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Abstract As the number and diversity of distributed Web databases on the Internet expo-

nentially increase, it is difficult for user to know which databases are appropriate to search.

Given database language models that describe the content of each database, database selec-

tion services can provide assistance in locating databases relevant to the information needs of

users. In this paper, we propose a database selection approach based on statistical language

modeling. The basic idea behind the approach is that, for databases that are categorized into a

topic hierarchy, individual language models are estimated at different search stages, and then

the databases are ranked by the similarity to the query according to the estimated language

model. Two-stage smoothed language models are presented to circumvent inaccuracy due to

word sparseness. Experimental results demonstrate that such a language modeling approach

is competitive with current state-of-the-art database selection approaches.

Keywords Database language model . Text database selection . Distributed information

retrieval . Hierarchical topics . Statistical language modeling . Query expansion

1. Introduction

The rapid proliferation of online text databases on the Internet has made it difficult for a user

to determine which databases to search for desired information. To reduce network traffic

as well as the cost of searching irrelevant databases, the idea of sending the user query only

to those potentially useful databases has become more and more attractive to both users and

information science researchers.

Database classification, the technique to partition multiple, distributed Web databases into

a structured hierarchy of topics, provides a useful and efficient way to organize and manage

a vast number of Web databases. At the same time, it is also helpful in simplifying the task of

database selection. Recently, several researchers have investigated the use of topic hierarchies
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for database classification and have received encouraging achievements. Gauch et al. (1996)

manually construct query probes to facilitate the classification of text databases. Ipeirotis,

Gravano et al. (2001, 2003) present a method for automating the database classification based

on the number of matches that each query probe generates from the databases. The formation

of queries comes from document classifiers. More recently, Ipeirotis and Gravano (2004)

introduce the notion of “shrinkage” which exploits database classification information by use

of a topic hierarchy to compensate for incomplete content summaries. In Meng et al. (2002)

and Yu et al. (1999b), a concept hierarchy is constructed for text database categorization. Each

concept description is treated as a query that is submitted to the database. The documents

retrieved from the database are used to calculate the similarity between the concept and

the database. In our previous work (Yang and Zhang 2004), we proposed a probability

framework for the hierarchical classification of distributed databases with a set of Naive

Baysian classifiers.

A number of different algorithms for database selection have been proposed during the last

decade, including GLOSS (Gravano et al. 1999), CORI (Callan 2000), RDD (Voorhees et al.

1995), CVV (Yuwono and Lee 1997), query probing (Hawking and Thistlewaite 1999, Meng

et al. 1998), lexicon inspection (Zobel 1997), a probability model (Baumgarten 1999), and

a KL-divergence algorithm (Xu and Croft 1999). Moreover, extensive comparative studies

among these algorithms have also been performed (French et al. 1999, Craswell et al. 2000,

D’Souza et al. 2000, Powell and French 2003). In general, database selection algorithms

do not directly have access to each database. Instead, they mainly interact with a database
language model which is constructed based on database statistical information, such as

subject domains (topics) of database content, a list of index terms that occur in the database

and their frequency occurrence, and the number of documents containing each index term.

The statistical information indicates the approximate content of databases. With database

language models, selection algorithms compute a ranking score for each database which

characterizes its relative usefulness to a query. Thus database language models are perhaps

the most important component of database selection.

The use of statistical language models for information retrieval has been studied exten-

sively for decades and has generated encouraging results (David et al. 1999, Hiermstra 2001,

Song and Croft 2002, Lafferty and Zhai 2002). However, most existing language models are

only involved in document indexing and document retrieval. The work in statistical language

models for database selection seems relatively new. However, there are several works that

have looked at development of the database language models (Xu and Croft 1999, Si and

Callan 2003, Si et al. 2002). Xu and Croft (1999) proposed a KL-divergence algorithm that

used the Kullback-Leibler (KL) divergence between the word frequency distribution of the

query and the database to measure the relevance of the database to the query. This algorithm

is represented in a language modeling framework consisting of a database language model

and a query language model, respectively. Si et al. (2002, 2003) proposed a language model

(LM) algorithm that was the extension of the KL-based database selection method. The LM

algorithm incorporated the database and query language models into an integrated language

model for database selection. However, the work of these two groups did not take into account

the relationships between topic classes related to the content of the database during database

selection.

In this paper, we present a novel way of looking at the problem of database selection from

the viewpoint of statistical language modeling. The statistical language model explored in

this paper is, in practice, a two-stage database language model which is the combination of

a class-based language model and a term-based language model. This work is an extension

of our previous research (Yang and Zhang 2004) which introduced a clustering method for
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hierarchically categorizing multiple, distributed Web databases. For text databases that have

been categorized into a hierarchical structure of topics, the task of database selection is

conceptually divided into two distinct steps:

(1) First, with a class-based language model, the search focuses on databases in confined

domains, e.g., a certain specific subject area in which a user is interested.

(2) Second, the selection algorithm computes the likelihood of separate databases to the

query using a term-based language model, and further selects the best databases for the

query.

Obviously, the two-stage language model approach explicitly captures the different influ-

ences of the category-specific search stage and the term-specific search stage on the optimal

settings of selection parameters. Our experimental results reported here have demonstrated

that the exact performance of this two-stage language model is significantly better than other

traditional selection methods, such as the state-of-the-art CORI method. Our study has three

important contributions:� First, we acquire database models independently according to different search stages, and

intentionally keep these models separate.� Second, we consider general ways of combining different database models together by

introducing suitable parameters. The synthetic model can be further individualized and

optimized for database selection.� Third, we propose a query expansion method to alleviate the problem of query ambiguity

using a query translation model.

It is believed that using such simple and effective language models as a solid baseline

method opens up the door to the improvement in database selection performance.

The paper is organized as follows: in Section 2 we discuss the language modeling approach

to IR, and briefly review previous work in this area; Section 3 lays out the basic theory of

the two-stage database language model and develops the formulas for its simple realization;

experimental methodology and a series of experiments to evaluate our language model are

presented in Section 4 and 5; and finally, conclusions and contributions of this work are

summarized in Section 6.

2. The language models in information retrieval

An information retrieval (IR) system consists of three basic components: the representation of

documents, the formulation of a user query, and the construction of a ranking function which

compares the likelihood between the document and the user’s information need. Language

models explicitly define how documents and queries should be analyzed and they reasonably

model the way that the ranking is produced. So research on language models has received

by far the most attention in the information retrieval community. To date different categories

of language models have been developed. Among them, three commonly used traditional

retrieval models include the Boolean model (Salton and McGill 1983), the vector-space

model (Salton and McGill 1983) and the classic probabilistic model (Robertson and Jones

1976, Van Rijsbergen 1992).

