well-known web directories: Google [16] and LookSmart [22].

Specifically, the selected taxonomies are trees corresponding to some subdirectories of Google
and LookSmart. The labels of the nodes in the taxonomies are the names of the nodes in the direc-
tories (usually a few keywords). The documents are the URL descriptions built using the web site
title and the short summary given by the directory maintainers (usually a text of a few dozen
words), see the example in Fig. 3.

Furthermore, within LookSmart taxonomies, each node is also equipped with a short descrip-
tion of the node content. These few keywords can be used to partially define the concept semantic
of the corresponding class, which is much more detailed that the description provided by the node
labels. In the following experiments, these natural language words have been considered as labels.
In this way, evaluating the models with these two datasets (Google and LookSmart) it is possible
to verify how the number of labels used to constrain the learning procedure influence the quality
of the model.

Such subdirectories were chosen ranging over many different topics and dimensions (see Table
1). Taxonomies were selected looking at their depth (i.e., how far leaves are from the root, which
ranges from 4 to 11), looking at the number of nodes (from tens to hundreds), and looking at the
number of documents (from hundreds to thousands). The topic and dimension variability allows
the evaluation of the model without biases due to the a priori knowledge, the topic vocabularies,
or the dimension of taxonomies.
Fig. 3. Example of two ‘‘documents’’ in the ‘‘Fish & Seafood’’ node of Google. All document lemmata and node labels

are used to create the vocabulary and to encode documents. Notice that documents contain very few keywords, and

only two words are used as node labels.



Table 1

Statistics of Google and LookSmart benchmarks

Taxonomy statistics Dataset statistics Docs with labels (%)

Max

depth

Nodes Docs Labels Vocabulary

size

Average

words/doc

Local Ancestors Global

Google

Archaeology 5 122 1204 201 650 10.93 44 70 94

Biology 11 1601 9213 1528 1921 8.69 60 73 100

Business 5 213 7563 233 586 9.07 62 85 99

Cooking 7 674 16,318 594 862 7.93 75 89 100

Language 8 514 4134 488 864 8.93 64 90 100

Neuro Disorders 4 210 2444 231 631 9.68 70 89 98

News Media 5 29 549 35 585 10.68 52 71 88

Shopping Health 6 259 8652 312 645 8.29 58 77 99

Technology 7 571 8295 509 779 9.14 59 81 100

LookSmart

Archaeology 5 78 794 274 701 8.61 80 90 100

Business Soft. 8 276 6196 519 728 9.41 93 97 100

Common Lang. 4 140 1890 349 639 9.01 95 97 100

Health Issues 9 528 6244 728 924 9.29 95 98 100

Linguistics 8 319 2565 887 1114 8.14 93 96 100

Movies 4 34 682 139 825 10.30 95 98 100

Peripherals 5 198 4574 414 672 11.41 96 98 100

Recipes 8 599 8906 841 994 8.59 98 99 100

Videogames 7 417 3685 768 919 10.90 98 99 100

Zoology 9 1007 10,927 1549 1645 9.64 95 99 100

The first four columns describe the dataset dimension, the other two columns are devoted to the evaluation of the

documents encoding, the remaining columns describe the task complexity, i.e., how ambiguous the classification might

be when just driven by labels.
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The selection of the taxonomies was constrained by some homogeneity criteria. In particular,
all documents having less that five keywords after preprocessing and feature selection were re-
moved from the dataset. All empty nodes (nodes without documents) or unlabeled nodes (nodes
without any label having lexical meaning) and their sub-trees were removed from the taxonomies.
Finally, notice that some taxonomies with similar topics were selected from the two web directo-
ries as well, e.g., ‘‘archaeology’’, ‘‘language’’ and ‘‘linguistics’’, ‘‘biology’’ and ‘‘zoology’’, etc. This
allows a further comparison of different organizations of data within similar topics. For a detailed
description of the benchmark dataset used for the experiments refer to [4].
4.1.1. Feature selection and document encoding

Document content and node labels were cleaned. In particular, all stop-words (articles, con-
junctions, and prepositions) were removed, and the remaining words were stemmed (transformed
into lemmata). See labels and lemmata in Fig. 3 for an example of features preprocessing.

