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Abstract. This is a review paper, whose goal is to significantly improve our understanding of
the crucial role of attribute interaction in data mining. The main contributions of this paper are
as follows. Firstly, we show that the concept of attribute interaction has a crucial role across
different kinds of problem in data mining, such as attribute construction, coping with small
disjuncts, induction of first-order logic rules, detection of Simpson’s paradox, and finding
several types of interesting rules. Hence, a better understanding of attribute interaction can
lead to a better understanding of the relationship between these kinds of problems, which
are usually studied separately from each other. Secondly, we draw attention to the fact that
most rule induction algorithms are based on a greedy search which does not cope well with
the problem of attribute interaction, and point out some alternative kinds of rule discovery
methods which tend to cope better with this problem. Thirdly, we discussed several algorithms
and methods for discovering interesting knowledge that, implicitly or explicitly, are based on
the concept of attribute interaction.
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1. Introduction

Although the basic idea of extracting some sort of knowledge from data is
quite old, we can consider that – at least from an academic viewpoint – the
birth of modern data mining and knowledge discovery as a self-described
scholarly, interdisciplinary field was the IJCAI-89 Workshop on Knowledge
Discovery in Real Databases (see Piatetsky-Shapiro (1991)).

Before this workshop was held, most research on data mining consisted of
mining small data sets that can be called “databases” only in the loosest sense
of the word. A major research goal set forth by this workshop was to extract
high-level knowledge from real-world database systems. It is well-known
that real-world database systems are very large. Hence, in order to meet that
important goal, several researchers have focused on designing algorithms that
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are scalable with respect to the size of the data being mined (see e.g. Provost
and Kolluri (1999), Freitas and Lavington (1998)).

However, real-world databases also offer other significant challenges to
data mining, such as the ones mentioned by Frawley et al. (1991): (a)
real-world databases tend to contain quite noisy data, which requires cost-
effective data cleaning methods; (b) real-world databases contain many
irrelevant attributes, which requires cost-effective attribute selection methods;
(c) relevant attributes may be missing in real-world databases.

It should be noted that the above challenges are not strongly related to
the size of real-world databases, but rather strongly related to the nature of
the data, more precisely the fact that the data stored in real-world databases
were collected for purposes other than data mining. This fact has another
implication, which is relatively less investigated in the literature and is the
focus of this paper.

In this paper we argue that one of the major challenges associated with
real-world databases is that they tend to have a large degree of attribute
interaction. Note that this is not the case in many data sets often used in
machine learning and data mining research. For instance, one of the reasons
why, in general, medical domains are so appropriate for knowledge discovery
is that considerable medical expertise goes into selecting which attributes are
included in a medical database, as pointed out by Piatetsky-Shapiro (1991).
Medical doctors usually do not select attributes that are redundant or have
strong interaction with other attributes, as noted by Michie et al. (1994).

The assumption that there is a relatively small degree of attribute interac-
tion in the data being mined is implicit in most rule induction algorithms (see
e.g. Rendell and Seshu (1990), Nazar and Bramer (1999), Dhar et al. (2000)).
Unfortunately, this assumption does not usually hold when mining real-world
database systems, and this is the basic problem addressed in this paper.

Although throughout the paper we discuss attribute interaction in several
pattern-discovery tasks, in most of the paper we discuss attribute interaction
in the context of a supervised prediction task, typically classification. In this
context attribute interaction can be defined as follows. Consider three attrib-
utes Y, X1 and X2, where Y is the goal (class) attribute to be predicted and
X1 and X2 are predictor attributes. X1 and X2 interact when the direction or
magnitude of the relationship between Y and X1 depends on the value of
X2. Actually, this can be called a two-way interaction. Higher-order attribute
interactions can be defined in a similar way.

The goal of this paper is to significantly improve our understanding of
the crucial role of attribute interaction in data mining. We believe this is an
important goal to be pursued for at least three reasons. First, attribute inter-
actions are the rule, and not the exception, in real-world database systems, as
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will be discussed in section 2. Second, attribute interaction issues are rarely
explicitly discussed in the literature. Third, the understanding of attribute
interaction as a key concept in data mining can lead to the design of new kinds
of data mining algorithms and methods specifically designed from scratch to
take into account (and sometimes even take advantage of) the large degree of
attribute interaction found in real-world database systems. Indeed, section 4
of this paper will discuss some recent algorithms and methods for discovering
interesting knowledge that, implicitly or explicitly, are based on the concept
of attribute interaction.

The rest of this paper is organized as follows. Section 2 discusses the
importance of attribute interaction to support our argument that attribute inter-
action is a key concept in data mining. Section 3 presents a critical review
of how most current rule induction systems cope with attribute interaction.
Section 4 will show how attribute interaction can be used as the key concept
for discovering interesting patterns. Finally, section 5 concludes the paper.

2. The Importance of Attribute Interaction in Data Mining

2.1. Psychological evidence for the importance of attribute interaction

Since the goal of data mining is to discover knowledge that is not only
accurate but also comprehensible for human decision makers, the field of
cognitive psychology is clearly relevant for data mining, as pointed out by
Pazzani (2000).