The Boolean model is a simple retrieval model based on set theory and Boolean algebra.

The relevance of documents is specified as a Boolean expression which has a strict logic

implication (Salton and McGill 1983). Due to the exact matching strategy which is unable to

recognize uncertain matches, the Boolean model is considered as the weakest classic method.
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The vector-space model (Salton and McGill 1983) assumes that a query and a document

are both represented by term vectors. The similarity between a query Q = {q1, q2, . . . , qn}
and a document D = {d1, d2, . . . , dn} can be measured by

∑
i qi · di , which is the dot product

of the two vectors. The similarity values are assumed to reflect the degree of relevance of

individual document with respect to a user query. Similarity measures and term-weighting

methods used in the vector-space model strongly depend on the type of query and the charac-

teristics of the document collection. The optimal settings of retrieval parameters have been a

great challenge.

The classic probabilistic modeling approaches (Robertson 1977, Robertson and Jones

1976) can be characterized as methods for estimating the conditional probability of the

relevance of a document to a user query. In essence, the probabilistic model is an adap-

tive model based on the Bayesian decision theory. In the probabilistic framework, the

term weights on both documents and queries are represented as probabilities. The rele-

vance of a document to a query is simply the product of the individual term probabilities

P(Q | D) = ∏
i P(qi | D). The most obvious problem with the probabilistic model is that it

is possible to assign a zero probability to a document that is missing one or more of the query

terms. In addition, the imprecise definition of the concept of relevance, and the lack of a large

amount of available relevance training data, make reliable estimation of these probabilities a

difficult task.

In recent years, there have been controversies about which model, the vector-space model

or the classic probabilistic model, is better. In practice, each of the two models has its

own advantages and disadvantages in different situations. Nevertheless, they both play an

important role in the development of information retrieval.

In order to circumvent individual problems of these three traditional categories of retrieval

models mentioned above, several researchers attempt to develop some hybrid models that

combine the strengths of these three models within a unified framework. For example, Turtle

and Croft (1990) introduced an inference network model in which the indexing and retrieval

models are integrated by making inferences of concepts from features by means of a Bayesian

network. The inference network can be used to simulate the Boolean, vector-space, and classic

probabilistic models. Other studies on mixture retrieval models can be found in Wong et al.

(1987) and Van Rijsbergen (1989).

Due to the relative simplicity and effectiveness of statistical methods that have been applied

successfully in a wide variety of speech and language recognition areas, statistical language

models have recently attracted significant attention as a new alternative to traditional retrieval

models.

The statistical language modeling approach was first proposed in Ponte and Croft (1998).

Ponte et al. presented a simple unigram document language model, which estimated the

probability of producing the query for each document, and then ranked the document ac-

cording to that probability. In the use of the language model by Miller et al. (1999), multiple

word generation mechanisms are incorporated within the same model using Hidden Markov

Models (HMM) theory. The retrieval parameters are trained and optimized through a learning

procedure. In a linguistically motivated model proposed by Hiemstra (1998), documents and

queries are defined by an ordered sequence of single terms rather than unordered collec-

tions of terms or phrases. The probability estimation of df × icf term weighting is based on

statistical natural language processing.

A more sophisticated systematic framework for this new family of retrieval methods

has been developed in a recent study by Lafferty and Zhai (2001). A probabilistic retrieval

model is motivated to unify document models and query models in a framework based on

Bayesian decision theory. Kullback-Leibler divergence is introduced as a loss function for
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risk minimization. Markov chains that are defined based on the inverted indices of a document

collection, are used for estimating expanded query models.

There are other statistical language modeling approaches to information retrieval including

title language models (Jin et al. 2002), and statistical translation (Berger and Lafferty 1999).

Although the details differ in these approaches, the language models are similar in principle.

The statistical language models are often approximated by a N -gram model for estimating

the probability of query terms.

The simplicity and robustness of the statistical language modeling approach make it a

new important research direction for text retrieval.

3. Two-stage database language models for database selection

One important advantage of the two-stage language models over traditional database language

models is their capability of modeling both category-specific selection and term-specific

selection directly through statistical language models. Instead of combining two distinct

selection steps together in an ad hoc manner, we intentionally keep them separate and consider

general ways to represent them.

The basic idea of the statistical language modeling approach to information retrieval is to

define a N -gram language model for each document in a collection (Ponte and Croft, 1998).

For each document, the language model computes the conditional probabilities of generating

a sequence of query terms, and then multiplies these probabilities in order to estimate the

likelihood value of the document with respect to the query.

Our work is originally motivated by the fact that a textual database can be regarded as a

vast, virtual document and be represented by a list of index terms since this textual database

consists of a collection of text documents. Therefore, a document language model can be

easily borrowed to model the likelihood measure of the database to a user query.

In this section, we extend recent advance in the use of statistical language models to

information retrieval and explore two-stage database language models based on statistical

language modeling for database selection. A brief overview of this language model and its

application to database selection is described as follows.

As we know, database selection is difficult partly because database selection algorithms

do not interact directly with the full contents of a database. Instead, they utilize a re-
source description (Callan and Connell 2001) that primarily contains the statistical in-

formation such as the words that appear in the database and their document frequency,

plus simple additional information such as the size of the database. Therefore, the first

problem in developing the database language model is the acquisition of resource de-

scriptions about the database contents. Resource descriptions usually come from cooper-

ative resource providers. When Web databases tend to be “uncooperative”, the resource

descriptions for the “uncooperative” Web databases have to be obtained by an alterna-

tive approach named query-based sampling. The basic idea behind the query-based sam-

pling methods is that a set of simple queries are submitted to each searchable database,

and a small document sample (e.g., 300 documents) is extracted via querying. The doc-

ument sample is used to construct an approximate resource description for this database.

Different query-based sampling strategies had been developed, such as the Query-based

Sampling (QBS) method (Callan and Connell 2001) and the Focused-probing Sampling

(FPS) method (Ipeirotis and Gravano 2002). Moreover, Ipeirotis and Gravano (2004) pro-

posed a shrinkage method to create category content summaries of databases using a topic

hierarchy.
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However, as described earlier, the emphasis of our work is on building effective database

selection models to choose the useful databases for search. Therefore, the discussion about

the acquisition of resource descriptions has been beyond the scope of this paper. For more

detail on the acquisition of resource descriptions, please refer to Gravano et al. (1997) and

Hawking and Thistlewaite (1999) for the “cooperative” databases, and Callan and Connell

(2001), Ipeirotis and Gravano (2002, 2004), Xu and Croft (1999) for the “uncooperative”

databases. Here, we only focus on the construction of the database selection model, assuming

that the resource descriptions for the databases have been known.

