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Abstract. Several current support systems for travel and tourism are aimed at providing
information in a personalized manner, taking users’ interests and preferences into account.
In this vein, personalized systems observe users’ behavior and, based thereon, make generali-
zations and predictions about them. This article describes a user modeling server that offers
services to personalized systems with regard to the analysis of user actions, the representation
of assumptions about the user, and the inference of additional assumptions based on domain
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1. Introduction

Computer support for travel and tourism has recently attracted consider-
able interest, both with regard to research and experimental deployment.
Possible assistance for travelers and tourists ranges from web-based travel
planning to stationary information kiosks and then on to location-aware port-
able museum and city guides. Since tourism is intimately connected with
personal interests and preferences, many of the systems developed in this
area aim at providing information in a personalized manner (Abowd et al.
1997; Fink et al. 1998; ILEX 1998; Not et al. 1998; Cheverst et al. 2000a;
Malaka and Zipf 2000; Oppermann and Specht 2000; Poslad et al. 2001).
Personalization means that systems cater to each individual user, thereby
taking e.g. his interests, preferences and background knowledge into account.
As a prerequisite, personalized systems must be able to watch the user’s
behavior and make generalizations and predictions about the user based on
their observations. This information about him is usually collected in a so-
called user model and administered by a user modeling system (Wahlster and
Kobsa 1989; Kobsa et al. 2001).

The work presented here was carried out in the context of the Deep Map
project (Malaka and Zipf 2000; Deep Map 2001) of the European Media
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Laboratory in Heidelberg, Germany. It also benefited from prior experience
in the AVANTI project (Fink et al. 1998). Deep Map is part of a family
of long-term research projects aimed at developing personal web-based and
mobile tourist guides, thereby integrating research from various areas of
computer science: geoinformation systems, data bases, speech input and
output, multilinguality, intelligent user interfaces, knowledge representation,
and user modeling (see (EML 1999; Malaka 1999; EML 2000; Malaka and
Zipf 2000) for more details about the project aims). In order to enable Deep
Map and other components to provide personalized behavior, a model of
relevant characteristics of individual users (namely users’ individual interests
and preferences) and of user groups is acquired and maintained by the user
modeling system of Deep Map.

A central aim of the WebGuide sub-project (WebGuide 2001) is the provi-
sion of personalized tour recommendations for the city of Heidelberg that
cater to an individual user’s interests and preferences. WebGuide identi-
fies geographical points of interest and computes a tour that connects these
points via presumably interesting routes based on the following pieces of
information:

• geographical information about Heidelberg,
• information about points of interest (e.g. the Heidelberg Castle),
• information about selected means of transport (e.g. car or bike),
• individual users’ interests and preferences, and
• tour restrictions specified by the user (e.g. regarding distance and

duration).

Tour recommendations that meet the above requirements are then presented to
the user. Figure 1 depicts two proposals for walking tours that were prepared
for the same user by a first prototype of WebGuide. The tour proposal on the
left side does not take individual user interests and preferences into account,
while the proposal on the right respects particularly the user’s dislike of
environmental burden. While both tours contain the same points of interest
(indicated by black dots), the proposed routes between these points (depicted
by bold lines) partially differ in some areas. In the personalized tour, routes
that are presumably problematic with respect to environmental burden (e.g.
routes along streets with high traffic) are substituted by more appropriate
paths if possible (e.g. by routes through pedestrian zones, parks and forests).

Figure 2 shows prototypes of mobile applications of Deep Map that use
Compaq I-PAQs and Xybernaut’s Mobile Assistant IV (Xybernaut 2001).
These applications are location-aware and can take the user’s position into
account when catering information to him.

The remainder of this paper is structured as follows: In Section 2,
we discuss the requirements for user modeling that we uncovered in this
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Figure 1. A non-personalized and a personalized tour proposal from WebGuide.2

application domain, and give an overview of the generic user modeling
system that we developed in order to meet these requirements. Section 3
describes its central Directory Component, which represents and communi-
cates assumptions about the user. Section 4 presents its current User Modeling
Components, which draw assumptions about the user based on his infor-
mation requests, the interaction behavior of other users, and knowledge about
the application domain. Section 5 describes administrative tools for accessing
the directory component, and Section 6 mechanisms to ascertain privacy and
security. Sections 7 and 8 describe related mobile applications and summarize
the contributions of this paper.

2. Requirements for User Modeling Systems in a Travel Domain

2.1. Requirements analysis

In order to provide user-related information for adaptation purposes, a user
modeling system has to carry out the following central tasks for several users
at the same time (cf. Kobsa 2001a):
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Figure 2. Three mobile applications of Deep Map.3

• learn the interests and preferences of users based on their usage of the
application,

• predict interests and preferences of individual users based on those of
similar users, and on assumptions about homogeneous user subgroups
(so-called “stereotypes”),

• infer additional interests and preferences using domain knowledge,
• store, update and delete explicitly provided information and implicitly

acquired assumptions,
• care for the consistency and privacy of the user model contents, and
• supply authorized applications with current information about the user.

In addition to these relatively generic requirements, we also elicited the
following user modeling requirements in a number of scenario-based design
sessions (Carroll 1995, 2000):
• The user characteristics that need to be taken into account include

interests and preferences, and selected demographic data (e.g. users’
age, gender, and continent of origin).4



USER MODELING FOR PERSONALIZED CITY TOURS 37

• A priori knowledge about users (e.g. from other user-adaptive systems
or smartcards that store users’ interests (Fink et al. 1997)) is generally
not available.

• The explicit acquisition of user information at runtime must be restricted
to a brief initial interview. The emphasis must lie on the implicit (i.e.
unobtrusive) acquisition of user interests and preferences, e.g. from user
feedback, usage data, models of similar users, and inferences based e.g.
on domain heuristics.

• Adaptation should be relatively quick. For instance, the provision of
personalized information and services should already be possible during
the user’s first session with WebGuide. In subsequent sessions, the
system should be able to cater to a user’s changing interests and
preferences.

• Long-term user modeling should be supported (which implies that the
lifetime of individual user models in WebGuide must extend beyond a
single user session).

• Security and privacy, and related technical implications (e.g. scruta-
bility of user model contents by Deep Map users), should be taken into
account.

Other identified requirements result from related user modeling research, or
simply conform to best practice in the design of software systems:

• Easy access to the user modeling system should be possible from
different applications, and different software and hardware platforms.

• Different user model acquisition techniques should complement each
other, and synergistic effects between methods should be exploited. For
instance, an acquisition method that predicts user characteristics based
on similarities between user profiles should be able to take interests
and preferences into account that were explicitly provided by users, as
well as interests and preferences that were implicitly acquired by other
acquisition methods.

• The user modeling system must be open with respect to

– new or evolving user modeling requirements and their implications
for the acquisition and representation of user models, for learning
methods, and for inferences on the basis of user models,

– external data sources about users that may become available in the
future (e.g. P3P profiles (Reagle and Cranor 1999)), and

– tools for user model analysis (e.g. visualization tools, data mining
tools) and associated interface standards like ODBC.

• User models must be upwards compatible between existing and future
Deep Map prototypes.
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• The quality of service of the user modeling system is very important (e.g.
its responsiveness, robustness, and the access management facilities it
provides).

• The management of arbitrary information about Deep Map components
(their configuration, location, etc.) should be possible within the user
modeling system. This enables especially mobile and location-aware
applications of Deep Map to flexibly adapt their services to the available
computing resources (locally available resources on mobile devices are
usually much more limited than server resources through a network).

• The user modeling system should comply as much as possible with
existing and emerging standards and de facto standards (e.g. from
organizations like ISO and IETF).

All these requirements substantially influence the architecture and the proper-
ties of a user modeling system. These demands are however not unusual, but
fairly typical for personalized information systems that are being used in short
interactions only. In the remainder of this paper we will discuss our design of
a user modeling system that meets these requirements.

2.2. Generic user modeling systems

User modeling systems can be constructed in such a way that they are tightly
intertwined with the application system. They are then part of the application,
and their functionality is exclusively geared to the demands of the applic-
ation. Many current personalized systems are designed in this manner (see
the overviews in Carberry 2000; Kobsa 2001b). For the purposes of Deep
Map, a user modeling system was instead developed that is independent of the
specific user-adaptive application with respect to its architecture and the user
model contents, but can be easily configured to meet the special needs of such
applications. This user modeling system falls under the category of generic
user modeling systems and, due to its operation as a server, more specifically
under the category of user modeling servers (Kobsa 2001a). We will from
now use the acronym “UMS” to refer to our user modeling system/server, and
“UMS for Deep Map” to refer to its special configuration for the purposes of
Deep Map.