The space of the encoding vector, i.e., the vocabulary, was separately determined for each tax-
onomy as previously defined (see Definition 4). Since one of the constraints on the vocabulary
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determination is that the feature selection techniques can only be unsupervised, we adopted a fea-
ture selection process based on the notion of Shannon Entropy. 7 In particular, the adopted fea-
ture selection process reduces the set LD to a subset L0

D keeping the words with the highest entropy
defined as follows:
7 Sh

inform
HðX Þ ¼ �
X

x2f0;1g
pðxÞlog2pðxÞ ð11Þ
where X is the considered feature and x is the possible value assumed by the variable X in the gi-
ven dataset. The creation of a vocabulary with the features having high entropy guarantees that
the keywords with very low or very high frequencies are not used, since they are neither represen-
tative nor discriminative. Clearly, probabilities used in Eq. (11) were estimated using the frequen-
cies of the keywords in dataset.

The proposed models were tested using different numbers of features. From the experiments, it
appeared that good accuracy is possible by adopting a dimension for L0

D of approximately 500
keywords. The reference vocabularies VT;D were then determined according to Definition 4.

Finally, due to the usually negligible number of word repetition in document descriptions (see
the sets of lemmata in the examples of Fig. 3), documents were encoded as set-of-words, i.e., bin-
ary vectors ~x with dimension equal to the cardinality of VT;D, where each element xi of an en-
coded document indicates whether the corresponding keyword is present in the document or
not (1 or 0).

Table 1 illustrates some statistics of the selected taxonomies after preprocessing. The first sec-
tion (Taxonomy statistics) provides information on the size of both the taxonomies and the cor-
pora of documents and the set of node labels. The second section (Dataset statistics) illustrates the
vocabulary dimension, and the average number of keywords per document. The third section (%
of docs with labels) gives a flavor of the problem complexity. The column ‘‘Local’’ is the percent-
age of documents in which at least one label of the corresponding class appears. The column
‘‘Ancestors’’ gives the same measure considering all labels in the path from the root node to
the current node. Finally, the column ‘‘Global’’ is the percentage of documents having at least
one of the labels in LN.

Notice that the percentages of labels in documents are rather high (mostly near 100%), while the
‘‘ancestor’’ and ‘‘local’’ label occurrences are significantly lower. This causes high ambiguity when
trying to classify documents just using the labels occurrences. This in turn produces high rejection
rates.

4.2. Evaluation method

As previously outlined, TaxSOM is a module that should be embedded in a more complex pro-
cess made up of three main components:

• a bootstrapping module that produces a preliminary hypothesis of classification for a given
unlabeled dataset;
annon entropy is a standard information theoretic approach that can be used to measure the amount of

ation provided by the presence of a word in the dataset.
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• a cleanup step carried out by a human expert that, in the simplest approach, removes all badly
classified documents;

• a classification module performed with a supervised model that classifies new, incoming docu-
ments using a ‘‘certified’’ labeled dataset.

Therefore, the proposed bootstrapping model needs to be evaluated considering two aspects. On
the one hand, the classification accuracy of the model is of primary importance, since high accu-
racy of the model implies minimal human effort in checking the correctness of the document clas-
sification. On the other hand, the quality of the cleaned-up dataset needs to be considered. In fact,
it influences the accuracy of the supervised model. Even if the model itself has low accuracy, it
could generate a good training set for supervised models.

To our knowledge there are no models devised to solve the proposed task. For this reason, in
order to evaluate the solution provided, we devised a couple of approaches referred to as baseline
and constrained K-means. Comparing TaxSOM with these models allows the analysis of the influ-
ence on the model of all the elements of the available a priori knowledge.

The model accuracy was tested on each benchmark taxonomy performing an hypothesis of
classification for all documents, and the results were then compared with the original labeling
of the documents.