3.1. Hierarchical structure of topics for text databases

Hierarchical structure of topics have been long extensively studied for text classification. More

recently, several large-scale commerce Web search services such as Yahoo and Infoseek have

also adopted such hierarchies to manage the Wide World Web. By browsing these categories

in the topic hierarchy, the users can conveniently find the appropriate topic that they are

interested in. A simple hierarchical structure of topics is shown as Figure 1.

We can give some formal definitions of a hierarchical structure of topics as follows:

Definition 1. A structured hierarchy of topics is a rooted directed tree which contains a

number of topics (classes), namely, c1, c2, . . . , cK , organized into multiple levels and each

node corresponds to a topic.

In general, in such a topic hierarchy, topics are ordered from general topics at the higher

level to specific topics at the lower level. There exist parent-child relationships between two

adjacent layers. Each parent class has a set of child classes, and these child classes together

cover different aspects of the parent class.

Definition 2. In each parent-child pair, the weight of the connection between parent class cp
k

and child class ck is denoted by wcp
k ck

, which represents the degree of their association. For

a given parent class, cp
k = {c1, . . . , ck, . . . , cT }, the weight wcp

k ck
can be calculated as

wcp
k ck

= P
(
cp

k

)
P(ck)

= 1 + ∑i=T
i=1 P(ci )

N + T
· 1

P(ck)
(1)

The root level 

The first level 

The second level 

The leaf level 

Education Computers Science Sports ... 

Root 

... Database Programming ... Image Audio 

Hardware Software Multimedia ... 

Fig. 1 A small fraction of the topic hierarchical structure
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where N indicates the number of classes in the level in which the parent class cp
k lies, and

T is the number of child classes in the parent class cp
k . The prior probability for each child

class ci , P(ci ), is obtained from the training data set used for the construction of the topic

hierarchy.

Definition 3. For each topic (class) ck in the topic hierarchy, it is represented by a feature

space Fck , which is denoted as Fck = { f1, f2, . . . , fM }, where fi (1≤ i ≤ M) is a distinct

feature vector in the feature space Fck .

The features are the words that are strongly associated with one specific category (class).

The features have enough discrimination power to distinguish this class from a set of classes

in the hierarchical classification scheme. Due to computational cost which is exponential in

the number of features, the feature space Fck is usually minimized into a much small set of

features with minimal loss in accuracy (the issue on how to optimally select features for the

classes is out of the scope of this paper). For a given class ck,the probabilistic distribution

for each feature fi to the class ck , P( fi | ck) is known during the construction of the topic

hierarchy.

Definition 4. Cluster cp is a parent class that consists of a number of child classes, cp =
{c1, c2, . . . , cT }, where T is the number of the child classes. Fcp

is a feature space of the

cluster cp, which is described as Fcp = { f1, f2, . . . , fS}, where Fcp
is the feature space set

of all the child classes, namely, Fcp = Fc1 ∪ Fc2 ∪ · · · ∪ FcT , and fi (1≤ i ≤ S) is a distinct

feature vector in the feature space Fcp
.

Definition 5. With a hierarchical classification scheme with categories, c1, c2, . . . , cK , a

database S can be classified into one or more classes, which is denoted by a class set C S ,

C S = {cS
1 , cS

2 , . . . , cS
K }. Each class in the class set C S is a 2-dimension vector {cS

i , t S
i } (1≤

i ≤ K ), where t S
i is the degree of relevance of the database S to a certain class ci . t S

i can be

represented by the posterior probability P(ci | S) of class ci for the database S, whose value

is normalized into the range from 0 to 1.

It is possible for a large-scale general-purpose database to be assigned to multiple topics

(classes), since it usually contains the documents of different subject areas. The details of how

to categorize databases in a hierarchical classification scheme can be found in our previous

work (Yang and Zhang 2004).

It is easily noted that if a database is assigned to a topic (a leaf node or a node of lower

level in the hierarchy tree), it is also assigned to its parent or grandparent classes located on

the path from this node to the root node. For example, if class “database” is chosen by the

classification scheme as an appropriate topic for database S, then classes “computers” and

“software” must be in the class set C S of database S (see Figure 1).

The topic hierarchy and its associated Web databases could be used in a database selection

environment as follows. Once a user submits a query, the selection system selects the databases

to search in two stages: in the first stage, a preliminary selection is performed through the

process. More specially, the system identifies one or more topics that best match/matches the

user’s information need, and then the databases associated with these topics (classes) firstly

are chosen. In the second stage, a term-based database selection algorithm is used to further

select the more appropriate databases from those chosen databases based on the degree of

relevance to the query.
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3.2. The statistical language modeling approach

We now turn to the central issue of how to automatically select the appropriate databases that

the user is interested in. Firstly, let us take a brief look at the standard statistical language

model.

In automatic speech recognition, language models are capable of assigning a probability

P(W ) to a word string W (W = w1w2 · · · wn). The probability of the word string W occurring

in English text can be characterized by a set of conditional probabilities P(wi | wi−1
1 ), which

can be expressed as a product

P(W ) =
n∏

i=1

P
(
wi | wi−1

1

)
(2)

where P(wi | wi−1
1 ) is the probability that the word wi will be occurred when all of the

previous words wi−1
1 (wi−1

1 = w1w2 · · · wi−1) occur.

The task of a statistical language model is to make it tractable to estimate the probabilities

P(wi | wi−1
1 ). At present, the dominant technology in language modeling used in IR is the

unigram model, which makes a strong assumption that each word occurs independently.

Consequently, the probability of a word string becomes the product of the probabilities of

the individual words. Therefore, Eq. (1) can be simplified as

P(W ) =
n∏

i=1

P(wi ) (3)

For a vocabulary of size V , the unigram model is a multinomial distribution, i.e., multinomial

distributions over words in V , which has V − 1 independent parameters.

The basic idea of the statistical language modeling approach for database selection is

to treat each database S as a language sample, and to estimate the conditional probability

P(Q | S), i.e., the probability of generating a query Q = {q1, q2, . . . , qN } given an observa-

tion of a database S:

P(Q | S) =
∏

i

P(qi | S) (4)

The databases are ranked by the probabilityP(Q | S).