Existing academic and commercially available user modeling servers were
found to lack with respect to (i) acquisition methods, particularly the integ-
ration of domain knowledge and the mix of methods at deployment time,
(ii) extensibility, and (iii) the integration of user-related information that is
external to the user modeling server (Fink and Kobsa 2000; Kobsa 2001a).
They were therefore not considered as suitable for Deep Map. The user
modeling server that we developed in Deep Map builds on experience from
both previous AI-oriented research prototypes and recent commercial devel-
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opments (cf. Fink 2002, Chapters 2 and 3). Unlike all former user modeling
servers, the UMS does not store user models in knowledge representation
systems or database management systems, but rather in directory manage-
ment systems (or directories for short). Directories employed by the UMS
are based on the LDAP standard (Howes et al. 1999), which in turn is
based on the X.500 standard (ITU-T 1993; Chadwick 1996). In contrast to
special-purpose directories like network operating system directories (e.g.
Novell 2001; Microsoft 2001) or centralized Internet directories (e.g. Bigfoot
2001), LDAP is not limited to a particular purpose, application or operating
system. LDAP contains a large number of predefined user-related information
types and allows for arbitrary extensions. LDAP directories can be distrib-
uted across a network of several servers. The maintenance of multiple and
partial copies at several sites and their automatic replication is possible as
well, which is a major advantage for mobile applications when the network
connection is not fully reliable.

Figure 3 depicts the architecture of the User Modeling System for Deep
Map, which consists of the following two components:
• The Directory Component comprises three subsystems, which care for

the representation of information about the user, for its communication
with the User Modeling Components and the External Clients, and the
mediation of its interaction with the User Modeling Components. The
Directory Component will be described in more detail in Section 3.

• The User Modeling Components perform dedicated user modeling
tasks. In Deep Map, three clients of the Directory Component are
employed: the User Learning Component (ULC) and the Mentor
Learning Component (MLC), each of which learns about the user in
a different manner; and the Domain Inference Component (DIC), which
draws inferences about the user based on domain knowledge. The User
Modeling Components will be discussed in Section 4.

The left side of Figure 3 shows External Clients that are “consumers” and
“producers” of information contained in the UMS, or access the UMS for
administrative purposes. They will be discussed in Section 5. The overall
architecture in Figure 3 is generic, while the specific selection of User
Modeling Components and External Clients as well as the contents of the
representation are specific for Deep Map. The UMS does not mandate
any specific distribution topography, but components of the User Modeling
System can be flexibly distributed across a network of computers depending
on the available computing resources (in Deep Map, however, the Directory
Component and the User Modeling Components normally reside on the same
computer).
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Figure 3. Architecture of the UMS in Deep Map.

3. The Directory Component

3.1. Representation

The task of the Representation subsystem of the Directory Component is
to store various models. The most important ones will be described in
this section. All models hosted by the UMS are based on standard LDAP
object class and attribute definitions. The implementation of the Directory
Component is based on the Directory Server from (iPlanet 2001).

3.1.1. User models
The current version of the UMS for Deep Map hosts a User Model, a Usage
Model, a System Model and a Service Model. Figure 4 depicts three user
models in the left frame, one for Peter Smith, one for George Brown, and
one for a stereotype called Art Lover.5 In general, user models comprise a
demographic part, which is mainly based on standard LDAP object class and
attribute definitions, and a part for users’ interests and preferences. The right
frame of Figure 4 shows the demographic attributes for Peter Smith (his entry
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Figure 4. User models.

is selected in the left frame). Inherited attributes from the object class person
are the common name and the surname (abbreviated cn and sn) and optional
attributes (e.g. an encrypted userpassword). Several other inherited attributes
(e.g. description, telephone number) have not been filled with values for Peter
Smith yet. Other optional attributes (age, continent, sex) have been added to
meet the specific needs of WebGuide.

The major portion of a user model is devoted to users’ interests and prefer-
ences. The topography and terminology of the interest model corresponds
to the domain taxonomy of Deep Map, which is maintained in the system
model (see Section 3.1.3). Figure 5 depicts the user model of Peter Smith with
his Interests being unfolded in the left frame. Interests can be hierarchically
ordered (e.g. interest in Nature comprises interest in Climate, Flora, Fauna,
Scenery, and Environmental Burden).

The interest in Environmental Burden is currently selected. User attributes
and operational6 attributes for this entry are shown in the right frame. The
most important ones are the following:

• classification indicates whether a user’s normalized_probability (see
below) of interest is significantly high, significantly low, or not signi-
ficant. Peter Smith’s interest in Environmental Burden was considered
to be significantly high (as indicated by the keyword “yes”). This
assumption was calculated by the ULC (see Section 4.1 on the ULC).

• individual_probability is an assumption about a user’s interest based on
the types of information she retrieves from the system (see Section 4.1
on the ULC). The probability of Peter Smith’s interest in Environmental
Burden is considered to be quite low (namely 0.04).



42 JOSEF FINK AND ALFRED KOBSA

Figure 5. Interest model of Peter Smith.

• inferred_probability is an assumption about a user’s interest that was
acquired by applying domain inferences (see Section 4.3 on the DIC).
The inferred probability of Peter Smith’s interest in Environmental
Burden is considered medium (namely 0.6).

• normalized_probability rates an individual user’s interest, as indicated
by individual_probability, in relation to the interests of the whole user
population. For Peter Smith, this probability is considered to be fairly
high (namely 0.8) since most other users are presumed to have a much
lower interest in Environmental Burden than him. This assumption was
acquired by the ULC.

• predicted_probability is a prediction about a user’s interest based on his
similarity with other users or stereotypes. In our scenario, Peter Smith
was found to be similar to the stereotype Art Lover (see Section 4.2
on the MLC). This prediction was calculated based on the presumable
interest of this user group in Environmental Burden, and the degree of
similarity between him and this group.

• creatorsname indicates the creator of this entry (i.e. the user or a user
modeling component).

• createtimestamp indicates the time of creation.
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Figure 6. Usage model.

• modifiersname indicates the user who last modified this entry (namely
Peter Smith himself).

• modifytimestamp contains the time at which the last modification
occurred.

For more information on the role of the User Model in the user modeling
process we refer to Section 4 that deals with learning about the user.

3.1.2. Usage models
The Usage Model acts as a persistent storage for usage-related data within the
UMS. It comprises usage data communicated by WebGuide, and information
related to the processing of these data in user modeling components (e.g. a
counter for Peter Smith’s interface events related to Environmental Burden).
In the left frame of the editor depicted in Figure 6, we see the Usage Model
from an administrator’s point of view. It comprises the following parts:
• DMI7 Events Processed includes information that is required for, and

results from, processing usage data contained in DMI Events (e.g. the
aforementioned event counter for Environmental Burden).

• Backup and Backup History may contain events from DMI Events that
have already been processed by user modeling components. The main
motivation for stockpiling interface events is to preserve them for further
processing and analysis, e.g. by employing external visualization and
data mining tools (see Figure 3).

• DMI Events contains usage data communicated by WebGuide. Each
entry in this sub-tree describes a WebGuide interface event in terms of
one or more interests from the domain taxonomy that can be attributed
to the user based on this event. For instance, Peter Smith’s request for
a document about the environmental impacts of tourism is described
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Figure 7. Fragment of the domain taxonomy in the system model.

in terms of an attributed interest called Environmental Burden. The
currently selected entry in the left frame and the associated information
in the right frame illustrate this.

For more information on the Usage Model and its role in the user modeling
process we refer to Section 4.1.2 that deals with learning about the user.

3.1.3. System model
The System Model encompasses information about the application domain
that is relevant for all user modeling components of the UMS. Its most
important content is the mentioned domain taxonomy. In the current version
of the UMS for Deep Map, the System Model comprises the following parts
(also see Figure 7):
• Classifiers contains templates that control the discretization of

continuous attribute values (e.g. for discretizing users’ age into appro-
priate age groups). The MLC uses these templates for preprocessing
attribute values before computing correlations.