The influence of the proposed models on the third step of the bootstrapping process (the super-
vised classification) was assessed adopting a 10-fold cross validation technique. Specifically, for
any taxonomy, 90% of the documents were used to bootstrap the taxonomy. Then, the resulting
annotated taxonomy was automatically ‘‘cleaned’’ by removing all wrongly classified docu-
ments. 8 Finally, the remaining 10% of the documents were classified using a very simple super-
vised model (1-NN), with the inductive base made up of the cleaned dataset. The results were
then averaged over all 10 folds. Remember that a good performance with the supervised classifier
was not the aim of this work. The main intent was to evaluate how the bootstrapping models
influence a supervised model.

Notice that in the experiments single-class labeling is performed.

4.3. Evaluation measures

The proposed models were assessed looking at both the accuracy and the quality of classifica-
tion. The evaluation was performed considering the proposed models both as stand-alone algo-
rithms and as part of the bootstrapping process. Therefore, different criteria for the assessment
of the model were used, according to the type of evaluation.

Specifically, the stand-alone comparison of the proposed models (i.e., baseline, K-means, and
TaxSOM) was performed using the standard information retrieval measure F1 [5], which com-
bines precision and recall of a model on a given dataset:
8 The automatic cleaning of the annotated taxonomy should be consonant with the expert behavior. Therefore, a

simulation of a very simple accept/reject decision that could be made by an expert was performed. Specifically, the

system eliminated all those documents from the bootstrapped taxonomy that, according to the original labeling, were

incorrectly classified.
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Fig. 4. Examples of k-relative coverages for all k for two taxonomies. The curves are plotted for the dataset resulting

from the three bootstrapping model and for the original dataset (upper bound).

9 In

the k-
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F 1 ¼ 2 � P � R
P þ R

; ð12Þ
where the notion of precision (P) is replaced with accuracy (i.e., the ratio between the number of
documents correctly classified and the number of classified documents), and the notion of recall
(R) is replaced with the coverage (i.e., the ration between the number of correctly classified docu-
ments and the number of documents that should be classified):
P ¼ # of correctly classified

# of classified
R ¼ # of correctly classified

# of documents in D
: ð13Þ
The evaluation of the quality of the datasets was performed with the introduction of a new mea-
sure referred to as k-relative coverage. In particular, k-relative coverage is a measure of the per-
centage of classes that were annotated with at least k examples. This measure provides an
evaluation of the quality of the dataset because it highlights both the amount of information that
the supervised learner could get from any class, and the a priori distribution of the classes. 9

This second measure is useful to understand the quality of the classification hypothesis of the
proposed bootstrapping model. Specifically, the higher this measure is for all k, the better the
dataset generated by the bootstrapping models. An example of the k-relative coverage for all ks
for a couple of taxonomies can be seen in Fig. 4.

The bootstrapping homogeneity was evaluated making a distinction between macro and micro
measures. The former averages the measure over all nodes, while the latter computes the measure
globally over all documents in the corpus. Specifically, the micro F1 measure combines total recall
and total precision, providing the evidence of the global quality of the models. The macro F1 mea-
sure, on the contrary, combines the averages of local F1 for the classes. This allows for evaluating
the degree of uniformity in the distribution of accuracy over all nodes—because the macro mea-
sures are independent from the prior probability of classes.
a uniform a priori distribution of classes with N documents and C classes, since there are N
C documents per class,

relative coverage is equal to 100% for all k 6
N
C, and 0% elsewhere.
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The evaluation of the proposed models, when considered part of the bootstrapping process, was
performed using the standard information retrieval F1 measure as well. In particular, the models
were evaluated assessing the quality of the dataset built by the models. This assessment is per-
formed evaluating the accuracy of a very simple classifier (1-NN) on the different datasets built
by the different models. Considering the motivation for these models, the higher the accuracy
of the supervised model is, the better the dataset resulting from the bootstrapping phase, even
if the unsupervised bootstrapping accuracy was low.
5. Evaluation of TaxSOM as stand-alone classification model

The bootstrapping task was conceived as a clustering problem, where the available knowledge
can be used to constrain the training process in order to obtain a classifier. Clearly, the designed
model cannot be compared with any supervised model, since there are no examples providing
supervision. Moreover, it cannot be compared to any clustering algorithm that does not use
the available knowledge. For this reason, two basic models were introduced, allowing for a fair
evaluation of the results of TaxSOM: a baseline classifier and a constrained K-means algorithm.