The problem of classification has long been studied by psychologists. In
their terminology a class is called a category, or a concept. Roughly speaking,
until a few decades ago the field of psychology was dominated by a classical
view of concepts, but in the last decades this view has been replaced by a
natural view of concepts (see Gardner (1984)). A major difference between
these two views has to do with attribute interaction.

In the classical view, categories are defined by a small set of attributes. All
members of a category share these defining attributes, and no non-member
shares them. In general the defining attributes are supposed to be largely
independent (uncorrelated) of each other – i.e. there is little or no attribute
interaction.

For instance, consider Bruner et al.’s classical psychological study of how
individuals learn to form concepts, as summarized by Gardner (1984). In this
study, subjects were asked to recognize instances of geometric concepts like
large red triangle or tall blue cylinder. A concept was arbitrarily defined and
each object was unambiguously considered a member or a non-member of
that category. The subject was exposed to one card at a time, asked in each
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case whether that card belonged to the target concept, and then told whether
his/her response was correct. The subject’s task was to identify the attrib-
utes defining the target concept, in order to select all, and only, those cards
exhibiting the defining features of the concept. The researchers found that the
most foolproof method used by subjects was conservative focusing, where
one finds a positive instance of the concept and then makes a sequence of
choices, each of which alters only a single attribute value of this first “focus”
card and tests whether the change yields a positive or negative instance of
the concept. This psychological study was quite influential, and it seems that
at that time no one realized that the use of such artificial concepts might
invalidate the findings.

In any case, we find a striking parallel between conservative focusing and
the greedy search performed by some rule induction algorithms, particularly
AQ-style algorithms – see Michalski (1983), which start with a seed example
and then slowly generalize it by removing one-attribute-at-a-time. (The issue
of greedy rule induction will be discussed later.)

By contrast, in the natural view of concepts, highly correlated (non-
independent) attributes are the rule, not the exception. For instance, consider
the classification of animals into birds and non-birds in the real world. Wings
occur with feathers much more often than they do with furs. Hence, there is
considerable interaction between predictor attributes, and this kind of interac-
tion is exploited by human concept-recognition mechanisms. This situation is
very different from the above example of classical view, where independent
attributes are used to define artificial, arbitrary concepts. In the natural view,
concepts are much fuzzier and are motivated by real-life considerations,
rather than being arbitrarily defined.

To summarize, in the natural view of concepts, which is currently much
more accepted in psychology than the classical view, attribute interaction is
the rule, and not the exception. Evidence for this natural view of concepts
is provided, in the context of data mining, by projects that found a signi-
ficant degree of attribute interaction in real-world data sets. An example is
the large number of small disjuncts found by Provost and Danyluk (1993) in
telecommunications data, as mentioned in section 2.2. Another example are
the several instances of Simpson’s paradox discovered in real-world data sets
by Fabris and Freitas (1999), as discussed in section 2.3. Yet another example
is the existence of strong attribute interactions in a typical financial data set,
as discussed by Dhar et al. (2000) – see also section 3.2.



DATA MINING 181

A2 A2
+ – + – + + – –

– + – + + + – –

+ – + – + + – –

– + – + + + – –

A1 A1

(a) hard classification problem (b) easy classification problem

Figure 1. Large degree of attribute interaction makes a concept harder to learn.

2.2. The influence of attribute interaction on concept hardness and small
disjuncts

There are, of course, many factors that make a concept (class descrip-
tion) difficult to be learned, including unbalanced class distributions, noise,
missing relevant attributes, etc. However, in some cases even if all relevant
information for class separation is included in the data – i.e. all relevant attrib-
utes are present, there is little noise, etc. – many rule induction algorithms
achieve poor predictive accuracy when learning some concepts. These kinds
of concepts can be called hard (see Rendell and Seshu (1990), Rendell and
Cho (1990), Rendell and Ragavan (1993), Nazar and Bramer (1999)) and the
main reason for their hardness is the problem of concept dispersion.

We summarize, in the following, the main arguments of Rendell et al. To
simplify our discussion, let us assume a two-class problem where the concept
to be learned consists of the positive-class examples. In essence, we can say
that a concept is dispersed when we need a large number of small disjuncts
(rules covering a few examples) to cover the concept. This point is illustrated
in Figure 1, which shows graphical representations of the data space for two
hypothetical data sets, each with two attributes. Figure 1(a) shows an extreme
case where the positive-class (“+”) examples are maximally spread across the
data space. Each “+” example is surrounded by “–” examples, so one cannot
induce reliable, generalized rules predicting the “+” class. Figure 1(b) shows
the other extreme, where the “+” concept can be easily learned.

Note that the kind of concept dispersion shown in Figure 1(a) is mainly
caused by attribute interaction. Indeed, in that Figure, in order to determine
the class of an example we need to know the values of both predictor
attributes, since a minor variation in the value of one attribute leads to an
entirely different prediction. Knowing the value of a single attribute is useless.
Although the above example is hypothetical and simplified for pedagogical
reasons, data sets with a large degree of concept dispersion – i.e. with many
small disjuncts – do exist in the real-world.
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One of the earliest machine learning projects to cope with a large
degree of attribute interaction in a real-world data set was Samuel’s checker
player developed during the 1950’s by Samuel (1959). This project was
very influential and it anticipated many ideas rediscovered later in machine
learning research. (For instance, Samuel’s adaptive polynomial learning,
which adjusted the weights of a polynomium of attributes for evaluating a
board position, was quite similar to perceptron neural networks.)