Applying Bayes’ rule of probability, the posterior probability of the database S to the

query Q can be written as

P(S | Q) = P(Q | S)P(S)

P(Q)
(5)

The P(Q) term represents the probability that query Q is generated from a document-

independent language model. Since P(Q) is constant for all databases given a specific query

Q, it does not affect the ranking of the databases and can be ignored for the purpose of

ranking databases. Therefore, Eq. (4) can be rewritten as

P(S | Q) ∝ P(Q | S)P(S) (6)
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As to the P(S) term, it is a query-independent term, which measures the quality of the

databases according to the user’s general preference and information need. In general, P(S)

can be explored to capture database characteristics, e.g., the length of a database. In this

work, since a user query probably involves in a variety of topics and we cannot predict its

content in advance, the prior term P(S) is assumed to be uniform over all databases, and so it

does not affect database ranking. A similar assumption has been made in most existing work

(Zhai and Lafferty 2001, Ponte and Croft 1998, Song and Croft 1998). Therefore, in practice,

only the P(Q | S) term has final influence on determining the relevance of the database to

the query.

Just as in the use of language model for speech recognition, one of the most obvious

practical problems in applying statistical language modeling to IR is the problem of sparse

data, that is, it is possible to assign a probability of zero to a database that is missing one or

more of the query terms.

The sparseness problem can be avoided by data smoothing methods. In most data smooth-

ing methods, two distributions are used for smoothing. One is high probability for “seen”

words that occur in the database, and the other is low probability such as zero probabil-

ity for “unseen” words. Smoothing methods tend to make distributions more uniform by

discounting high probability and adjusting low probability upward. Not only do smoothing

methods prevent zero probability, but they have also the potential to improve the accuracy

and reliability of the models.

3.3. The smoothed two-stage language models

The generic language model for the two-stage database selection procedure can be refined

by a concrete class-based model P(Q | C) for generating the specific subject classes that best

match the query, and a concrete term-based model P(Q | S) for generating the most likely

similar databases to the query. Different specifications lead to different selection formulas.

Next, we present the generic two-stage models with data smoothing methods.

3.3.1. The smoothed class-based language model.

Assume that we have successfully assigned a feature space Fck to each class ck in the

topic hierarchy. Given a user query Q, it may be possible to make reasonable predictions

of determining the appropriate topic(s) that the user is interested in by using the feature

vectors in the feature space. Let Fck = { f1, f2, . . . , fM } denotes a feature space of class ck ,

Q = {q1, q2, . . . , qN } denotes a user query and FC = { f1, f2, . . . , f|v|} denotes the feature

vocabulary of all the classes in the topic hierarchy. Obviously, the feature space Fck of a

class ck only contains a subset of features of the feature vocabulary FC (1≤ M ≤ |V |). For

a certain topic class ck , the likelihood function of class ck to a query is described as follows,

P(Q | ck) =
∏

i

P(qi | ck) =
∏

i

P(qi | Fck ) (7)

where P(qi | ck) is the probability of query term qi in the feature space Fck of class ck .

As discussed earlier, due to computation cost, the feature space Fck is actually a much

smaller feature set of fixed size and content. This makes it difficult to distinguish the effects

of the missing query terms in the feature space Fck . To avoid the sparse data problem, we

describe a smoothing technique called the Jelinek-Mercer (JM) method (also called linear

interpolation) (Jelinek and Mercer 1980) that combines the probability estimates of several
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language models within a unified model in order to alleviate the suffering from the data

sparseness problem. The probability estimates of this linearly interpolated language model

will become more reliable and more accurate.

In order to capture the common and non-discriminating words in a query, we assume that

a query is generated by sampling words from a three-component mixture of language models

with one component being P(q | ck), and the two others being the parent-class language

model P(q | cp
k ) and the class-corpus language model P(q | C). That is,

PJM(Q | ck) =
∏

i

(λ1 P(qi | ck) + λ2 P
(
qi

∣∣ cp
k

) + λ3 P(qi | C)) (8)

where cp
k is the parent class of the class ck , and C is the class corpus of the topic hierarchy;

λ1, λ2 and λ3 are coefficients, which control the influence of each model, 0 ≤ λ1, λ2, λ3 ≤ 1

and λ1 + λ2 + λ3 = 1.

With reasonably smoothed class models, we can now consider the process of query genera-

tion. In this formula, the class-based language model is effectively smoothed in the following

two steps:

(1) First, it is smoothed with the correlation information about parent-child pairs. Since

the feature space of the parent class cp
k is the feature space set of all child classes (recall

Definition 4), the size of the feature space Fcp
k of the parent class cp

k is far larger than that of

the feature space Fck . Therefore, such a parent-class model P(q | cp
k ) can help us differentiate

the contribution of different missing query terms in the feature space Fck . In consideration

of the associative degree between a parent class and child classes, there exists the following

relationship between λ1 and λ2:

λ2 = wcp
k ck

λ1 (9)

where wcp
k ck

is the weight of the connection between parent class cp
k and child class ck (recall

Definition 2). Combining this equation with the class model, we can rewrite Eq. (8) as follows,

PJM(Q | ck) = λ1 P(Q | ck) + λ1wcp
k ck

P
(
Q

∣∣ cp
k

) + [
1 − (

1 + wcp
k ck

)
λ1

]
P(Q | C) (10)

=
∏

i

(λ1 P(qi | ck) + λ1wcp
k ck

P
(
qi | cP

k

) + [
1 − (

1 + wcp
k ck

)
λ1

]
P(qi | C)) (11)

(2) Second, in order to avoid the probability that some query terms may still be missing in

the feature space of the parent class, this class-based language model is further interpolated

with a class-corpus model. Note that, in the class-corpus model, the probability of term qi ,

P(qi | C), is much smaller than the probabilities in the first two feature spaces Fck and Fcp
k ,

P(qi | ck) and P(qi | cp
k ), since the features in the feature space FC are the sum of the features

of all classes in the topic hierarchy.

In the use of the linearly interpolated language model, the coefficient λ1 plays a crucial role

in information loss and the improvement of selection performance. In our work, an automatic

procedure, called EM (Expectation Maximization) (Dempster et al. 1977) is executed to learn

the optimization of the value of the λ1 given some training data set. Given some relevant class

feature spaces, the probability PJM(Q | ck) will be maximized with the optimum λ1 value.

The EM-algorithm can be defined as follows.
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First, the evaluation of the expectation is called the E-step of the algorithm, which is

described as

m=
R∑

k=1

N∑
i=1

λ
(p)
1 P(qi | ck)(

λ
(p)
1 P(qi | ck) + wcp

k ck
λ

(p)
1 P(qi | cp

k ) + [1 − (1 + wcp
k ck

)λ
(p)
1 P(qi | C)

) (12)

Second, the second step (the M-step) of the EM algorithm is to maximize the expectation

that we computed in the first step. That is,

λ
(p+1)
1 = m

R
(13)

These two steps are iterated as necessary to maximize the probability of the query given

R relevant classes, c1, c2, . . . , cR . Before the iteration process starts, the coefficient λ1 is

initiated with a default value λ
(0)
1 . Each turn is guaranteed to increase the probability of the

generation of the query. The algorithm finally converges to a local maximum of the likelihood

function.