5.1. The baseline approach

In order to get a fair evaluation of the proposed TaxSOM model, we designed a very simple
algorithm to be used as touchstone. A straightforward classification technique to annotate a tax-
onomy with a set of unlabeled documents is to categorize documents according to the lexical
information associated to the nodes in the taxonomy as done by Yang [31]. Specifically, a refer-
ence vector is built for each node, through the encoding of its labels. The documents are then asso-
ciated to the node having the nearest reference vector (a standard prototype-based minimum error
classifier). In the following, this simple class of keyword matching algorithms will be referred to as
baseline categorization approach.

This classification method uses only lexical information, while topological information is ne-
glected. The exploitation of only a part of the available knowledge implies poor responses. More-
over, any label can be used by various nodes in the taxonomy, and a document can contain many
labels belonging to different nodes. This implies a high degree of ambiguity on the categorization
process, and many documents need to be rejected.

This problem can be partially reduced using topological information as well. Specifically, topo-
logical knowledge can be exploited building codebooks through the encoding of all labels in the
current node and in all ancestors, i.e., all nodes in the path from the root to the current node. In
this way, each codebook encodes the local lexical information and part of the surrounding (con-
textual) lexical information. The idea is that the meaning of a node in a hierarchy of classes is a
specialization of the meaning of its ancestors. Therefore, all keywords used to describe the mean-
ings of ancestors can disambiguate the meaning of a node.

In this way, the rejection is strongly reduced but not completely eliminated. The amount of docu-
ments rejected by the baseline algorithm using the ancestor labels is usually halved with respect
to the one that strictly uses the local information. Moreover, the algorithm gives better results
with higher accuracy when contextual information is used. Hence, the baseline algorithm using
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ancestor labels and rejection was used as a reference model to compare with TaxSOM. For a de-
tailed discussion on the performance of all variations of the baseline approach refers to [2].

Notice that the baseline algorithm that only uses local information is the starting point for Tax-
SOM learning, i.e., the encoding of the codebooks of TaxSOM is equivalent to reference vectors
of the baseline algorithm using local labels.

The comparison of this basic model versus TaxSOM allows the analysis of the influence on the
model accuracy of the exploitation of the similarities between document content.

5.2. The clustering approach

Another way to approach the given task is with the clustering perspective. Differently from the
baseline solution, clustering algorithms take advantage of document content. The main drawback,
however, is the absence of a method to manage the prior knowledge.

One of the most known and used clustering algorithms is K-means. Here, we propose a varia-
tion of standard K-means that allows the use of both the document content and the knowledge
embedded in the taxonomy. In particular, during training each codebook is computed using
Eq. (6), as for standard K-means training. Then, the corresponding node labels 10 are encoded
within the codebooks using Eq. (10). For this reason, the proposed model will be referred to as
constrained K-means.

In the following, the results for constrained K-means using ancestors information are reported,
because it proved to be more effective than the one using only local labels. For a detailed discus-
sion on the performance of the two variations of K-means refers to [2].

Notice that the constrained K-means model that uses local information is a specific instance of
TaxSOM, where the training procedure uses Gaussian neighborhood function with variance
equal to zero. This assures that data is not propagated along the taxonomy. The comparison
of constrained K-means versus TaxSOM allows the analysis of the influence on the classification
accuracy of the contextual information gathered propagating the document content by means of
Eq. (9).

5.3. Experimental results

Table 2 summarizes the experimental results of baseline, constrained K-means, and TaxSOM

models, for all the taxonomies selected from the Google and LookSmart directories. For almost
all measures and taxonomies, the TaxSOM model outperforms the constrained K-means algo-
rithm, which, in turn, typically outperforms the baseline approach. This could be explained with
the line of reasoning expressed in previous sections. Specifically, constrained K-means with contex-
tual labeling starts its learning with the categorization result of baseline, and during training it
improves the internal homogeneity of classes. In a similar way, TaxSOM starts the training algo-
rithm using the results of baseline with local labels, but, instead of an explicit usage of a specific
contextual information, it implicitly uses both labels and topology knowledge.
10 Using either local labels or ancestor labels determines two variations of the constrained K-means model: one uses

the local lexical information; the other one uses the contextual information.