This project showed that to learn the concept of ‘winning’ well, it was
necessary to use high-level attributes such as piece advantage, which are
usually a good indicator of the strength of a position. This kind of represen-
tation effectively helps to group together examples of the same class in the
data space, which greatly reduces the number of small disjuncts. By contrast,
consider a low-level representation where each attribute indicates whether a
board square was occupied by a black king, black man, red king, red man,
or vacant. This kind of representation would lead to a much larger number
of small disjuncts, since now there is no small set of attributes that can be
considered a good indicator of the strength of a position. With this low-level
representation one would need to consider the value of virtually all the attrib-
utes to evaluate the strength of a position, and a minor variation in the value
of one of the many attributes might lead to a completely different evaluation
of the position.

More recently, a number of data mining projects have had to cope with a
large number of small disjuncts, due to a large degree of attribute interaction.
A good example is a real-world application reported by Danyluk and Provost
(1993), where small disjuncts cover roughly 50% of the training examples.

This fact has probably influenced the design of some rule induction
algorithms. For instance, Domingos (1995)’s RISE algorithm tends to cope
with small disjuncts better than most rule induction algorithms. The reason
is that, in a nutshell, this algorithm starts with a rule set where each rule is a
training example, and it generalizes a rule only if this generalization increases
the global predictive accuracy on the training set. Hence, small-disjunct rules
will not be unduly generalized by RISE.

In addition, several methods for coping with small disjuncts have been
proposed, see Holte et al. (1989), Ting (1994), Weiss (1995, 1998), Weiss
and Hirsh (2000), Carvalho and Freitas (2000a,b). Despite these advances, the
problem of small disjuncts (related to a high degree of attribute interaction)
is still an open problem in data mining.

To summarize, in general the more dispersed the positive examples of a
concept are, the more difficult that concept is to be learned. Low-level repre-
sentations, such as the one illustrated in Figure 1(a) are associated with many
small disjuncts and much concept dispersion due to a high degree of attribute
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Table 1. Simpson’s paradox in data about tuberculosis deaths.

New York Richmond

Total population 4766883 127682

no. of deaths 8878 286

percentage 0.19% 0.22%

New York Richmond

white coloured white coloured

Total population 4675174 91709 80895 46733

no. of deaths 8365 513 131 155

percentage 0.18% 0.56% 0.16% 0.33%

interaction, which tends to lead to poor predictive accuracy. By contrast, high-
level representations, such as the one illustrated in Figure 1(b), greatly reduce
the degree of attribute interaction, which tends to lead to a less dispersed
concept and so to a higher predictive accuracy.

2.3. Detecting occurrences of Simpson’s paradox

Attribute interaction is at the core of an occurrence of Simpson’s paradox.
This paradox can be briefly described as follows (see Simpson (1951),
Wagner (1982), Newson (1991)). Suppose that a population is partitioned into
two, Pop1 and Pop2, and that the probability of a given situation of interest
– i.e. the value of a given goal attribute – increases (decreases) from Pop1

to Pop2. Suppose now that both Pop1 and Pop2 are further partitioned into
several categories. We say that Simpson’s paradox occurs if the probability
of the situation of interest decreases (increases) from Pop1 to Pop2 in each of
those categories. The idea is better illustrated with an example.

Table 1 shows an occurrence of the paradox in a comparison of tubercu-
losis deaths in New York City and Richmond, Virginia, during the year 1910
(see Newson (1991)). Overall, the tuberculosis mortality rate of New York
was lower than Richmond’s one. However, the opposite was observed when
the data was further partitioned according to two racial categories: white and
coloured. In both these racial categories Richmond had a lower mortality rate.
In other words, if we consider only one attribute (City) we draw a conclusion,
while if we consider the interaction between two attributes (City and Racial
Category) we draw the opposite conclusion.

Simpson’s paradox occurs more often than one might think at first glance.
For instance, several real-world instances of the paradox are described by
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Procedure for Rule Set Induction

Specify the training set of examples;

DO

induce a rule covering as many “+” examples and as few “–” examples as possible

remove the “+” examples covered by the induced rule from the training set

UNTIL there are uncovered “+” examples in the training set

(a) building a rule set on a one-rule-at-a-time basis

Top-Down Procedure for Rule Induction Bottom-Up Procedure for Rule Induction

Rule = ∅; Rule = a conjunction of conditions;

DO DO

/∗ specialize the rule ∗/ /∗ generalize the rule ∗/

add the “best” condition to the rule; remove “worst” condition from the rule;

UNTIL (stopping criterion) UNTIL (stopping criterion)

(b) top-down rule construction (c) bottom-up rule construction

Figure 2. High-level view of greedy search in rule induction.

Newson (1991) and Wagner (1982). In addition, Fabris and Freitas (1999)
have shown that the paradox occurs in several data sets from the UCI
repository, as will be seen in section 4.4.