With the smoothed class-based language model, one or more classes, whose likelihood

probabilities PJM(Q | ck) are greater than the threshold τe, will be labeled as appropriate topic

areas that the user is interested in. Obviously, choosing the subject classes that we explore

at the category-specific stage depends on the threshold τe of choice. In this paper, τe is set

empirically by a number of experiments.

Assuming that there are u topics (c1, c2, . . . , cu) selected by the class-based language

model, the likelihood of the database associated with the chosen topics to the query Q can

be calculated as

P(Q | S) =
u∑

k=1

PJM(Q | ck)P(ck | S) (14)

where P(ck | S) is the posterior probability of class ck for the database S (recall Definition 5).

The databases will be ordered by the likelihood probabilities, and only the top K databases

in the ranking list will be chosen as preliminary relevant databases to the query.

3.3.2. The smoothed term-based language model.

Once a number of relevant databases are chosen from the category-specific search stage, the

next step is to further reduce the search range for efficiency and effectiveness. There are two

basic similarity measure techniques for database selection. The first technique is a document-

based method. The basic idea underlying this technique is that the degree of relevance

of a database to a query is related to relevant documents in the database. Two important

parameters, document quality and document quantity, are considered as selection criteria.

Document quality refers to the similarity degree of the most likely similar documents in the

database, while document quantity is the number of relevant documents whose similarity

scores are greater than a threshold. This approach is explored in the works of (Yu et al.

2000a, Ipeirotis and Gravano 2001). The second technique is a term-based method, which uses

statistical information on term distributions in the database to calculate estimates that attempt

to characterize the usefulness of a database. The terms associated with the database provide

approximately the content of the database. The ranking score based on term distributions

reflects the relative usefulness of the database to a query. Related works are employed in

Yang and Zhang (2004), Manber and Bigot (1997).
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In our previous work (Yang and Zhang 2004), we learned that the term-based method has

similar performance on database classification to that of the document-based method, but as

for the computation time and resource consumption, the term-based method is far better than

the document-based method. Hence, the language model that we propose here is based on

the terms associated with the database.

3.3.2.1. A maximum likelihood estimation (MLE) language model smoothed with dirichlet
prior. Given a database as a language sample, a straightforward method to estimate the prob-

abilities of individual query terms is the Maximum Likelihood Estimation (MLE) (Moode

and Graybill 1963). The Maximum Likelihood Estimation of the probability of term ti under

the term distribution for database S is

PMLE(ti | S) = C(ti | S)∑
t j

C(t j | S)
(15)

where C(ti | S) is the frequency occurrence of term ti in database S, and
∑

t j
C(t j | S) is the

sum of the occurrence times of all terms in database S. The MLE assigns the probability

of the observed data in the database as high as possible and assigns zero probability to the

missing data.

Our term-based language model is a unigram language model based on the MLE. Given

a user query Q, the probability P(Q | S) of a database S to the query can be expressed as

PMLE(Q | S) =
∏

i

PMLE(qi | S) =
∏

i

C(qi | S)∑
t j

C(t j | S)
(16)

For a database with a large number of documents, there is enough data for PMLE(qi | S)

to be robustly estimated. However, the MLE may still assign zero probabilities to query

terms that do not appear in the database. Since the probability of the query is computed by

multiplying the probability of individual query terms, these zeros are propagate and give a

bad estimate for the probability of the query. To compensate for this sparse data problem, one

of the smoothing techniques for language models is the maximum a prior (MAP) estimator

with Dirichlet Prior (DP) (Zaragoza et al. 2003). With a Dirichlet Prior with parameters αm
(m = {m1, m2, . . . , mn}), the smoothedPMLE(Q | S) can be rewritten as

PDP(Q | S) =
∏

i

C(qi | S) + αmi∑
t j

C(t j | S) + α
(17)

where α is a positive scalar; and mi is the posterior probability of query term qi , which is de-

noted as P(qi | C ′). The probabilityP(qi | C ′) can be estimated based on a collection language

model P(t | C ′). The collection language model P(t | C ′) is constructed with a large amount

of training data C′, which contains the average probability of the term through a geometric

distribution. The model P(t | C ′) is used as a reference model to smooth the probability

distribution of query terms. For a term ti , P(ti | C ′) is normalized, i.e.,
∑

ti
P(ti | C ′) = 1.

3.3.2.2. Query expansion with translation models. Users usually submit short queries that

have only one or a few words. Such short queries tend to be inexact and ambiguous in

identifying the users’ information needs. As a result, the selection system has very few clues

to work with for predicting the relevance of a database to a query. The accuracy of a likelihood

function of the database to the query will suffer from the problem of query ambiguity. The
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use of query expansion can alleviate this problem. The basic idea of query expansion is to

discover related terms or concepts, along with their relationships with query terms in the

user’s query. The terms in the expanded query help disambiguate the meanings of query

terms in the original query, which in turn make database selection more accurate.

In this paper, we propose a query expansion method which makes use of the relationships

of the user query, and the topic classes of interests for the user. The intuition behind our

approach is that once relevant topic classes are determined, the query can be mapped to a

number of features associated with the identified topic classes. Assume that a set of topic

classes, c1, c2, . . . , cu , are relevant to the query Q. For each topic class ck (1≤ k ≤ u),

a query translation model T (Q | Fck
Q ) is used to map a query Q to a feature set Fck

Q (Fck
Q =

{ f1, f2, . . . , f p})(note that the feature set Fck
Q is only a subset of the feature set Fck of the class

ck). These features are more specific (or related) terms in the relevant class ck to the query,

which provide sufficient content to clear up the ambiguity. Thus, an expanded query consists

of two parts: the first is for the original query terms, and the second is for the expanded query
terms from the relevant topic classes. Using translation models, the term-based language

model for the expanded query can be rewritten

PQE (Q | S) = P(Q | S)︸ ︷︷ ︸
originalquery

∏u

k=1
P(Qck | S)︸ ︷︷ ︸

expandedquery

= P(Q | S)︸ ︷︷ ︸
originalquery

∏u

k=1
T

(
Q | Fck

Q

)
P

(
Fck

Q | S
)︸ ︷︷ ︸

expandedquery

(18)

where T (Q | Fck
Q ) is the query translation model which will be discussed in the remaining

section; and P(Fck
Q | S) can be approximately regarded as the posterior probability of the

class ck for the database S, P(ck | S)(recall Definition 5).