Table 2

Stand-alone comparison of TaxSOM (TS) versus baseline (bas) and K-means (km)

1-Relat. cover. (%) Micro F1 (%) Macro F1 (%)

bas km TS bas km TS bas km TS

Google

Archaeology 83.61 84.43 90.16 27.60 26.00 31.56 58.16 55.98 60.75

Biology 41.41 42.91 80.82 21.75 21.73 37.48 34.01 34.72 71.52

Business 74.18 77.00 84.04 27.01 28.40 30.58 28.99 29.52 36.56

Cooking 68.99 71.66 84.42 19.01 21.90 38.15 28.79 32.59 48.98

Language 58.56 62.06 68.48 28.98 29.18 30.21 37.12 38.52 44.69

Neuro Disorders 88.10 90.00 83.33 47.33 45.34 46.69 54.75 53.17 57.30

News Media 93.10 96.55 100.00 34.29 33.70 39.34 33.97 34.60 39.24

Shopping Health 79.54 81.85 80.69 27.32 28.29 29.88 32.44 33.66 34.59

Technology 69.70 73.88 61.12 26.64 27.49 23.63 32.28 33.39 28.24

LookSmart

Archaeology 66.67 66.67 75.64 26.63 26.65 28.97 31.93 31.85 36.89

Business Soft. 56.88 57.97 60.87 10.94 11.04 14.11 13.91 13.99 15.38

Common Lang. 70.71 70.71 74.29 18.25 18.91 20.11 22.79 22.53 24.56

Health Issues 39.20 40.91 43.56 13.80 14.05 14.81 15.25 15.65 16.00

Linguistics 57.68 57.68 61.13 23.27 23.08 22.30 29.45 29.13 30.65

Movies 85.29 88.24 88.24 26.70 25.81 35.19 34.70 34.29 38.77

Peripherals 61.62 62.63 66.67 19.67 19.90 32.16 20.29 20.64 25.09

Recipes 55.93 58.10 66.11 17.30 17.59 21.22 19.98 19.97 24.48

Videogames 66.67 67.15 70.74 35.40 35.20 36.88 38.11 37.54 40.85

Zoology 67.53 68.62 71.70 23.05 22.68 25.01 31.07 30.50 32.11

Results show that TaxSOM outperforms the other two approaches for almost all taxonomies.
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Analysing the results in Table 2, it appears that the 1–relative coverage of TaxSOM is almost
always greater than baseline and K-means. This means that TaxSOM is able to correctly distribute
the documents along (sometimes many) more nodes in the taxonomy than the other two classifi-
ers. The result is that the probability of annotating all nodes with at least few good examples is
increased. In particular, the k-relative coverage of the taxonomies annotated by TaxSOM is fre-
quently higher than the results of the other two models for any k.

An example of such results is provided in Fig. 4, where two graphs show the k-relative coverage
distributions for the annotations generated with the three models on two different taxonomies.
The two graphs depict the k-relative coverage for the original annotations as well. This shows
the upper bound for any learning algorithm for the given taxonomies. Remember that high k-rel-
ative coverage is good for the bootstrapping task, because it is the premise for an homogeneous
assignment of the documents to the classes. Consequently, it is the premise for a highly accurate
hierarchical supervised classifier.

The macro and micro F1 measures of Table 2 also provide the evidence that TaxSOM is usually
better than baseline and K-means. It is worthwhile to notice that, for all models and for all taxo-
nomies, the macro F1 measure is better that the micro F1 measure. This result shows that all ap-
proaches tend to uniformly distribute patterns over all concepts, increasing the correctness of the
nodes with very few documents. This behavior is further emphasized by TaxSOM, which succeeds
to increase the number of correctly classified documents for those nodes where baseline and
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K-means fail. This is very good for the bootstrapping process, because it results in an increase of
the average coverage and, although a lot of nodes have very few documents, the probability to
annotate all nodes with at least some good examples is increased. This is very important for a sub-
sequent supervised classification.