3. A Critical Review of Rule Induction Systems Concerning How They
Cope with Attribute Interaction

3.1. The myopia of greedy rule induction

In general a rule induction algorithm is said to be greedy if: (1) it constructs
a rule in an incremental fashion by considering one-attribute-at-a-time; (2)
at each step the best possible local choice is made. While there are many
different kinds of rule induction algorithm, the majority of them is greedy,
performing a local search as described in Figure 2. Figure 2(a) shows that
this kind of search discovers one rule at a time. The procedure performed to
build a single rule can be top-down or bottom-up, as shown in Figures 2(b)
and 2(c). In both cases, rules are typically built by considering one attribute
at a time and choosing the best attribute to be included/removed in/from the
rule in a greedy fashion.

It should be noted that the greedy search performed by most rule induction
algorithms makes them quite sensitive to attribute interaction problems. A
very simple example of the danger of greedily constructing a rule by selecting
one-attribute-at-a-time is shown in the hypothetical data set of Figure 3. The
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credit_limit c/a_balance is_credit_abnormal?

low low no

low high yes

high low yes

high high no

Figure 3. Attribute interaction in a kind of logic XOR (eXclusive OR) function.

first column indicates whether the credit limit granted to a customer is low
or high. The second column indicates whether the balance of the customer’s
current account is low or high. The third column, corresponding to the goal
(class) attribute, indicates whether or not the credit limit is abnormal, in the
sense of being incompatible with the current account balance of the customer.
The value of this goal attribute is given by a kind of logic XOR (eXclusive
OR) function, which is true (‘yes’) if and only if the two predictor attributes
have different values, and is false (‘no’) otherwise.

Suppose that we try to induce a rule from the data in Figure 3 by selecting
one attribute-value condition at a time. Suppose we include in our rule the
condition <credit_limit = low>. This condition is not useful for predicting
the value of is_credit_abnormal?, since the class distribution for the examples
satisfying the condition is 50–50%, which is the same class distribution as in
the entire data set. Actually, any of the four rule conditions (attribute-value
pairs) which could be included in a rule leads to the same problem, so a
greedy rule induction algorithm would conclude that these rule conditions
are irrelevant for predicting the goal attribute. However, this is not the case.
The problem is that we need to know the value of both predictor attributes at
the same time to accurately predict the value of the goal attribute.

Note that one of the most popular kind of data mining algorithm,
namely decision-tree algorithms, would be fooled by the simple attribute
interaction problem shown in Figure 3. For instance, assume that the
data set shown in Figure 3 includes not only attributes credit_limit and
c/a_balance, but also another attribute, say gender, which is irrelevant for
predicting is_credit_abnormal? but turns out to be slightly correlated with
is_credit_abnormal? by sheer chance (i.e. a spurious correlation). No matter
how small this spurious correlation is, the irrelevant attribute gender would
be chosen to label the root node of a decision tree, since the two relevant
attributes credit_limit and c/a_balance (when considered separately, i.e.
one-at-a-time) have no correlation at all with is_credit_abnormal?.

In passing, we note that the above-discussed kind of logical XOR problem
is in reality a particular a case of parity problems, where the target function
returns true if and only if an odd number of predictor attributes is true. The
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complexity of attribute interaction in parity problems increases very fast with
the number of predictor attributes, which makes this kind of problem very
difficult for greedy rule induction algorithms, as shown by Schaffer (1993).

Similar arguments hold for the bottom-up rule induction procedure shown
in Figure 2(c). This is the kind of search performed, for example, by AQ-
style rule induction algorithms (see Michalski (1983)), which start with
a seed example and then generalize it, in a greedy fashion, by removing
one-condition-at-a-time. In other words, both rule induction procedures in
Figure 2(b) and Figure 2(c) are greedy, they are simply greedy in “opposite
directions”.

The above discussion was somewhat simplified for pedagogical reasons,
but the basic idea is that, in order to cope well with attribute interactions, we
need data mining methods which consider several-attributes-at-a-time.

There are other knowledge discovery paradigms that cope better with
attribute interaction than rule induction. An example is neural nets. However,
despite the progress in the area of extracting comprehensible rules from
neural nets (see Taha and Ghosh (1999), Vaughn (1996)) this extrac-
tion still remains a difficult, cumbersome task. Hence, we do not discuss
neural networks here. Rather, we discuss below other knowledge discovery
paradigms that not only tend to cope better with attribute interaction than the
classical rule induction paradigm but also lend themselves more naturally to
the discovery of comprehensible rules.

3.2. The global search of evolutionary algorithms

An attempt to cope better with attribute interaction is to avoid the idea of
greedy search altogether and perform a more global search in the rule space.
This can be achieved with evolutionary algorithms such as genetic algorithms
(see Michalewicz (1996)) and genetic programming (see Banzhaf (1998)).

An important characteristic of evolutionary algorithms is that they perform
a global search. This is due to several factors. First of all, evolutionary
algorithms work with a population of candidate solutions, rather than working
with a single candidate solution at a time. These solutions concurrently
explore different parts of the search space. Second, the major genetic
operator, crossover, modifies individuals on a several-genes (attributes)-at-
a-time basis, rather than on a single-gene (attribute)-at-a-time basis. Third,
the fitness function evaluates an individual as a whole. In the context of data
mining, this corresponds to evaluating a candidate rule (or a candidate rule
set) as a whole, rather than one condition at a time (or a rule at a time).