• Demographics specifies those attributes (e.g. age) in the demographic
part of a user model that can be used for finding groups of similar users
(see Section 4.2).

• Interests mirror the domain taxonomy of the Deep Map database.
In its current version, the domain taxonomy covers seven areas of
interest (namely Restaurants, Buildings, History, Art, Nature, Sports,
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and Economy). The interest sub-tree comprises five levels with nearly
500 leaf entries. Figure 7 shows a small portion of the domain taxonomy.
Environmental Burden is currently selected in the left frame and its
attributes are shown in the right frame. The attribute value for classifier
specifies the classification template to be used for discretizing interest
probabilities for Environmental Burden. The attributes mentor_finding
and mentor_prediction control whether Environmental Burden should
be included in the mentor finding process and whether predictions based
on similar users should be computed for this interest. Both flags are on
for Environmental Burden.

3.1.4. Service model
Each entry in the Service Model represents a description of a server-internal
event in which a user modeling component is interested. Event subscrip-
tions specify the type of LDAP request that should be monitored (e.g. an
add operation) and reported to one or more user modeling components (e.g.
MLC and DIC). So-called “basefilters” allow one to restrict the portion of the
overall taxonomy that must be monitored (e.g. merely DMI Events). Events
can be triggered before and after an LDAP operation is executed by the server.
Post-notifications allow a user modeling component to react to the outcome
of an LDAP operation (e.g. start processing an interface event that has been
added to DMI Events). Pre-notifications allow a user modeling component
to be invoked beforehand (e.g. carrying out consistency checks on interface
events that have been added to DMI Events). The following LDAP operations
can be tracked by the Scheduler before and after execution: bind, unbind,
search, modify, add, delete, rename, compare, and abandon. User modeling
operations that are implemented as extensions to the LDAP protocol (e.g. for
creating and deleting user models) can also be monitored and communicated
to user modeling components.

3.2. Communication

Communication between external UMS clients and the Directory Component
is possible via three different interfaces, namely FIPADM , LDAP, and ODBC
(see Figure 3). In the following sub-sections, we briefly describe each of
these interfaces. Within the UMS, an additional level of communication
is based on the Common Object Request Broker Architecture (CORBA,
Pope 1997; OMG 2001). In Figure 3, the CORBA Object Request Broker
(ORB) is depicted on the right side of the Directory Component as a soft-
ware bus that mediates between the Directory Component and the User
Modeling Components.8 For more information on this additional level of
communication, we refer to Section 3.3.
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3.2.1. FIPADM interface9

Autonomous software agents that communicate via high-level messages
significantly reduce the coupling between different modules (as opposed
to the rather tight coupling between modules when employing established
component frameworks like COM and RMI). An agent-based architec-
ture hence facilitates evolutionary software development and was therefore
adopted in Deep Map. The main aim of the FIPADM interface is to mediate
between Deep Map’s messageoriented communication framework and the
functionally structured LDAP interface of the UMS. Messages from Deep
Map modules to the UMS are translated into one or more calls to the LDAP
interface of the UMS and vice versa. Proactive communication can also be
established by the UMS (e.g. the UMS alerts WebGuide that a user’s interest
in buildings has significantly increased).

3.2.2. LDAP interface
Native LDAP connectivity is provided by the directory server. In order to ease
model management (e.g. creation and deletion of user models), several exten-
sions to the LDAP protocol have been implemented using LDAP’s extended
operation facilities. The rationale behind this was to relieve administrators
and applications from laborious and error-prone tasks (e.g. creating the initial
topography for new user models, setting appropriate default access control
rights, and populating new user models with default assumptions). Another
reason was to centralize the execution of those management tasks that are
critical for model consistency (e.g. new user models should become correctly
initialized even in the case of software and hardware errors).

3.2.3. ODBC interface
The ODBC interface to the UMS allows one to (i) define relational mappings
for the hierarchical LDAP representation used within the UMS, (ii) access
these mappings from a variety of applications via ODBC, and (iii) periodi-
cally monitor user model content for certain conditions (e.g. creation of
new user models, change of user model content). Appropriate actions can
be invoked in such a case (e.g. a re-computation of user group models in
a background process when user model contents change). Due to the wide
support for ODBC on Windows-based software platforms, the ODBC inter-
face also enables many desktop applications and a variety of data analysis
and visualization tools to directly access the models hosted by the UMS (see
the discussion of the External Clients in Section 5).
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3.3. Scheduler

The main task of the Scheduler is to mediate between Directory Server and
the user modeling components. User modeling components can subscribe to
certain types of UMS events by maintaining event subscriptions in the Service
Model (see Section 3.1.4). This limits communication traffic and allows one
to freely add or remove user modeling components at runtime, and even to
dynamically migrate them across a network of computers. After the launch
of the UMS, the Scheduler loads event subscriptions from the Service Model.
Subsequently, the Scheduler supervises LDAP events within the UMS and
communicates these events and associated data to user modeling components
that match their subscriptions.

A second task of the Scheduler is the provision of LDAP-compliant user
modeling functionality (e.g. for creating and deleting user models) since there
is no adequate support for these tasks in the standard LDAP protocol. In the
case of, e.g. the creation of a new user model, this comprises the execu-
tion of several standard LDAP operations in a particular order, namely (i)
checking for an already existing model, (ii) establishing the basic topography
of a new model, (iii) setting appropriate access rights, and (iv) populating
the model with default values. Moreover, rollback mechanisms have to be
provided that preserve model consistency in case of potential problems
during the creation process. Centralizing these administration tasks in the
Scheduler solves many consistency problems and relieves administrators and
application programmers from laborious and error-prone administration and
programming tasks.

As an example, assume that the Scheduler communicates the addition of a
usage event to the ULC. Figure 8 gives an overview of the consequences for
the most important components, namely the directory server, the Scheduler,
and the ULC:

• A user’s request for a hypermedia document results in the communica-
tion of an event vector to the UMS that includes the term Environmental
Burden.10 The vector is inserted into the Usage Model via an LDAP add
operation. An event subscription that the ULC had stored in the Service
Model requests the Scheduler to communicate add operations after their
execution by the Directory Server. In observance of this, the event vector
is first stored in the DMI Events part of the Usage Model (see Section
3.1.2).

• Subsequently, the add event is handed over to the Scheduler, which
starts scanning its internal subscription tables for matching entries. The
event type and the basefilter of the ULC subscription match the current
event; hence the Scheduler prepares this event for communication to
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Figure 8. Scheduling scenario.

the ULC (in the case of several matching subscriptions, the event is
communicated to all subscribers).

• The Scheduler communicates the add event and associated data (mainly
the event vector) to the ULC, thereby following the processing specifi-
cation contained in the subscription.

• The Scheduler reports the successful completion of all operations to
the directory server, and controls the further processing of the LDAP
operation (e.g. in the case of communication problems between the
Scheduler and the ULC, the Scheduler can instruct the directory server
to communicate this problem to the client that invoked the initial
operation).

4. User Modeling Components

On the right side of Figure 3, we find the user modeling components that are
currently implemented in the UMS for Deep Map (other components could
be added as desired):
• The User Learning Component (ULC) learns user interests and prefer-

ences from usage data, and updates individual user models.
• The Mentor Learning Component (MLC) predicts missing values in

individual user models from models of similar users.
• The Domain Inferences Component (DIC) infers interests and prefer-

ences in individual user models by applying domain inferences to
assumptions that were explicitly provided by users or implicitly acquired
by the ULC and the MLC.

We will describe each of these components in more detail in the following
sub-sections.



USER MODELING FOR PERSONALIZED CITY TOURS 49

4.1. User learning

A very active strand of user modeling research at present is devoted to
learning users’ interests based on relevant features of objects that users have
viewed, rated, put in electronic shopping carts, bought, etc. The resulting
assessment is often used for recommending and filtering objects (cf. Oard
1997). This kind of filtering is called feature-based filtering (or sometimes
content-based filtering),11 since it is based on object features. For instance,
assume that users’ interest in movies is determined by movie features like
genre, actors, director, etc. A learning algorithm would then attempt to learn
a user’s preferences with respect to these features based on his or her inter-
action history, and thereafter rate new movies as to whether or not they
are presumably interesting to this user. The result can be exploited, e.g.
for recommending movies that the user will presumably rate highly, and
for supplying and emphasizing features about movies that are presumably
relevant for the respective user.