From the experiments we observed that the misclassified documents can be divided into two
main classes: the class of documents whose terms match many category labels (both correct
and wrong categories), and the class of documents whose terms do not match any of the labels
in the correct category (but only the wrong ones). The explanation of the increased accuracy of
TaxSOM can be explained by the fact that it is very effective in disambiguating the classification
whenever terms occurring in documents match many category labels. On the contrary baseline and
K-means have problems to find the correct labeling of such documents.

We observed that TaxSOM, as for baseline and K-means, is not effective in the classification of
documents that do not include terms matching any of the labels of the correct category. This
problem is related mainly to the dataset. Specifically, in the taxonomies, many nodes have very
few documents and the documents usually have a small number of terms. Hence, the base of
induction is very poor and the detection of category patterns can be very difficult.
6. Evaluation of TaxSOM as part of a complex process

In the previous section, the proposed models were evaluated as stand-alone classification algo-
rithms. In addition, the models need to be evaluated as components of the bootstrapping process.
To assess the quality of these models, considered a preliminary step of the process, the accuracy of
a k-Nearest Neighbor classifier (k-NN) was evaluated on the annotated and cleaned taxonomies.
This type of evaluation was proposed in [1] as well. In particular, because of the small number of
documents per class, the k-NN classifier was applied with k = 1. To test the algorithm, a 10-fold
cross validation method was used. Table 3 summarizes the classification performance of 1-NN,
when the inductive base used is either the result of baseline, or the result of TaxSOM, or the ori-
ginal training set.

For each taxonomy, a 10-fold cross validation was performed. Specifically, 10 experiments were
performed using 90% of documents to train the bootstrapping models. These documents will be
referred to as the bootstrapping set. The wrongly classified documents were then removed, obtain-
ing the training set for the supervised model. Finally, the remaining 10% of documents, referred to
as test set, were classified with the 1-NN algorithm using the training set as inductive base. The
results were then averaged over all 10 experiments. In addition, in order to find an upper bound
to system performance, the 1-NN was also evaluated using the entire bootstrapping set as the
inductive base.

The first important result, shown in Table 3, is that the classification task is rather difficult. In
fact, the standard 1-NN classification using all possible data (bootstrapping set) does not achieve
high accuracy. A clear result is that for both micro and for macro measures classification perfor-
mance with the dataset produced by the TaxSOM annotation tends to outperform the classifica-
tion performance obtained using the baseline labeling of documents.

Finally, another interesting result is that, different from the stand-alone evaluation of the mod-
els, the results of 1-NN with taxonomies of LookSmart are always better than the results with



Table 3

Comparison of the quality of training sets generated by baseline and TaxSOM compared versus the original

bootstrapping set

Micro F1 Macro F1

1-NN (baseline) 1-NN (TaxSOM) 1-NN (90%) 1-NN (baseline) 1-NN (TaxSOM) 1-NN (90%)