For computative simplification and analysis convenience, the likelihood function can be

performed in the form of logarithm, which is described as

PQE (Q | S) ∝ log P(Q | S) +
u∑

k=1

log
(
T

(
Q | Fck

Q

)
P

(
Fck

Q | S
))

(19)

Note that due to the property of monotonic transformation of the logarithm, the log-likelihood

ranking remains identical to the original ranking.

As described previously, the key component in the query expansion model is the query

translation model T (Q | Fck
Q ). This model is related to the feature set Fck in the topic ck ,

which can be denoted as

T (Q | Fck
Q ) = T (Q | ck)P(ck | Fck

Q ) = T (Q | ck)P
(
Fck

∣∣ Fck
Q

)
(20)

where T (Q | ck) is the degree of relevance of the topic ck to the query, which is related to

the weight of the expanded terms. To avoid the over- influence of the expanded query terms

on the result of database selection, the weight of the expanded terms are usually diminished

compared with the original query terms. Here, T (Q | ck) is normalized, which is denoted as

T (Q | ck) = PJM(Q | ck)√∑u
k=1 (PJM(Q | ck))2

(21)

where PJM(Q | ck) is known at the category-specific stage (recall Section 3.3.2.1).

We note that the feature spaces, Fck
Q and Fck , are both feature distributions in class

ck . P(Fck | Fck
Q ) is related to the Kullback-Leibler distance (also known as cross entropy)

(Kullback and Leibler 1951) which is an information theoretic measure of the divergence
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of two probability distributions Fck
Q and Fck . Our goal is to select a set of features Fck

Q
from Fck . We wish that the information loss between these two distributions is mini-

mized, i.e., K L(Fck , Fck
Q ) is as small as possible. We define that, given a feature vector

fi , δQ( fi ) = K L(P(Fck | fi ), P(Fck
Q | fi )). We therefore want to find the feature set Fck

Q for

which information loss �Q = ∑
fi ∈F

ck
Q

P( fi )δQ( fi ) is reasonably small.

Intuitively, we use a greedy algorithm to obtain the feature set Fck
Q , which is described as

follows:

1. Initially, we begin with a current feature set Fck
Q = Fck .

2. At each state, we eliminate a feature fi in a way that allows �(F
ck
Q − fi )

to remain as close

as possible to �F
ck
Q

. On each turn the elimination of feature fi causes a small increase in

�Q .

3. Repeat step 2 until �Q is increased to the desired information loss.

Once the feature set Fck
Q is selected from the feature space Fck , P(Fck | Fck

Q ) can be

described as

P
(
Fck

∣∣ Fck
Q

) =
∑

fi ∈F
ck
Q

P( fi | ck)∑
f j ∈Fck

P( f j | ck)
(22)

4. Experimental design

4.1. The data sets

In order to demonstrate the effectiveness of our modeling techniques, we conduct a number

of experiments to evaluate the selection performance of two-stage database language models.

For our experiments, we do not use the TREC data set which is commonly used in distributed

IR. The reason for this is that the topics for the TREC data set cannot be constructed in the

form of a hierarchical structure. Since our database language modeling approach is based on

the context of a topic hierarchy, we conducted a series of experiments on two hierarchically-

structured data sets: the Reuters 21578 data set and the LookSmart Web data set.

The Reuters 21578 data set (http://www.daviddlewis.com/resources/testcollections/

∼reuters21578. html) is used by much of previous work on hierarchy methods for text

classification (D’Alessio et al. 1995, Weighend et al. 1998, Kohler and Sahami 1997). This

data set consists of 21578 articles labeled with 135 topics with no hierarchy structure. To

construct a hierarchy of topics, we manually construct a 3-layer hierarchy of 4 top-level, 18

second-level, and 96 leaf-level categories. 4 top-level categories come from meta-categories

codes (economic indicators, currency, commodities and energy). 18 second-level categories

are the categories that tend to subsume some labels (e.g., the labels ‘barley’ and corn are

subsumed by the topic ‘Agriculture’; the labels ‘gold’ and ‘silver’ are subsumed by the topic

‘Metallurgy’). 96 topics are extracted from 135 category labels as the leaf-level categories.

However, Reuters-21578 is a small and homogeneous collection, which makes it problem-

atic to understand how our approach is applicable to large, complex and heterogeneous Web

collections. To overcome this problem, we investigate the use of hierarchies for searching

very heterogeneous Web contents. For our experiments, we use a large collection of heteroge-

neous Web pages from LookSmart’s Web directory (www.Looksmart.com). The LookSmart

Web hierarchy is a 7-level hierarchy. We focused on the top two levels of the hierarchy

which include all 13 of the top-level and 150 second-level categories. The classes are general

subjects such as Sports & Recreation, and Society & Politics. This Web collection consists
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of 370, 597 unique pages (from a May 1999 Web snapshot) as reported in (Dumais and

Chen 2000), which have been hierarchically classified by trained professional Web editors.

Each Web page had been assigned to zero or more categories. Pre-processing is executed to

extract plain text from each Web page by removing HTML markup tags. In addition, the title

description and keyword fields from the META tag were also extracted because they provide

useful descriptions of the Web page. After pre-processing, a pseudo document was generated

as a description of the original Web page.

4.2. Evaluation metrics

At the category-specific search stage, we draw the 11 point average precision-recall curve

to compare the selection performance between the JM model and non-interpolated model

without the interpolation of the parent class and the class corpus. The 11 point average

precision-recall curve plots the average precision values at each of the 11 recall points 0,

0.1, 0.2, . . . , 1.0, where precision PClass and recall RClass, are expressed by the following

equations:

PClass = the number of relevant classes

The total number of classes selected
(23)

RClass = the number of relevant classes

The total number of relevant classes in the class set
(24)

At the term-specific search stage, we use the R̂k(E, B) metric to compare the effectiveness

of variations of three types of language models, namely, the MLE model, the DP model and

the DP + QE model. Note that the names of all the models are abbreviated with the two

initial letters (e.g., DP for Dirichlet Prior smoothing).

To compare the selection performance of our proposed approach, we provide a widely-

used keyword-based technique—the CORI database selection algorithm (Callan 2000) as

the experimental baseline. The CORI algorithm uses a variant of t f · id f [Salton and McGill

1983) adapted for ranking databases. The relevance score of a database S to the query Q is

calculated as:

relevance score(Q | S) =
∑

i

P(qi | S) (25)

p(qi | S) = 0.4 + 0.6 · T · I (26)

T = d f

d f + 50 + 150 · cw/avg cw
(27)

I =
log

(
C+0.5

c f

)
log(C + 1.0)

(28)

where df is the document frequency of the query term qi in database S, cw is the number

of indexing term occurrences in database S, avg cw is the average of cw in database set; C
is the number of databases, and cf is the collection frequency of query terms qi in database

collection. Databases are then ranked based on the relevance score.