4.1.1. Prior work
Plenty of work has already been carried out in the area of learning about
users’ interests. An early system by (Jennings and Higuchi 1993) employed
neural networks for filtering Internet news before presenting them to users.
Other work includes Fab (Balabanovic 1997; Balabanovic and Shoham
1997), Letizia (Lieberman 1995) and Labour (Pohl et al. 1999; Schwab and
Pohl 1999; Schwab et al. 2000). While these early systems used a single
technique for a specific learning task, some recent research evaluated the
application of multiple techniques to the same information filtering tasks
(Pazzani and Billsus 1997; Breese et al. 1998; Herlocker et al. 1999). In
Syskill and Webert (Pazzani and Billsus 1997), for example, several machine
learning techniques (namely the nearest-neighbor algorithm and its PEBLS
variant (Cost and Salzberg 1993), induction of decision trees with algorithms
like ID3 (Quinlan 1986), two neural network approaches, and the naive
Bayesian classifier (Duda and Hart 1973) were evaluated regarding their
performance and accuracy in acquiring interest profiles from explicit user
ratings on a set of biomedical documents. Based on this evaluation, the
naive Bayesian classifier was chosen as the default algorithm for Syskill
and Webert. Further improvements regarding learning accuracy have been
achieved by emphasizing those features that are particularly relevant for clas-
sifying biomedical documents (e.g. by letting the user select and rate the
importance of document features for classification).

Many of the algorithms discussed in the literature (e.g. those evaluated for
Syskill and Webert) had to be discarded in this project due to their reliance
on negative evidences of user interest. Users are known for not giving very
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much feedback on the appropriateness of presented items, particularly not
negative feedback (see the discussion in Schwab et al. 2000; Schwab and
Kobsa 2002). Some systems like Letizia (Lieberman 1995) compensate this
by regarding those options (namely web links) that users did not select as
evidences of their non-interest. This however seems hardly appropriate for
web-based systems. If a user clicks on some links on a web page but not on
others, this does not imply that the other links are not interesting to him. This
is especially true in cases where a web page does not fit on a computer screen,
e.g. due to screen size, resolution, or excessive page length. There is evidence
in the hypermedia literature that the parts of a hypermedia page that do not fit
on a physical screen (and thus require scrolling to be seen) are only viewed
by a relatively small number of users (Nielsen 1996). For all these reasons,
we decided to use learning algorithms that solely rely on positive evidences
of user interest.

4.1.2. Method
Of those algorithms that have been developed and evaluated in the literature to
determine whether a user is interested in specific object features, we selected
the univariate significance analysis (cf. Mitchell 1997; Schwab and Pohl
1999). The main reason for this choice is the ability of this algorithm to
• learn incrementally, which allows for keeping up with users’ changing

interests and preferences,
• represent learning results explicitly, which allows for leveraging syner-

getic effects between different learning methods explicitly,
• employ a domain taxonomy, which can considerable improve the

learning process (both in terms of computational complexity and the
quality of the learning results),

• rely on positive learning examples only, which relieves WebGuide from
having to request or infer negative evidences of user interest, and

• demonstrate scalability, e.g. when the number of users, system’s usage,
and document features increase.

Univariate significance analysis is a statistical technique that is based on the
assumption that the occurrence of identical object features in the navigation
histories of users is normally distributed (see Figure 9).12 If a feature appears
in an individual user’s navigation history less frequently than in a random
sample, the user can be considered not to be interested in it. If a feature
appears more frequently than in a random sample, the user can be assumed
to be interested in this feature. In order to determine those non-interests and
interests that are statistically significant, we introduce two confidence limits
cl and cu for the lower and upper limit, respectively. If the actual number
of feature occurrences in a user’s navigation history is above cu or below cl,
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Figure 9. Normal distribution of users’ interest in a given object feature.

Figure 10. Classification of a user’s interest.

we classify him as being interested in this feature or as not being interested,
respectively. If the value is between the two limits, then no assumption is
justified. The three cases are depicted in Figure 10.

ULC maintains the following assumptions about a user’s interest in an
object feature:
• the probability of the user’s interest based on feature occurrences in his

navigation history (henceforth called individual probability pi),
• the probability of the user’s interest based on feature occurrences in his

navigation history in relation the occurrences distribution for all users
(henceforth called normalized probability pn), and

• a classification whether the user can be considered to be significantly
interested in an object feature or whether this assumption is not justified.

4.1.3. Usage scenario
In the following scenario, we want to determine whether and to what extent
Peter Smith is interested in the feature Environmental Burden. WebGuide
sends event vectors containing this feature to the UMS, e.g. whenever a user
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requests documents that discuss environmental burden in Heidelberg. We
further assume that the UMS already collected in its Usage Model n = 216
occurrences of Environmental Burden for all users, and a total of N = 715
occurrences of all features for all users. Thus, the probability p to randomly
select this feature is

p = n

N
= 216

715
= 0.3 (1)

We further assume that WebGuide reported Na = 30 event vectors for Peter
Smith and that na = 15 of them contained the feature Environmental Burden;
hence, the individual probability pi for this feature being contained in Peter
Smith’s event vectors is

pi = na

Na

= 15

30
= 0.5 (2)

Based on this, the ULC calculates the normalized probability pn for Peter
Smith as follows:

pn = 1

1 + e − 0.4 · na−p·Na√
p·(1−p)·Na

= 1

1 + e − 0.4 · 15−0.3·30√
0.3·0.7·30

= 0.72 (3)

In order to determine whether or not a user’s interest is statistically signi-
ficant, we introduce two confidence limits cl and cu:

cl/u = µ ∓ z · √
p · (1 − p) · Na (4)

µ is the means of the distribution and equals the overall probability p multi-
plied by the total number of users’ event vectors (p · Na), while z is the critical
value. It determines the area under the standard normal distribution that falls
within the confidence interval. For a confidence rate of 95%, the critical value
z is 1.96. This means that 95% of random samples fall within this interval
and 5% lie outside. In order to increase the confidence, we have to increase z

accordingly (e.g. for a confidence of 99%, z is 2.576).
The ULC calculates the 95% confidence limits for classifying Peter

Smith’s interest in Environmental Burden as follows:

cl = 0.3 · 30 − 1.96 · √0.3 · 0.7 · 30 = 4.08 (5)

cu = 0.3 · +1.96 · √
0.3 · .07 · 30 = 13.92 (6)

After rounding, cl and cu can be interpreted as follows with respect to Peter
Smith’s interest in Environmental Burden:
• If there are 4 or fewer events with this feature, he can be considered to

have no interest in it.
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• If the number of events is 14 or above, he can be considered to be
interested in this feature (this is the case in our example with na = 15).

• Otherwise, we cannot assume a significant interest or non-interest of
him.

After computing these probabilities and classifying Peter Smith’s interest,
the ULC checks whether his user model already contains an entry for Envir-
onmental Burden and whether the attributes individual_probability, norma-
lized_probability, and classification are present. If the entry Environmental
Burden exists, the ULC checks whether Peter Smith (or an administrator on
behalf of him) recently inserted or modified this entry, as reported by the
attributes creatorsname and modifiersname (see Section 3.1.1). Based on the
outcome of these checks, the ULC proceeds as follows:
• If there is no entry for Environmental Burden, the ULC inserts it.

If necessary, the ULC also inserts the superordinate concepts from
the domain taxonomy (e.g. the more general interest in Nature, see
Figure 5).

• If Peter Smith (or an administrator on behalf of him) recently inserted
or modified assumptions about his interest in Environmental Burden, an
update of these assumptions is not performed. The rationale behind this
is that the ULC gives higher priority to user-initiated modifications than
to system-initiated ones (a similar prioritization can be found, e.g. in
(Kay 1995; Kobsa and Pohl 1995). Trust in a source is thereby given
priority over recency of information when resolving the conflict between
an existing user model entry and a newly acquired assumption.13

• If an entry about the user’s interest in Environmental Burden is already
present in the user model and does not strongly differ from the new
system-generated value, the update (which is relatively costly in terms
of system resources) is also not performed.