Finally, evolutionary algorithms use stochastic search operators, which
contributes to make them more robust and less sensitive to noise.
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Intuitively, the above factors make evolutionary algorithms cope better
with attribute interaction than the greedy search algorithms often used in
rule induction. Some evidence that this is the case is provided by Greene
and Smith (1993), who show that, as the amount of interaction increases,
the relative performance between a genetic algorithm and two rule induction
algorithms (CN2 and NewId, the latter a decision tree algorithm) becomes
increasingly larger. Other evidence for the fact that evolutionary algorithms
cope well with attribute interaction is provided by Dhar et al. (2000). They
have compared a genetic algorithm with two rule induction algorithms,
namely RL and CART (a well-known decision-tree algorithm), on a financial
data set involving a considerable amount of attribute interaction. The GA
outperformed the other two algorithms due to its ability to perform a more
global, thorough search in rule space. To quote from the conclusions of Dhar
et al. (2000), p. 278:

We claim that for hard problems, genetic algorithms, appropriately ‘fixed
up’, are more thorough in their search than other rule learning algorithms.
Our results support this claim. GLOWER indeed is less restricted by
greedy search biases, and for problems with weak structure or vari-
able interactions, it is precisely the subtle relationships that are useful
discoveries.

Recent collections of papers on data mining with evolutionary algorithms
can be found in Zytkow (1999), Freitas (1999), Freitas (2000). Section 3.3.1
will revisit evolutionary algorithms in the context of constructive induction.

It should be noted that evolutionary algorithms also have some disad-
vantages in the context of data mining. Arguably, one of the most serious
problems, at least in the context of very large databases, is the fact that they
tend to take much longer to run than greedy rule induction algorithms. This
disadvantage is partially mitigated by their potential for parallel processing
(see e.g. Neri and Giordana (1995), Anglano et al. (1997), Araujo et al.
(1999), Freitas and Lavington (1998)), but scalability with respect to the
size of the database being mined is still an open problem for evolutionary
algorithms.

3.3. The crucial role of attribute interaction in attribute construction

With respect to the autonomy of a rule induction algorithm, one can make an
important distinction between two kinds of algorithms. Roughly speaking,
some algorithms discover rules by just selecting attribute values among
the original set of input attributes and their corresponding domains, while
other algorithms discover rules by not only selecting but also automatically
constructing new attributes.
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The former kind of algorithm includes many well-known rule induction
algorithms, such as Quinlan’s (1993) C4.5. These algorithms carefully choose
attribute-value pairs to include in rule conditions. However, they are incapable
of constructing relatively simple new attributes, which can be quite useful in
some situations. For instance, suppose we try to predict whether the shares
of a company will go up or down in the financial market, based on a set
of predictor attributes that includes both the company’s total income and
the company’s total expenditure in the last 12 months. Most rule induction
algorithms are not capable of discovering rules of the form:

IF (Income > Expenditure) AND . . . THEN (Shares = up)
IF (Income < Expenditure) AND . . . THEN (Shares = down),

because those algorithms do not have the autonomy to create attribute-
attribute (rather than attribute-value) rule conditions. Clearly, this limitation
would be removed if the rule induction algorithm was able to automatically
construct the new boolean attribute “Income > Expenditure?”.

More generally, an attribute construction algorithm might face attribute
interaction problems of arbitrary complexity in its search for high-level,
effective new attributes. The better the algorithm can cope with attribute
interaction, the more useful the new constructed attributes will probably be.

A review of constructive induction algorithms is beyond the scope of
this paper. The interested reader is referred to Liu and Motoda (1998) and
an online bibliography at http://liinwww.ira.uka.de/bibliography/Ai/feature.
engineering.html.

It is important to note, however, that most constructive induction methods
follow the greedy, local search paradigm of rule induction discussed in
section 3.1. Hence, we briefly discuss in subsection 3.3.1 an alternative
approach for constructive induction based on genetic programming, with
the aim of performing a more global search in the space of new candidate
attributes.

3.3.1. Constructive induction with genetic programming
As mentioned above, the major problem in attribute construction is that the
search space tends to be huge. In addition, the construction of a good attribute
often requires that the attribute construction algorithm generates and evalu-
ates combinations of several original attributes, rather than just two attributes.
This is where evolutionary algorithms can be useful. In particular, genetic
programming (GP), due to its characteristic of performing a very open-ended,
stochastic, global search (see Banzhaf (1998)) seems particularly suitable for
efficiently searching a huge space of new candidate attributes.

In GP an individual is usually represented by a tree, with rule conditions
and/or attribute values in the leaf nodes and functions (e.g. logical, relational
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or mathematical operators) in the internal nodes. An individual’s tree can
grow in size and shape in a very dynamic way. In general, in order to apply
GP to data mining one must define a terminal set, containing the attributes
and their corresponding domain values, and a function set, containing the
operators to be applied to the terminal set elements.

In the context of rule induction and attribute construction, the important
point is that we can include virtually any kind of operator in the function set
of GP. In the first iteration (generation), operators will be applied to original
attributes in a kind of random way. However, as the population of individuals
(new candidate attributes) evolves, the system will automatically discover
which operator must be applied to which combination of original attributes
in order to create good new attributes (the best evolved individuals).