Google

Archaeology 26.87 30.85 43.18 27.57 29.52 37.28

Biology 20.64 20.78 27.04 16.77 17.33 21.15

Business 35.26 35.37 37.89 27.90 28.77 29.42

Cooking 18.05 25.76 32.40 19.57 25.03 29.09

Language 24.93 16.93 29.66 16.98 15.97 21.75

Neuro Disorders 34.13 32.65 36.58 31.92 30.96 33.81

News Media 33.97 38.76 42.38 29.17 33.91 40.11

Shopping Health 28.76 31.91 33.86 27.09 29.50 30.03

Technology 24.64 22.46 28.78 22.48 20.57 25.19

LookSmart

Archaeology 36.26 38.26 48.79 39.33 41.18 49.02

Business Soft. 51.07 52.95 54.55 54.52 54.99 54.53

Common Lang. 32.16 34.42 38.84 34.79 36.47 39.00

Health Issues 72.56 72.85 75.03 70.61 70.91 73.15

Linguistics 28.97 29.55 38.52 30.43 30.53 36.22

Movies 41.05 45.66 49.09 46.60 49.89 51.77

Peripherals 49.44 51.00 56.20 47.17 49.10 52.87

Recipes 56.11 57.76 59.50 55.77 56.39 56.69

Videogames 63.47 64.99 63.24 59.97 60.95 61.24

Zoology 31.79 32.61 36.02 33.75 34.35 36.08

Most of the time the dataset generated by TaxSOM is of higher quality than the one generated by baseline.
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taxonomies of Google. This could be explained by the fact that the class descriptions (used in
LookSmart, but not in Google) bias the feature selection process. This does not influence the
training algorithm of the unsupervised models. On the contrary, the supervised classification gains
quality. This because the feature selection is driven by the a priori knowledge inserted by human
experts, which allows for a better description and discrimination of document content.
7. Related work

Supervised classifiers dealing with hierarchies of classes were recently proposed (see for example
[7–9,12,13,18,20,26,27,29]). The common approach is to learn a supervised classifier for each node
(i.e., category) of the taxonomy, and then to combine them according to different policies to ob-
tain hierarchical classifiers. In any case, all different solutions share the same requirement of a
minimum amount of labeled examples for each category. This requirement becomes critical when
applied to complex domains where a huge number of labeled examples is required.

In literature, there are various works that aim at reducing the human effort during the boot-

strapping process. Some works are based on the exploitation of both labeled and unlabeled exam-
ples (see for example [15,17,21,24]). Nevertheless, a first sample of classified documents is
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always required. Moreover, these models do not take advantage of the relationships between the
classes.

An alternative strategy to support the manual labeling of documents is active learning [10,25].
Active learning enables a document selection policy that reduces the end-user effort, focusing the
labeling task on a restricted set of documents. The challenge in this case is to minimize the labeling
effort without affecting the performance of the supervised classifier. However, as for the previous
approaches, a minimum set of labeled examples is required.

The problem we are attacking can be conceived as a clustering task constrained by a given tax-
onomy. There are other initiatives dealing with the hierarchical unsupervised training, such as the
idea promoted in [3], which, however, still needs a small set of labeled examples in advance. More-
over, the topology of the hierarchy is an output of the model.

The creation of a document classifier without any need for labeled example is a challenge also
faced in [28]. The basic idea is to design classifiers that rely on groups of terms which are deter-
mined by extending the concept labels with related terms found in WordNet [14]. This approach,
however, is not context sensitive in the sense that it does not exploit the relational information
within the taxonomy.

An approach satisfying almost all the requirements of the task is proposed in [23]. In this work,
a generative model based on naive Bayes is trained with EM to learn how to classify documents
according to the node labels. Interestingly, the model uses a smoothing technique, referred to as
shrinkage, that allows a partial propagation of information along the hierarchy as well. This prop-
agation partially corresponds to the contextual processing of TaxSOM. The two models differ be-
cause the smoothing parameters in [23] are mainly driven by the content similarity, while
smoothing in TaxSOM is mainly driven by the relationships between classes.

More specifically, both algorithms determine the class distributions according to the similarity
of document content, and the starting point for the training algorithms is driven by the node la-
bels. Moreover, the most probable keywords for any node are determined using both the knowl-
edge of the documents currently classified in the corresponding class, and the information on the
distribution of classes in the neighborhood. While TaxSOM exploits all the classes in the taxon-
omy, the model proposed in [23] only exploits ancestor classes, which are located on the path from
the root node to current node. Since, however, the model proposed in [23] only classifies on the
leaves, the distribution of keywords in interior classes is determined by a subsumption princi-
ple, 11 creating, in this way, ‘‘simulated’’ distributions for interior nodes.

The limitation of this approach is that documents are only classified into the leaves of the tax-
onomy. Besides this, the model uses only a part of the contextual information while classifying.
Specifically, the shrinkage methodology allows the exploitation of ‘‘fake’’ distributions of all
ancestors from the current node to the root.