4.2. Mentor learning

A different approach to the prediction of unknown characteristics of the
current user (particularly his interests and preferences) is to compare him with
similar users. This approach has been called “collaborative filtering” (Gold-
berg et al. 1992) and more recently also “clique-based filtering” (Alspector et
al. 1997; Kobsa et al. 2001).14 The employment of this technique in our UMS
compensates for some shortcomings of the approach pursued in the ULC,
namely frequency analysis and classification of feature occurrence (see also
Herlocker et al. 1999; Billsus and Pazzani 2000; Kobsa et al. 2001):
• The user must have been interacting with the user-adaptive system for

a while before the ULC can determine user interests based on feature
occurrence. This may be a critical restriction, e.g. in applications where
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a user model is maintained during a single session only and in scenarios
where users expect immediate personalized services in return for, e.g.
granting permission that their personal data may be stored and processed
for adaptation purposes.

• Content-based features may not be the main determinants for users’
interest in objects. This is particularly true when users’ personal tastes,
esthetical judgements, etc. come into play.

4.2.1. Prior work
Early work on the inclusion of models of similar users into the user modeling
process was carried out by, e.g. (Orwant 1995). His system “Doppelgänger”
is a user modeling server that periodically (like every night) applies a clus-
tering algorithm to models of individual users. Clusters found during this
process are represented in models of user groups. As is the case with stereo-
type methods (see e.g. Rich 1979; Rich 1983; Rich 1989), information from
group models can henceforth be employed when information in individual
models is missing. An important difference to stereotype reasoning is that
changes in individual user models can be taken into account by regularly
re-applying the clustering procedure. (This is not likely to occur often since
clustering is computationally expensive (Fisher 1987, 1996) and in practice
needs to be supervised by experts who analyze the clusters and iteratively
refine the clustering process). More recently, (Paliouras et al. 1999) followed
a dual approach by integrating stereotypes that had been acquired in a super-
vised learning stage and clusters acquired in an unsupervised learning stage
from individual user models. As opposed to (Fisher 1987), however, (Pali-
ouras et al. 1999) did not report problems stemming from the computational
complexity of their clustering processes.

A computationally more manageable and currently prevalent group of
algorithms for clique-based filtering is a correlation-based neighborhood
approach (see, e.g. (Resnick et al. (1994); Hill et al. (1995); Shardanand and
Maes (1995); Konstan et al. (1997))). Its basic idea is to first select a subset of
users that are similar to the current user based on known characteristics, and
to subsequently compute predictions for unknown characteristics based on a
weighed aggregate of their ratings. Alternative algorithms for clique-based
filtering include Bayesian networks, vector-based similarity techniques, and
induction rule learning (see Breese et al. 1998; Herlocker et al. 1999) for
an overview and evaluation). Bayesian networks are reported to compute
predictions faster and to have less resource requirements than correlation-
based approaches. They require however a dedicated learning phase before
they can be employed for clique-based filtering (i.e. they cannot learn incre-
mentally in real time). Deployed to real-world scenarios, this implies that
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the “learning phase (. . .) can take up to several hours and results in a lag
before changed behavior is reflected in recommendations” (Breese et al.
1998). Such a system behavior seems inappropriate for the usage scenario of
WebGuide (see Section 2.1) and hardly appropriate for many other real-world
user modeling scenarios.

4.2.2. Method
We decided to employ Spearman correlation for determining the proximity
between users in the MLC, which is based on ranks rather than values.
Although this approach requires an initial classification step for several
attribute types (e.g. characters, strings), it considerably increases at the
same time the number of user characteristics that can be leveraged for
finding similarities (including e.g. demographic attributes like sex and age).
Another advantage of Spearman correlation is that it does not rely on model
assumptions (e.g. regarding the probability distribution of attribute values), as
opposed to the widely used Pearson correlation (Breese et al. 1998; Herlocker
et al. 1999). The overall mentor learning process is then carried out in the
following three steps.

a) Finding similar users
Similarity between two users is determined by computing the (linear)
Spearman correlation coefficient for the two user models:

wa,u =
∑m

i=1(ranka,i − ranka)(ranku,i − ranku)√∑m
i=1(ranka,i − ranka)2

√∑m
i=1(ranku,i − ranku)2

(7)

wa,u thereby is the similarity weight for the active user a and a neighbor u
based on m assumptions that are available for both a and u. ranka,i represents
the rank of the value of assumption i for user a. ranka is the mean rank for
all assumptions about user a. The transformation of values into ranks uses the
classifiers that are contained in the System Model (see Section 3.1.3), thereby
replacing values by class means.

b) Selecting mentors
Once the Spearman correlation coefficients have been computed for a given
user, a relatively small number of most similar neighbors (the so-called
mentors) must be selected from the set of similar users. In general, predic-
tion accuracy increases with an increasing neighborhood. The increment in
accuracy was however often found to decrease and even to turn negative
at some point when adding more neighbors (Shardanand and Maes 1995;
Herlocker et al. 1999; Sarwar et al. 2000). From a performance point of
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view it also seems advisable to restrict the number of potential neighbors to a
reasonable number in real-world environments with ten thousands of users.

The current version of the MLC can be configured to use correlation-
thresholding or a best-n-neighbors approach when selecting mentors.
Correlation-thresholding selects all those neighbors as mentors that have a
correlation coefficient greater than a predefined threshold (Shardanand and
Maes 1995). Depending on the situation, however, there may be too few or
too many mentors remaining. The best-n-neighbors approach is to pick a fixed
number of most similar neighbors as mentors. If there are only few highly
correlated neighbors, this approach may select many neighbors as mentors
whose correlation is low, thereby possibly reducing the prediction accuracy.
In case of many highly correlated neighbors, neighbors may also be excluded
that could have added to the accuracy of the prediction. The current version
of the MLC for Deep Map uses the best-n-neighbors approach (with n = 20)
as a default, which showed a good performance with regard to coverage and
accuracy15 in the empirical evaluation of (Herlocker et al. 1999).

c) Computing predictions
A variety of approaches have been discussed in the literature for computing
predictions from a set of mentors. In MLC, an assumption i about the
active user a is predicted using the following deviation-from-mean approach
(Resnick et al. 1994; Konstan et al. 1997) over the selected mentors (n is the
number of mentors, wa,u is the similarity weight for the active user a and a
mentor u):

Pa,i = ranka +
∑n

u=1(ranku,i − ranku) · wa,u∑n
u=1 wa,u

(8)

The deviation-from-means approach takes into account that users’ means may
vary. Therefore, u’s ranks are normalized by their means, and the prediction
for a is normalized by a’s means. If no mentors were found for a given user,
we compute the prediction as the average of the deviation-from-means across
all users, that is,

Pa,i = ranka +
∑n

u=1(ranku,i − ranku)

n
(9)

This approach exhibited a good coverage and accuracy in the evaluations by
(Herlocker et al. 1999) and performed much better than the following simple
means across all users:

Pa,i =
∑n

u=1 ranku,i

n
(10)
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In MLC, this simple means is only used when the User Model of the current
user does not yet contain any assumptions at all (neither ones that were
explicitly provided by the user, nor ones acquired by the ULC).

In summary, the method for clique-based filtering that is employed in
MLC,
• allows for incremental learning and can thus keep up with a user’s chan-

ging interests and preferences (cf. Section 4.1.2 for a discussion of the
same quality in ULC),

• represents learning results explicitly (also cf. Section 4.1.2 for ULC),
• is able to adapt to a variety of user modeling needs (e.g. it allows

designers to differentiate between mentors and stereotypes and to assign
different weights, and can integrate algorithmic extensions like default
voting, inverse user frequency, and case amplification (Breese et al.
(1998))), and

• performs well in terms of predictive coverage and accuracy, responsive-
ness, and resource consumption.

4.2.3. Usage scenario
Table 1 shows part of the interest models of the fictitious users Joe, John and
Al. Their models already contain many assumptions about the probability of
their interest in different types of buildings in Heidelberg. This information
has been either explicitly provided by them or acquired by the ULC from
WebGuide usage data. During design time, the user model developer had
also defined a stereotype “Art Lover” with some presumably typical char-
acteristics of art lovers, and made it available to the MLC. At this point
it was unclear though whether an interest in bridges can be attributed to
this user group. Therefore, the designer decided to let the MLC predict this
interest at runtime, based on the similarity of the stereotype to models of
individual users. Another missing piece of information is the probability of
John’s interest in mansions.