Evidence that GP is an effective method for constructive induction is
presented e.g. by Hu (1998) and Kuscu (1999). Hu’s results are particularly
interesting, because they involved more data sets and more algorithms being
compared. More precisely, Hu compares CPCI, a GP-based constructive
induction method, with two other constructive induction methods, namely
LFC and GALA. The comparison is made across 12 data sets. Overall, the
predictive accuracy of GPCI was considerably better than LFC and somewhat
better than GALA.

3.4. Coping with attribute interaction via
Inductive Logic Programming (ILP)

Although it is rarely described this way, Inductive Logic Programming (ILP)
can be regarded as a way to cope with attribute interaction.

One of the basic ideas of ILP is to use a richer, more expressive knowledge
representation language, based on first-order logic (FOL) (see e.g. Lavrac
and Dzeroski (1994), Quinlan (1990)). This representation is more expressive
than the traditional propositional (“zero-th order”), attribute-based represen-
tation used by most rule induction algorithms. A very simple example shows
the point. Let A and B be two boolean predictor attributes. A concept defined
by the equality of these two attributes would be represented in propositional
logic as: ((A = true) AND (B = true)) OR ((A = false) AND (B = false)). The
same concept would be represented in FOL as: A = B, which is obviously
a much more compact representation. Another example of the representa-
tional power of first-order logic is the fact that it allows the discovery of rule
conditions such as “Income > Expenditure?”, as mentioned in section 3.3.
Note: assuming that the Income and Expenditure attributes are real-valued,
we would need an infinite number of propositional rule conditions to express
a rule set equivalent to the FOL rule condition “Income > Expenditure?”.
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Another basic idea of ILP is that the rule induction algorithm accepts
as input not only the training set of examples, but also a set of domain
(background) knowledge predicates. Actually, FOL is a useful tool to cope
with attribute interaction because it allows us to express in a single term
(predicate) arbitrarily complex relationships among attributes, rather than
attribute values. In essence, a predicate in FOL corresponds to a relation
in relational databases, while the predicate arguments (variables) corres-
pond to attributes in relational databases. An example is the predicate
better_investment(A, B), which means that an investment in A is better
than one B if a set of arbitrarily complex conditions are satisfied. These
predicate conditions can be intentionally defined by logic clauses such as
“higher_interest_rate(A, B) AND smaller_risk(A, B)”, which is analogous to
a view definition in relational databases, or extensionally defined by a set of
grounded facts satisfying the condition, which is analogous to enumeration
of the set of tuples belonging to the relation.

Hence, we can say that the use of a FOL background predicate allows ILP
systems not only to capture an arbitrarily complex attribute interaction among
attributes but also to express that interaction in a compact, abstracted form.
However, it should be noted that, despite this advantage, most ILP systems
still have two limitations for coping with attribute interaction, as follows.

First, background predicates are usually manually predefined. They
correspond either to relations (or views) predefined in the database or to
logical clauses (or sets of grounded facts) manually specified specifically
for the target data mining task. In other words, most ILP systems lack the
autonomy to build background predicates. Some exceptions will be seen in
the next subsection, where we discuss ILP-based constructive induction.

Second, most ILP systems use the same kind of greedy, local search
strategy as used by most rule induction algorithms. Indeed, a high level
description of many ILP algorithms could consist of the pseudo-code in
Figure 2 with a simple modification: replace the attribute-based words condi-
tion and rule by the FOL words literal and clause, respectively (see e.g. a
similar pseudo-code in Quinlan (1990)).

3.4.1. ILP-based constructive induction
An interesting approach is to combine the search autonomy of constructive
induction procedures with the more expressive representation language of
FOL typically used in ILP systems. Here we briefly mention a couple of
examples of this approach.

LINUS converts all possible combinations of background predicates into
attributes, which are then given as input to a propositional, attribute-based
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rule induction algorithm (see Dzeroski and Lavrac (1993)). The discovered
rules are then converted back into FOL predicates. This transformation
of background predicates into attributes can be regarded as a form of
constructive induction.

Another ILP-based constructive induction method is proposed by
Srinivasan and King (1999). This method essentially works as follows. An
ILP algorithm is used to induce clauses. Then the algorithm identifies subsets
of literals of the discovered clauses that can be used as attributes. Each iden-
tified subset of literals consists of a conjunctive sequence of literals, and each
of these conjunctive sequences is considered a new attribute.

Note that both of the above methods essentially generate all possible
combinations of background predicates that can be used as predictor attrib-
utes by a rule induction algorithm. Hence, the new-attribute generation
procedure performs a kind a exhaustive-search procedure. There is no heur-
istics to limit the number of candidate attributes generated by the system.
Heuristics are used only in the form of evaluation functions to select the
best new attributes, among all generated candidates. This kind of exhaustive
generation of new candidate attributes does not seem to be scalable to
databases with a high number of background predicates.

This is in contrast with alternative approaches for constructive induction
that perform a more heuristic search in the space of new candidate attributes,
such as the approach discussed in section 3.3.1.