The approach proposed in this paper pursues the same perspective of the work proposed in [23],
but, instead of a probabilistic framework, the model takes advantage of some interesting features
of SOMs [19]. SOMs have already been used to cluster documents into hierarchies of categories,
and have been applied with success even to the web [7]. Nevertheless, with hierarchical SOMs the
11 The distribution of a interior node is determined using all documents that are classified in any of the leaves of the

sub-tree having the current node as root.
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topology of the categories is a result of the learning process. In our task, on the contrary, the tax-
onomy is an input of the task and it influences the clustering algorithm during the learning.
8. Conclusions and future work

This paper proposes a process that helps a user create and manage a taxonomy of documents.
Specifically, the system starts with an empty taxonomy and, using a set of unlabeled documents,
generates a training dataset to be used for a further supervised classification task. The system can
be described by three phases: a clustering phase that takes a taxonomy and a set of documents as
input and returns a first hypothesis of annotation of the given taxonomy; a filtering step per-
formed by a human expert that removes all wrongly classified documents from the annotated tax-
onomy, certifying the resulting dataset; and a final step where a supervised learning algorithm is
trained with the remaining correct examples.

The main aim of this work was the exploration of the first phase of the process, which is neither
a supervised nor an unsupervised task. When using supervised models, in fact, the target classes
are known in advance, and labeled examples are provided for each target class. On the contrary,
all unsupervised models are based on the assumption that nothing is known and only the similar-
ity of patterns is used to learn a proper organization of classes. For this reason, the bootstrapping
task could be referred to as a special kind of supervised clustering task, since the class descriptions
and their organization are known, while examples are unlabeled.

Various methods are proposed to overcome the bootstrapping problem, such as the standard
prototype-based classifier referred to as baseline, and the constrained K-means approach that,
starting from a baseline result, performs a constrained clustering using document similarities.
Above all, however, the TaxSOM model improves baseline and K-means by implicitly using the
knowledge on the topology of the classes relationships.

TaxSOM showed better results than the other two methods, by analysing both its behavior as a
stand-alone model, and the results of the whole process encapsulating the bootstrapping models.
There are many reasons for such a result, and part of them were previously discussed. However,
we observed some circumstances that can explain when TaxSOM behaves better than the other
models. In particular, we observed that TaxSOM is significantly better than the other models
when document descriptions are made of labels of wrong classes together with labels of the correct
class, i.e., when keyword matching could be ambiguous.

8.1. Future works

Many documents do not contain the labels of the node to which they were originally assigned,
and we have observed that bootstrapping algorithms tend to assign these documents to nodes hav-
ing at least a label in the document. We are trying to tackle this problem by adjusting the lexical
constraints that, in some cases, seem to be too strong.

An ongoing work is a further analysis of the bootstrapping process on web documents down-
loaded from Internet. In this task, many documents are retrieved by a simple query, and some
documents cannot be related to the topics in the taxonomy. Such documents clearly should be
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rejected, both during the preliminary classification and during the supervised classification. In this
case, filtering according to the taxonomy domain needs to be performed.

Notice that in Eqs. (7) and (9) the propagation of information is homogeneous in all directions,
i.e., the smoothing operator equally weights the information coming both from ancestors and
from descendants. This because the TaxSOM topology is a graph with undirected edges. We
experimented propagation schemes more respectful of the parent–child relationships, obtaining
poor results, however. We plan to further explore different propagation schemes.
Appendix A. Google taxonomies

Archaeology Science/Social Sciences/Archeology
Biology Science/Biology
Business Business/Business and Services
Cooking Home/Cooking

Language Science/Social Sciences/Language and Linguistics
Neuro disorders Health/Conditions and Diseases/Neurological Disorders
News media News/Media
Shopping health Shopping/Health
Technology Science/Technology.
Appendix B. LookSmart taxonomies

Archaeology Science & Health/Social Science/Archaeology
Business Soft. Computing/Sales/Software by Type/Business Software
Common Lang. Computing/Computer Science/Programming/Ccommon Languages
Health issues Science & Health/Health/Reference & News/Health Issues
Linguistics Science & Health/Social Science/Linguistics
Movies Entertainment/Movies/Reviews & News
Peripherals Computing/Hardware/Peripherals
Recipes Hobbies & Interests/Food Wine/Recipes
Videogames Computing/Software/Software by Type/Computer & Video Games/Games/

Games by Genre

Zoology Science & Health/Biology/Zoology.
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