Before computing the Spearman correlation, the MLC has to convert
the interest probabilities into ranks, thereby utilizing the classifier for the
respective interests in the System Model. Table 2 depicts the resulting interest
models with associated mean ranks for the case in which the classifier divides
the interval (0,1) into ten equal classes.

In order to find similar users, the MLC calculates the Spearman correlation
coefficients for all pairs of users. The result is shown in Table 3.

The next task for the MLC is to select mentors for John and Art Lover from
their neighborhoods. Applying a correlation threshold of 0.3 to the correlation
coefficients, the MLC cannot find an appropriate mentor for John since Al’s
similarity seems too weak16 and since Joe and Art Lover even exhibit interest
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Table 1. Initial interest models.

Users Interests

Churches Restaurants Mansions Bridges

Joe 0.80 0.30 0.90 0.70

John 0.30 0.90 ? 0.50

Al 0.30 0.40 0.70 0.30

Art Lover 0.90 0.10 0.90 ?

Table 2. Initial interest models with ranked user interests.

Users Interests Mean

Churches Restaurants Mansions Bridges

Joe 0.85 0.35 0.95 0.75 0.73

John 0.35 0.95 ? 0.55 0.62

Al 0.35 0.45 0.75 0.35 0.48

Art Lover 0.95 0.15 0.95 ? 0.68

Mean 0.63 0.48 0.88 0.55

Table 3. Spearman correlation coefficients.

Wa,u Joe John Al Art Lover

Joe 1.000 –0.813 0.352 0.986

John 1.000 0.235 –0.882

Al 1.000 0.249

Art Lover 1.000

probabilities that are nearly the opposite of John’s. For the stereotype Art
Lover, the MLC identifies Joe as a very good mentor. Al and John are not
considered, since their correlation coefficients are below the threshold.

Finally, the prediction algorithm can be selected and predictions can be
computed. Since no mentor has been found for John, the MLC calculates
the prediction for his interest in mansions as a deviation-from-mean average
across all users. The interest in bridges for the stereotype Art Lover can be
predicted as a deviation-from-mean with Joe as the only mentor. Table 4
shows the resulting complemented interest models.
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Table 4. Interest models including predictions.

Users Interests

Churches Restaurants Mansions Bridges

Joe 0.80 0.30 0.90 0.70

John 0.30 0.90 0.89 0.50

Al 0.30 0.40 0.70 0.30

Art Lover 0.90 0.10 0.90 0.68

4.3. Domain inferences

4.3.1. Method
The Domain Inference Component (DIC) complements the user modeling
functionality provided by the ULC and the MLC by applying domain-based
inferences to individual user models. User interests that were explicitly
provided by users or implicitly acquired by the ULC and MLC can give rise
to additional assumptions about interests of this user by making inferences
that are based on the hierarchical structure of interests (cf. Section 3.1.1):

– Sidewards propagation: if the user is interested in a minimum percentage
s of direct sub-interests of a given interest, then the user is assumed to
be also interested in the remaining subinterests, with a probability that
equals the means of the probabilities of the current subinterests;

– Upwards propagation: if the user is interested in a minimum percentage
u of direct sub-interests of a given interest, then the user is presumed
to also hold this interest, with a probability that equals the means of the
probabilities of the current sub-interests (cf. Kobsa et al. 1994).

By using domain inferences, individual user models can become populated
more quickly with additional assumptions, and applications like WebGuide
can come up with personalized information and services sooner. Compared
with mentor learning, domain inferences also need relatively few resources.

4.3.2. Usage scenario
We briefly exemplify the domain inferences carried out by the DIC using a
hypothetical scenario from WebGuide. We assume that the interest part of
Nathan’s user model comprises assumptions about his interests in buildings
and architectural styles in Heidelberg. Based on Nathan’s interaction with
WebGuide (he previously browsed through several documents about buil-
dings and monuments in Heidelberg), the ULC and the MLC acquired several
normalized and predicted probabilities (abbrev. pn and pp) for Nathan’s
presumable interests. The initial state of his profile is depicted in Table 5.
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Table 5. Initial state of Nathan’s user model.

Nathan’s interest in . . .

Architecture

Buildings Styles

Churches Restaurants Mansions Bridges Gothic Romanesque Baroque

pn = 0.9 pn = 0.1 pn = 0.5 pn = 0.3 pn = 0.5

pp = 0.75 pp = 0.75

The DIC, which is subscribed to additions by the MLC (see Section
3.3), now starts applying its domain inferences. This process is controlled
by several configuration parameters in the Service Model, including the
following ones:
• upwards propagation is enabled,
• sidewards propagation is enabled,
• a threshold of s = 75% is set for sidewards inferences,
• a threshold of u = 60% is set for upwards inferences,
• a weight of 100% is assigned to interest probabilities predicted by the

ULC, and
• a weight of 70% is assigned to interest probabilities predicted by the

MLC.
The percentage of direct sub-concepts of Buildings in which the user is
interested is 75%, which is equal to s and greater than u. Since both upwards
and sidewards inferences are enabled, the DIC calculates the probability
of Nathan’s interest (abbrev. pi for inferred probability) in Buildings and
Mansions as follows:

pi =
0.9+(0.75·0.7)

1+0.7 + 0.1 + 0.5

3
= 0.48 (11)

The percentage of direct sub-concepts of Styles in which the user is interested
is 66%, which is smaller than s but greater than u. The DIC therefore does
not compute a probability for Baroque style. Nathan’s presumable interest in
Styles in general is calculated as follows:

pi = 0.3 + 0.5+(0.75·0.7)

1+0.7

2
= 0.45 (12)

Finally, the percentage of direct sub-concepts of Architecture in which the
user is interested is 100%. The DIC calculates the presumable interest in
Architecture as a simple means of the inferred interests in Buildings and
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Table 6. Final state of Nathan’s user model.

Nathan’s interest in . . .

Architecture

pi = 0.47

Buildings Styles

pi = 0.48 pi = 0.45

Churches Restaurants Mansions Bridges Gothic Romanesque Baroque

pn = 0.9 pn = 0.1 pi = 0.48 pn = 0.5 pn = 0.3 pn = 0.5

pp = 0.75 pp = 0.75

Styles and updates the user model. Table 6 depicts the final state of Nathan’s
user model.

5. External Clients

External clients provide information about the user to the UMS, and retrieve
current information about the user from the UMS. Currently, the following
types of external clients are used in Deep Map or are considered to be added
in the future:

a) Deep map agents
Deep Map Agents are autonomous software components that provide tour
recommendations, analyze spoken input and generate speech output, interface
the World Wide Web, etc. Deep Map Agents loosely adhere to the FIPA agent
specifications, particularly to (FIPA (1998a); FIPA (1998b)).17 They
• communicate to the UMS various data about the user’s interaction with

the system (e.g. user requests for information on Environmental Burden
in Heidelberg, or gothic works of art in a specific church);

• communicate to the UMS various data about user characteristics (e.g.
users’ demographic data);

• query the UMS for user characteristics (e.g. retrieve from the model
of the current user an assessment regarding his interest in information
about the Early Middle Ages, or retrieve all interests and preferences
with probability greater than 0.7); and

• query the UMS for information about the system environment (e.g.
which user modeling components are currently available, or where Deep
Map sub-systems are currently located).
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b) LDAP browsers
System administrators carry out user model management tasks (e.g. configu-
ring UMS components, assigning access control, maintaining assumptions
in models of individual users) via an LDAP browser. Within its interface,
standard LDAP operations (e.g. adding, updating, and removing entries) can
be applied to the models hosted by the UMS. Additional tools can be used
for administering the UMS, like for instance commercially available access
control management tools (Baltimore 2001; Netegrity 2001).

c) LDAP-compliant applications
Users and applications that take advantage of the UMS can inspect user model
contents (e.g. search for a specific user, list all individual interests) using
a variety of LDAP-compliant applications. Numerous types of applications
are already available, including web browsers, e-mail clients, standard LDAP
browsers, HTML-based user interfaces, and server applications that cooperate
with LDAP servers. Development kits for customs applications are available
as well. For a product listing we refer to (Fink 2002).

d) Analysis and visualization tools
The collective content of the user profiles in the UMS constitutes a valu-
able source of information about characteristics of the whole user population.
Numerous data mining (Woods and Kyral 1997) and data visualization tools
(Card et al. 1999) have been developed during the past few years that facili-
tate the discovery of interesting patterns, regularities, outliers etc. in such
data. While originally developed outside the user modeling community, many
data mining tools have been recently applied to user modeling tasks as well,
e.g. for the segmentation of customer bases using clustering algorithms, for
the analysis of customers’ shopping behavior based on past purchase data
by learning decision rules, and for learning relevant characteristics of users
who typically respond to certain advertisements by training neural networks
(Woods and Kyral 1997). The ODBC interface of the Directory Component
greatly facilitates the interaction with such tools.