4. Attribute Interaction as a Key Concept for Discovering
Interesting Patterns

The concept of attribute interaction can be a valuable tool to detect surprising
knowledge. Indeed, as argued above, human analysts usually analyze data
on an one-attribute-at-a-time basis (see Gardner (1984), Brazdil and Henery
(1994), Michie et al. (1994)) and they have difficulty in analyzing data on a
several-attributes-at-a-time basis. Hence, the kind of rule deemed interesting
by a user is probably a non-compositional rule, where – due to attribute inter-
actions – the relationship expressed in the rule as a whole is quite different
from the relationship that is expressed in separate parts of the rule. This
section will address this issue in detail, discussing four methods to discover
interesting patterns based on the key concept of attribute interactions.
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4.1. Attribute interaction as the key concept in pruning and
summarizing discovered rules

Liu et al. (1999) proposed a method for summarizing and pruning discovered
rules. Their method is implicitly based on detecting attribute interaction, even
though this point is not explicit in their work. In essence, the method works
as follows. Let X → Y be a rule, where X is a conjunction of attribute-value
conditions and Y is a single attribute-value pair. X and Y are said to be corre-
lated if: (a) the rule support exceeds a user-defined minimum support; and (b)
X and Y are deemed correlated by using a chi-squared test at a user-defined
significance level.

If these two conditions are met, the system determines whether X and
Y have a positive or a negative correlation. The correlation is considered
positive (negative) if the observed frequency of examples satisfying both X
and Y is greater (smaller) than the expected frequency assuming statistical
independence between X and Y.

The system then finds all direction setting rules, which are to be included
in the summary of rules to be reported to the user. Note that a direction
setting rule can be considered an interesting rule, for the purposes of our
discussion. A precise definition of a direction setting rule can be found in the
original paper. For the purpose of our discussion it is enough to say that: (a) a
k-condition rule r is viewed as a combination of two rules, a 1-condition rule
r1 and a (k-1)-condition rule rrest with the same consequence (there are k such
combinations); (b) if the correlation of the rule r is expected with respect to
any of the k combinations, then it is not a direction setting rule.

These ideas are better explained with an example. Assume that the rule
r given by Job=yes AND Own_house=yes → Loan=approved is positively
correlated. Suppose that both the rule Job=yes → Loan=approved and
the rule Own_house=yes → loan=approved are positively correlated. Then
the rule r is not a direction setting rule, since it is not interesting (two
positive correlations are expected to lead to a positive correlation). Now
suppose instead that both the rule Job=yes → Loan=approved and the rule
Own_house=yes → Loan=approved are negatively correlated. Then the rule
r is a direction setting rule, since it is interesting (two negative correlations
are unexpected to lead to a positive correlation).

In effect, a rule r is considered interesting (direction setting) when
attribute interaction makes the correlation of the rule to be different from
the correlations of the rule combinations formed from r.

At first glance perhaps one might argue that this method is greedy because
the k rule combinations are generated by picking one condition at a time to
form rule r1. However, note carefully that all rule combinations must pass the
test of having a correlation different from that of the original rule. Therefore,
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the method does incorporate a “global” (rule-wide) test of correlation reversal
and effectively detects attribute interactions.

4.2. Attribute interaction as the key concept in finding surprising rules

Freitas (1998) proposed that a rule be considered as surprising knowledge
to the extent that it predicts a class different from the classes predicted by
its minimum generalizations. In essence, this method works as follows. Let
a rule antecedent be a conjunction of m conditions, of the form cond1 AND
cond2 AND . . . condm. A rule has m minimum generalizations, one for each
of its m conditions. The k--th minimum generalization of the rule, k = 1, . . . ,
m, is obtained by removing the k-th condition from the rule.

Note that a minimum generalization g of a rule r covers a superset of the
examples covered by r. As a result, the class distribution of the examples
covered by g can be significantly different from the class distribution of the
examples covered by r. Therefore, assuming that a rule predicts the majority
class of the examples covered by the rule, after creating the generalized rule g
the system has to re-compute the class predicted by g, which can be different
from the class predicted by the original rule r. Let C be the class predicted
by the original rule r and let Ck be the class predicted by the k-th minimum
generalization gk of r. Then the system compares C with each Ck, k = 1, . . . ,
m, and counts the number of times that C differs from Ck. The higher the
value of this count, the higher the degree of surprisingness (interestingness)
assigned to the original rule r.

In other words, the system effectively considers that a rule r has a large
degree of surprisingness when attribute interaction makes r cover a set of
examples whose majority class is different from the majority class of the sets
of examples covered by most of the minimum generalizations of r.

4.3. Attribute focusing

Attribute Focusing is a technique designed for detecting interesting attribute
values, in the sense that the values differ from an expected value. Bhandari
(1993), Bhandari and Biyani (1994) proposed two methods for detecting
interesting attribute values. The first method consists of finding interesting
values of a given attribute by comparing the observed frequency of that
value with its expected frequency assuming a uniform probability distribu-
tion. Since this is a one-dimensional method, analyzing just one attribute at a
time, it involves no attribute interaction and so will not be further discussed
here.

The second method, however, is very relevant for our discussion. It
analyzes one pair of attributes at a time. An interestingness function I2 is
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used to detect an interesting pair of attribute values, where each of the values
belong to a different attribute of a given pair of attributes.