As to the performance metrics of database selection, we choose the R̂k(E, B) metric for

comparison, which had been used by several researchers in database selection (Gravano et al.

1999, French et al. 1999, Callan and Connell 2001, Ipeirotis and Gravano 2004). For each
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query, two database ranks are provided: one is a baseline or desired rank B in which databases

are ranked by their r (Q, S) value, where r (Q, S) is the number of documents contained in

database S which are relevant to the query Q; the other is a estimated rank E which is ranked

by the relevance score calculated by the database selection algorithm. The R̂k(E, B) metric

measures the percentage of relevant documents contained in the k top-ranked database, which

is defined as

R̂k(E, B) =
∑

Si ∈Ek
r (Q, Si )∑

Si ∈Bk∗ r (Q, Si )
(29)

where Ek is the estimated rank of the k top-ranked database, and Bk∗ is the baseline rank of

all the databases that are useful for the query. The primary objective of database selection

is to select a small set of databases that cover as many relevant documents as possible. This

means that the higher the R̂k(E, B) value, the better the database selection algorithm.

4.3. Experimental setup

In this paper, our experiments, in practice, are made up of two phases:

(1) Training phase: tuning parameters in the language models

In this phase, we consider a number of variations on language models and evaluate the

impact that these variations had on the database selection results. These variations are:

– the effects of a wide range of parameter values, the JM coefficient λ1 and the DP

parameter α;

– the effects of query expansion size of the DP + QE model on database selection.

(2) Test phase: the comparison of different language models on selection performance

In this phase, we conduct a series of experiments to compare the selection performance

for different language models. These comparisons are:

– the comparison of The JM model and the non-interpolated model on the selection of

relevant topics at the class-specific search stage;

– the comparison of 3 different language models: the MEL model, the DP model, the DP

+ QE model on database selection at the term-specific search stage;

– the comparison of the two-stage selection approach and the general one-stage selection

approach—the state-of-the-art CORI model on database selection.

In order to carry out the above experiments, the datasets are divided into two parts: the

first is used to build the topic hierarchy used for the class-specific search stage; the second

is decomposed into 130 smaller databases for each collection. Among these databases, 30

databases are used for the tuning of the model parameters in the language models at the

training phase, and the rest of the 100 databases are for performance evaluation at the test

phase. Tables 1 and 2 below separately list the detailed statistics of the topic hierarchy and

the training and test databases for the Reuters-21578 and LookSmart datasets. Note that for

the Reuters-21578 dataset, we only use 93 leaf-level classes to build the topic hierarchy other

than 96 topics. The reason is that we found there are three topics that only have fewer than

5 documents. The number of documents is not enough for the training and test phase. So we

have to discard these three topics in the construction of the topic hierarchy.

As we known, the performance of a selection system may vary significantly according

to the test datasets used. To fairly compare the behavior of our language modeling method
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Table 1 Statistics about the
construction of the topic
hierarchy in the Reuters-21578
and LookSmart Datasets

Collections Reuters - 21578 LookSmart

Size of documents 2850 18780

Leaf-level classes 93 150

Level of class hierarchy 3 3

Mean relevant documents per class 32 125

Table 2 Statistics about the training and test databases for the Reuters-21578 and LookSmart Datasets

Collections Reuters - 21578 LookSmart

The number of databases 30 (training) + 100 (test) 30 (training) + 100 (test)

The size per database 0.01–1.2 M 7.2–36.4 M

The number of documents per databases (×100) 0.5–10.2 30.2–126.3

The classes per database 2–8 12–30

with that of other methods, we perform our experiments on databases with different database

characteristics, such as the large-scale databases with a variety of topics that consist of the

LookSmart documents, and the small-scale databases with a few topics that consist of the

Reuters-21578 documents. Each test dataset was divided into 130 smaller databases that were

of different sizes (between 0.01–1.2 megabytes per Reuters-21578 database, and between

7.2–36.4 megabytes per LookSmart database), and varied in the number of documents they

contain. The documents inside a database are from the same source or Web site (for the

LookSmart databases) or the same time-frame (for the Reuters-21578 databases). Table 2

depicts the summarized statistics for the test databases in these two datasets.

For each small or medium-scale dataset, we recognize that the construction of 130

databases possibly leads to the problem of document overlap in the database collection,

especially for the small Reuters-21578 dataset. To lessen the problem of document overlap,

the document number of most of the databases in the Reuters-21578 dataset, in practice, is

only within the range of 50–200. This is the main reason why the smallest size of Reuters

databases is only 0.01 M (see Table 2). According to the statistical information obtained

from the Reuters-21578 and LookSmart database collections, the percentage of document

overlap is only 11.3 and 6.5%, respectively. We think they are reasonable figures for database

construction.

For our experiments, 50 trials (25 for short queries and 25 for long queries) were conducted

for each group of experiments. All trials were completely automatic, starting with a different

selected query and then generating a ranked list of candidate topics or test databases at

different search stages. The experimental results reported here are averages of results returned

from the 50 trials.

To avoid the sensitivity of selection performance to query length, in this paper, we exper-

imented with both short and long queries. Unlike the TREC data where these two types of

queries can be created based on the title, description and narrative fields from the TREC-

style topics, the Reuters-21578 and LookSmart dataset only contain the title selection in the

documents. In order to acquire the proper queries, in this paper, we used the title as the short

query, and the title concatenated with a group of frequent terms occurring in the dateline
section of relevant documents in a particular topic domain as the long query. The reason for

the use of frequent terms as query terms is that these frequent terms would return the most

random sample of documents from the test datasets. In order to obtain long queries with the
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Table 3 Average size of query description for the Reuters-21578 and the LookSmart Web
Datasets

Reuters–21578 LookSmart

Collections Min Avg Max Min Avg Max

Short query (Title) (Words) 4 5.7 8 5 8.2 11

Long query (Title + frequent terms) (Words) 16 20.5 25 14 28.4 36

frequent terms for a specific topic, we use the query selection strategy reported in (Callan

and Connell 2001). For each topic, a collection of relevant documents is chosen from the

dataset (note that these documents are excluded from the training and test datasets used for

the experiments). The selection of frequent terms is measured by average term frequency

(avg tf = ctf /df), where ctf is collection term frequency and df is document frequency.

Note that all the documents and the queries are preprocessed by removing stop words and

employing the Porter stemming algorithm (Porter 1980). We hired undergraduate students

to produce long queries. We provide them a list of frequent words for reference when they

generated long queries. Table 3 below lists query set statistics for these two datasets.