We anticipate that in the future such tools will also be employed for
assessing the adequacy of user modeling techniques. This can be accom-
plished, for example, by applying competing data mining algorithms to user
model contents and evaluate their results with respect to key dimensions like
performance, coverage, accuracy, sensitivity, and specificity (cf. Herlocker et
al. 1999).
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6. Access Control

Access control grants or rejects access to a user model, thereby enforcing a
predetermined security and privacy policy. Access is granted and/or denied
for objects (e.g. users, user groups, roles, applications, components of the
user modeling server), which carry out specific operations (e.g. read, modify,
delete) on subjects (e.g. models of individual users, models of user groups,
single assumptions in these models). The process of granting access is some-
times also called “(positive) authorization”. Over the past two decades, quite
a few access control models have been proposed which authorize, e.g.,
• explicitly (e.g. through dedicated access control rules) or implicitly (e.g.

through specialization from more general access control rules),
• positively (i.e. granting access) or negatively (i.e. denying access),
• strongly (i.e. an authorization cannot be overridden) or weakly (i.e. a

general authorization can be overridden by a more specific authori-
zation), and

• by positive defaults (i.e. authorization is granted if not explicitly denied)
or negative defaults (i.e. authorization is denied if not explicitly granted).

For an overview of access control models, we refer e.g. to (Castano et
al. 1995; Howes et al. 1999) and, more related to user modeling systems,
to (Schreck 2001; Kobsa and Schreck 2002). Two of the academic user
modeling servers developed so far provide basic support for access control.
Doppelgänger (Orwant 1995), the older of the two systems, takes advantage
of the Kerberos18 system for authenticating objects and provides authori-
zation based on access control lists. BGP-MS (Kobsa and Schreck 2002)
relies on the more sophisticated SSL (Secure Sockets Layer) technology
for authentication, signing, and encryption, and takes advantage of a more
flexible role-based access control model for authorizing objects. Moreover,
BGP-MS provides support for anonymity and pseudonymity. Facilities for
auditing and resource control, however, are largely lacking in both server
systems.

Access control grants anonymous and authenticated clients access to
directory information. Apart from the requirements for an access control
model defined in RFC 2820 (Stokes et al. 2000), there is currently no standard
access control mechanism for LDAP.19 In our implementation, we decided
to take advantage of the access control model offered by iPlanet Directory
Server (iPlanet 2001) since we employ this commercial server as a basis for
our user modeling server (see Section 3.1). iPlanet Directory Server estab-
lishes access control via a set of access control lists. Each of these lists
implements an access control rule and is usually attached to a directory entry
via the special attribute aci (for Access Control Information). An ACI grants
access to the directory entry to which it is attached, and to all entries beneath
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it (i.e. its children). Its granularity can be very fine (if necessary, down to a
single attribute of a single entry). In general, an ACI comprises the following
specifications (for a more formal presentation, we refer to (iPlanet 2001)):
• the directory resources (i.e. objects) to which the ACI applies (e.g.

entries in a particular subtree, entries that match a given search filter,
specific entries, specific attributes),

• the access rights granted (e.g. read, write, search, compare, add, delete),
and

• the directory clients (i.e. subjects) to which the ACI applies (e.g.
specific users, anonymous users, non-anonymous (i.e. known) users, all
members of a user group, users specified in attributes of object entries,
users from a specific IP address or a specific domain, users accessing the
directory during a period in time).

The default in UMS is that all users are denied access to any directory.
Starting from this, ACIs implement access control rules that grant access as
follows:
• The System Model may only be modified by administrators and

inspected by user modeling components.
• The Usage Model may only be modified by WebGuide and those user

modeling components that process usage data (e.g. the ULC). Moreover,
administrators may inspect the Usage Model.

• The Service Model may only be modified by administrators and user
modeling components.

• User models may only be modified by their respective owners, the user-
adaptive application WebGuide and those user modeling components
that manipulate user model contents (e.g. the ULC). Administrators are
allowed to inspect user model contents. Anonymous users may perform
the LDAP operations read, search and compare on all user model entries,
except for the potentially sensitive demographic attributes within a user
model.20

• Operational attributes (see Section 3.1) may only be modified by the
LDAP server.

7. Related work

Research on separating user modeling functionality from user-adaptive
application systems and incorporating this functionality into generic systems
that can be customized to serve the needs of a wide range of user-
adaptive applications has already lead to a number of prototypes (e.g. UMT
(Brajnik and Tasso 1994), BGP-MS (Kobsa and Pohl 1995; Pohl 1998),
DOPPELGÄNGER (Orwant 1995), TAGUS (Paiva and Self 1995), and um
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(Kay 1995)). Highly-valued characteristics of these systems were generality
(including domain independence), expressiveness for the representation of
different kinds of complex assumptions about the user, and strong inferential
abilities that would allow for complex forms of reasoning about the user.
(Kobsa 2001a) surveys these and other academic systems and explains why
the criteria that were applied in their development do not seem so important
any more today (except for the quest for abstraction and reusability).

Group Lens (Net Perceptions 2001), LikeMinds (Macromedia 2001),
Personalization Server (ATG 2001) and Frontmind (Manna 2001) represent
recent commercial developments that aim at supporting customer relation-
ship application on the web (Fink and Kobsa 2000; Kobsa et al. 2001).
Characteristics that are important in such application scenarios include quick
adaptation (since users’ interaction with such applications is often very
short), extensibility (to allow for the integration of bespoke or third-party
user modeling methods), integratability of external user-related information,
load balancing (to accommodate drastic load changes), fallback mechanisms
(in case of breakdowns), transactional consistency (to avoid inconsistencies
due to parallel read/write on the user model or abnormal process termina-
tion), and support for privacy. (Fink and Kobsa 2000) show however that
current commercial systems often fail to meet these and other important
criteria. Sections 2.1 and 2.2 explain that the same holds largely true for the
requirements that were found to be important in the domain of personalized
tour recommendations (see Fink 2002, for the complete requirements cata-
logue that is both based on experiences from real-world deployments and the
scientific literature on generic user modeling systems).

Related work also exists with respect to systems that generate personal-
ized suggestions for tourists. AVANTI (Fink et al. 1996, 1998) catered the
presentation of information about touristic sites, hotels and vacation cottages
to users’ interests and to their physical impairments (particularly visual and
motoric impariments). The system took advantage of the user modeling server
BGP-MS (Kobsa and Pohl 1995; Pohl 1998) in which information about all
users is stored and made accessible from a central point through the Internet.
AVANTI uses rules and a domain hierarchy for drawing inferences about
users. It was designed to be used and partly tested in public terminals, travel
agencies, and users’ homes.

The Cyberguide project (Abowd et al. 1997) produced a series of proto-
types of a mobile, hand-held context-aware tour guide for visitors of a
research lab. The systems only take information about the current location and
orientation of the user into account, but applications that require rudimentary
knowledge about the user (e.g. the languages that he speaks) are envisaged as
well.
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The ILEX system (Oberlander et al. 1997; Cox et al. 1999) produces
“intelligent labels” for artwork that can be delivered as web pages, in an
electronic gallery, or as synthesized speech in a physical gallery. The system
takes the objects into account that the user has visited or that were mentioned
to him before, and refers to them when generating labels.

Hyperaudio (Not et al. 1997; Petrelli et al. 1999) is an audio-based mobile
information system for museum visitors. It adapts information based on what
the user is assumed to know due to stereotypes that pertain to him, what
the user has already seen and heard and seems interested in, as well as his
preferred language style.