The function I2 measures how much the observed joint frequency of a pair
of attribute values deviates from the expected frequency assuming that the
two attributes are statistically independent. More precisely,

I2(A = Vi, B = Vj) =
|Pr(A = Vi, B = Vj) − Pr(A = Vi) × Pr(B = Vj)|, (1)

where A is one of the attributes being analyzed, Vi is i-th value of the domain
of A, Pr(A = Vi) is the probability of attribute A having value Vi; B, Vj and
Pr(B = Vj ) are defined in the obviously analogous way; Pr(A = Vi, B = Vj )
is the probability that both A has value Vi and B has value Vj ; and |x| denotes
the absolute value of x. Pr(A = Vi) is computed as the ratio of the number
of records in which A = Vi over the number of records in which A has some
value. Pr(B = Vj ) is computed in analogous way. Pr(A = Vi, B = Vj ) is
computed as the ratio of the number of records in which both A = Vi and
B = Vj over the number of records in which both A and B have some value.
A pair of attribute values is considered interesting if its I2 value is greater
than a user-specified threshold.

Hence, the essence of Attribute Focusing (using the interestingness func-
tion I2) is precisely to detect attribute values whose interactions produce
unexpected observed joint frequency. Note that this basic idea is similar to
the basic idea of the method discussed in section 4.1 – though the latter is
considerably more elaborated and discovers high-level rules, rather than just
pairs of attribute values.

Although the basic idea of attribute focusing is quite simple, it has been
effectively used to discover interesting knowledge in real-world data by
Bhandari (1993), Bhandari and Biyani (1994) and it has been used as the basis
for additional research in data mining. We briefly mention two examples of
this additional research.

Goil and Choudhary (1997) have extended Attribute Focusing for multi-
dimensional databases (data cubes). A contribution of this work was to
introduce a parallel algorithm to compute the above-discussed interesting-
ness function I2. This research addressed the problem of making Attribute
Focusing more computationally efficient, which is important in the context of
large data cubes. However, it did not adapt Attribute Focusing to one of the
major characteristics of data cubes, namely the fact that dimensions contain
hierarchical attributes.

This characteristic of data cubes introduces new opportunities and require-
ments for adapting the computation of the interestingness function I2. For
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instance, suppose we use Attribute Focusing to analyze sales of a product
and find interesting combinations of values of two attributes, say Store,
with hierarchy: store → city → state, and Time, with hierarchy: day →
month → year. Should the function I2 for combinations of states and years
(highest hierarchical level of both attributes) be computed in the same way
as for the combinations of stores and days (lowest hierarchical level of both
attributes)? What about combinations of stores and years (mixed hierarchical
levels)? These questions are addressed by Fabris and Freitas (2000), where
the computation of the function I2 takes into account a correction factor
based on the current hierarchical levels of the two attributes being analyzed
by Attribute Focusing.

4.4. Discovering surprising patterns by detecting occurrences of
Simpson’s paradox

Freitas (1998) has designed an algorithm that searches for all occurrences
of Simpson’s paradox in a data set. The motivation for this algorithm is that
Simpson’s paradox, due to its paradoxical nature, can be deemed a surprising
pattern. Hence, intuitively, occurrences of the paradox are a potentially
interesting output for a data mining algorithm.

Fabris and Freitas (1999) have applied this algorithm to seven data sets
of the UCI repository (http://www.ics.uci.edu/∼mlearn/MLRepository.html).
They have discovered in total 13 instances of the paradox in four data sets,
namely seven instances in Voting Records, two instances in Hepatitis, two
instances in Australian Credit and two instances in Nursery.

Note that, as mentioned in section 2.3, attribute interaction is at the core
of an occurrence of Simpson’s paradox. Hence, this work can be regarded as
a direct approach to make the detection of attribute interaction the central
goal of a data mining algorithm. In addition, it can be regarded as an
algorithm designed from scratch to discover interesting patterns, rather than
first discover many patterns and then pass them through a filter that selects
the most interesting patterns.

5. Conclusion

We have argued that attribute interaction is a key concept of data mining that
has been relatively little investigated in the literature, at least in an explicit
form. Hence, the general goal of this paper was to significantly increase our
understanding of this concept, in order to eventually support the design of
better data mining systems.
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The main contributions of this paper are as follows. Firstly, we showed that
the concept of attribute interaction has a crucial role across different kinds
of problem in data mining, such as attribute construction, coping with small
disjuncts, induction of first-order logic rules, detection of Simpson’s paradox,
and finding several types of interesting rules. Hence, a better understanding
of attribute interaction can lead to a better understanding of the relationship
between these kinds of problems, which are usually studied separately from
each other.

Secondly, we drew attention to the fact that most rule induction algorithms
are based on a greedy search which does not cope well with the problem of
attribute interaction, and pointed out some alternative kinds of rule discovery
methods which tend to cope better with this problem.

Thirdly, we discussed several algorithms and methods for discovering
interesting knowledge that, implicitly or explicitly, are based on the concept
of attribute interaction.

We hope that the insights provided by this paper can guide the design
of more effective data mining algorithms, which take into account the large
degree of attribute interaction typically found in real-world database systems.
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