HIPPIE (Oppermann and Specht 1999; Specht and Oppermann 1999) also
gives users personalized information about the artwork and the interior of a
museum. It can be used at home for the preparation of and the debriefing after
a museum visit, and as a mobile guide during a museum visit (in the latter
case, users receive explanations through headphones, and orientation and
awareness information through a handheld device). The information selected
and presented to visitors reflects their location (at home or in front of some
object of art), interests (as determined by the objects they physically visited
or selected on the screen), the knowledge acquired so far, and their presenta-
tion preferences (as determined by the object attributes that they selected).
The system uses rules for learning from user behavior and thereby exploits a
domain hierarchy.

GUIDE (Cheverst et al. (2000b); Cheverst et al. (2002)) is a handheld elec-
tronic tourist guide that creates city tours which are tailored to the individual
visitor. The system takes personal details into account (e.g. name, age, sex)
as well as the user’s interests (e.g. maritime, history, dietary preferences),
his current location, the landmarks he already visited, and tours he followed.
The system traces the visitor’s page requests and updates his interest profile
accordingly.

The overall aim of CRUMPET (Poslad et al. 2001) is the development
and evaluation of tourism-related value-added services for nomadic users
across fixed and mobile networks. The system is planned to be aware of
users’ current spatial context, and to adapt to this context as well as to users’
domain-specific interests, preferences and interaction histories. While Deep
Map and GUIDE were focused on a single city, CRUMPET is planned to be a
generic system that accesses a range of local GIS servers for different cities as
well as different service and content providers. Models of users will remain
intact after a city visit and can be reactivated in a different city. In addition to
recommending touristic sights, CRUMPET will advertise shops, restaurants,
entertainment places and events, as well as information, reservation, booking
and payment services. than databases.
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As far as we can tell from the literature on the above-mentioned systems,
it should be possible without major problems to employ the User Models
of our user modeling server for representing the assumptions that these
systems maintain about the user, and the Usage Model for recording the
interaction history. Likewise, the Domain Inference Component and the
interest hierarchy of our user modeling server can be employed for repre-
senting the inference rules and the domain hierarchy of AVANTI and HIPPIE.
Hyperaudio’s stereotypes can be expressed as well, and the neural network
based learning mechanism that (Sarini and Strapparava 1998) propose for
it could easily become another User Modeling Component. Presumably, the
development of the user modeling components of these systems would be
considerably facilitated by using the UMS, and the mentioned systems would
also profit from the benefits described in Section 2.1.

8. Discussion and Conclusion

The generic user modeling system that has been presented in this paper is an
open, standards-based, and platform-independent tool that provides essential
user modeling services for deployment to real-world environments. Applica-
tions have a choice among a set of core techniques for drawing assumptions
about users. By integrating these techniques into a single server, synergistic
effects between them can be leveraged, thereby compensating for short-
comings of individual techniques (e.g. in cases of performance or scalability
problems, or when data is sparse or not yet available). New techniques can be
easily added to the server at any time.

While previous user modeling systems stored data about users in data-
base and knowledge representation systems, the UMS employs a directory
management system for this purpose. As is explained in more detail in (Fink
2002), this offers significant advantages with respect to the
• management and retrieval of (user-related) information, which is

compliant to widely established standards;
• addition of new (user-related) information types to the set of pre-defined

ones;
• distribution of information across a network (in a very broad fashion and

on a very low level, if needed), which often leads to better performance,
scalability, availability, and reliability of the user modeling service;

• replication of information, which may also enhance the performance
and the availability of the service, and is particularly useful in mobile
applications, where clients can fairly frequently become disconnected
from the network; and the
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• security of information, by providing facilities for authentication,
signing, encryption, access control, auditing, and resource control.

(Shukla and Deshpande, 2000) report that databases do better than direc-
tories in performance when the number of entries that match a query and the
total amount of data that is returned for a query increase. When the number
of matching entries and the overall result set is small, however, directories
exhibited a far better search performance in the authors’ evaluation than data-
bases. Such a situation is given in personalization applications, where only
a small number of assumptions about users are normally needed for catering
information to him. Directories are optimized for the processing of search
operations whereas their update performance is considered less important.
This characteristic is also well suited for user-adaptive applications, where a
high search performance of a user modeling system is a must for dynamically
personalizing web pages in real-time. Individual observations are normally
not supposed to change the personalized behavior of a system immediately.
Rather, individual observations are first collected and evaluated, so that delays
within a user’s session are normally acceptable.

This paper described the first prototypical application of the UMS in
a mobile tourist guide. Commercial deployments to websites with several
100,000s of users (e.g. www.n24.de) are currently underway.

Notes

1 Part of the research presented here was supported by a grant of the European Media Lab to
GMD – German National Research Center for Information Technology.
2 From (EML 1999); reprinted with permission. Recommended routes in the original screen-
shot have been emboldened for better reproduction.
3 Figure 2a is courtesy of European Media Lab, Heidelberg, Germany. Figure 2b from (Coors
et al. 2000) is courtesy of Fraunhofer IGD, Darmstadt, Germany. Figure 2c: is courtesy of
Fraunhofer IGD (© Eicken Photographie).
4 The importance of acquiring and maintaining selected demographic data is underlined by
(Kaul 1999). Her empirical work on tourism in Heidelberg revealed that the interest of tourists
in 17 out of 19 touristic activities significantly depends on their age, and that 14 out of 19
interests significantly depend on their continent of origin.
5 All models are being viewed with the LDAP browser/editor “Globus Browser” (Gawor
1999).
6 Operational attributes (e.g. modifytimestamp) are exclusively maintained by the LDAP
server for administrative purposes (e.g. for tracking changes to attribute values).
7 DMI is an abbreviation for “Deep Map Interface”.
8 In the current version of the UMS for Deep Map, we use the commercial ORB VisiBroker
from Inprise (Inprise 2001).
9 We use the term FIPADM (for FIPA Deep Map) to indicate that Deep Map is largely
compliant to (FIPA 1998a, 1998b), with some exceptions though. See (EML 1999, 2000)
for a discussion.
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10 This term can be regarded as characterizing the content of the requested hypermedia page
(there may be more than one descriptive term for a page). It could come from the HTML
“description” and “keywords” tags, or it could have been selected using a term significance
measure such as DF/ITF (Sparck Jones 1972).
11 The term content-based filtering is mainly used in domains where the objects of interest
are documents. In this case, the features are those terms of a document that are considered to
be representative for the content of the document.
12 We aim at investigating and evaluating other statistical distributions in the future. The
Beta distribution seems to be especially promising since it allows for the approximation of
a variety of probability distributions (e.g. linear, normal, exponential and parabolic) with a
single stochastic model and only a few model parameters. An early user modeling system that
employed the Beta distribution for modeling user interests was Doppelgänger (Orwant 1995).
13 See (Fink 1999) for a discussion of related consistency problems and their impact on the
overall usability of user-adaptive applications.
14 The term “collaborative filtering” does not seem appropriate anymore due to the predom-
inance of implicit acquisition techniques in more recent systems, and their limited or in most
cases even non-existent support of user collaboration.
15 Coverage indicates the percentage of characteristics across all users for which the system
was able to produce predictions. The accuracy of predictions generated by the system can be
assessed using measures e.g. from statistics (like mean absolute error and root mean square
error) and decision-support (e.g. receiver operating characteristic).
16 The correlation coefficient lies within the interval (–1, +1) and can be interpreted as
follows: (i) a positive correlation coefficient indicates that high ranks for one user are asso-
ciated with high ranks for the other user, and vice versa; (ii) a negative value indicates that
high ranks for one user are associated with low ranks for the other user, and vice versa; and
(iii) the closer the correlation coefficient is to 0, the weaker is the relationship.
17 More precisely, Deep Map’s agent-based communication framework shows minor exten-
sions to, and omissions from, the corresponding FIPA standards, for a variety of reasons
including performance and ease of programming (see EML 1999, 2000) for a more detailed
discussion).
18 Kerberos (Kohl and Neuman 1993) is an authentication service that is based on a private
key system (sometimes also called “shared secret” system). SSL (Secure Sockets Layer) in
contrast is based on a public key system (see Grant 1997; Smith 1997; Diffie and Landau
1998).
19 Although the access control models offered by different LDAP servers share some
commonalities, there are still many differences that impair their interoperability (e.g. when
replicating and migrating access control information from one LDAP server to another).
20 Such a weak access control policy seems only adequate for development purposes and will
need to be restricted in a deployed version with “real” users data.
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