As described earlier in Section 4.1, the documents in the two datasets had been labeled

with relevant topics. Thus, the relevant assessment for the queries were based on the category

label associated with each document in the database. The documents with no category label

are treated as irrelevant. For example, each Reuters-21578 document contains the <topic>
field that denotes the class label of this document. With the information provided by the

<topic> field of the document, it is easy to know the number of relevant documents in a

database with respect to a given query of a particular topic.

5. Experimental results

In this section, we present experimental results to test the robustness of using the smoothed

two-stage language model for database selection.

5.1. The effects of various values of smoothing parameters in individual

language models

To examine the effect of the smoothing parameter in each specific smoothing method on

selection effectiveness, we vary the value of the smoothing parameters in a wide range in

order to observe all possible difference in smoothing. In each run, we set of the smoothing

parameters the same value across different data sets to report the average selection perfor-

mance at each parameter value. Then, we compare selection performance by plotting the

average precision PClass or the R̂k(E, B) metric against the variation in these values.

Jelinek-Mercer (JM) Smoothing: We compare the precision of the JM model at different

settings of the smoothing parameter λ1 (Recall Eq. (11)). In order to carry out an exhaustive

search on the parameter space of λ1, we firstly tried 10 values {0.1, 0.2, 0.3, 0.4, 0.5, 0.6,

0.7, 0.8, 0.9, 0.95}. We note that, when λ1 varies in the range between 0.5∼0.8, the results

are statistically significant improvement in precision. This means that, if we expect that the

JM model performs reasonably well, we had better set λ1 at some desired range with the

value of 0.5–0.8. However, it is hard to determine the optimal λ1 value, because the set of the
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Fig. 2 The effect of different values of the JM coefficient λ1 on selection performance

optimal λ1 varies with individual queries and topic classes throughout the training process.

To further obtain the optimal λ1 on separate datasets, we used the EM algorithm (Recall

Section 3.3.1) to learn the optimal value over the desired parameter space with the value of

0.5–0.8.

The plots in Figure 2 show that the average precision for different values of λ1 over two

datasets. It is easily noted that the choice of the appropriate smoothing parameter λ1 can

have a large impact on selection performance. We can see that the optimal value of λ1 is a

little high (0.67 for the LookSmart and 0.75 for the Reuters), which suggests that although

the parent-class model and the class-corpus model can help smooth the word sparseness, the

basic class model P(q | ck), in practice, plays a major role in class selection.

Dirichlet Prior (DP) Smoothing: To see the detail change, we experimented with a wide

range of value of the DP smoothing parameter α Recall Eq. (17). The plots in Figure 3 show

the average R̂k(E, B) value for different settings of the prior sample size α. It is observed

from the results in Figure 3 that when the size of the database becomes large, there is a great

chance for α to be at a small value. This is probably because α is a document-dependent

parameter, which is affected by the length of the data collection. When the data collection

becomes larger, α tends to be smaller in order to emphasize the impact of the original

occurrence frequency of query term C(ti | S) on selection process. The effect of α is similar

to the smoothing parameter λ1 in the JM model. The optimal value of α seems to vary from

dataset to dataset. However, in most cases, it is “safe” to be set a relative large value with the

range between 1000–3000.
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Fig. 3 The effect of different values of the DP parameter α on selection performance
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Fig. 5 Selection performance of the JM model and the non-interpolated model in LookSmart data set

5.2. The JM model vs the non-interpolated model on relevant topic selection

The class-based language model using the JM smoothing method is expected to perform better

than the simple non-interpolated model. In order to prove it, we compare the precision-recall

chart of the JM model with that of the non-interpolated model over two datasets. The 11

point precision-recall curves are shown in Figures 4 and 5. Note that the figure for the JM

model uses the best choice of the smoothing parameter λ1(λ1 = 0.7).

Figures 4 and 5 clearly show that on the 11 point precision-recall chart, the JM lan-

guage modeling approach achieved better precision at all levels of recall. The precision is

improved significantly by 7.54% and 9.45% on average respectively. This means that the

linear interpolated approach is an attractive way in which the parent-class model and the

class-corpus model help effectively smooth the word sparseness and therefore improve the

selection effectiveness.

It is interesting to notice that the behavior of the JM model and the non-interpolated model

varies in different data sets. For small-scale Reuters databases, the improvement of the JM

model over the non-interpolated model is not as significant as that for the LookSmart data

set. The performance gain in the Reuters data set achieves 7.54% improvement in contrast to

9.45% in the LookSmart data set. One possible reason for this difference might be because

in the small-scale data corpus, there are more chances to assign a default higher corpus

probability to a non-occurring query term in a specific database. It leads to the deterioration

of selection performance. However, this is only a conjecture, the verification of which we

leave for future work.
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Fig. 6 The effects of different term-based language models on selection performance in the reuters data set
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Fig. 7 The effects of different term-based language models on selection performance in the LookSmart
data set

5.3. The effects of different term-based language models on selection performance

In this subsection, we study the behavior of three different term-based language models

discussed in Section 3.3.2. These language models, the MLE model, the DP model and the

DP + QE model are evaluated in our experiments. The selection performances of these three

models are shown in Figures 6 and 7.

Compared with the behavior of the MLE model, the DP model and the DP + QE model

improve selection performance significantly and consistently across both datasets. This is

understandable because some query terms missed at the database lead to a bad probability

estimate for the query in the MLE model.

As would be expected, the DP + QE model (Expansion terms are 50) performs the best

among all the models. The average R̂k(E, B) value (Recall Section 4.2) is increased by 42.9

and 41.23% on average against the MLE model in Figures 6 and 7. It suggests that query

expansion does help improve the selection effectiveness if the number of expansion terms is

chosen properly.

Note that the DP model has not performed as well as the DP + QE model in all our

experiments. However, the results of the DP model are still very competitive when compared

with the performances of the MLE model. As we see, in all results, the performance of the

DP model smoothed with the optimal parameter value α (α = 1500) is statistically better

than the best performance of the MLE model, even though it is sometimes very close to the

MLE model in specific cases.
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Fig. 8 The effect of query expansion size on selection performance in the reuters data set

5.4. The effects of query expansion size on selection performance

Obviously, the quality of query expansion might well be influenced by the quality of the

features associated with topic classes. When expansion terms are selected, how many of them

are actually relevant to the original query? To investigate this, we conducted experiments

on different query expansion sizes over both data sets. It is interesting to observed how the

number of expansion terms used affects selection performance (e.g., QE 10 refers to the

query expansion with 10 terms). To observed this more clearly, we plot the R̂k(E, B) value

curves in Figures 8 and 9.

There are a number of interesting points to observe in Figures 8 and 9. First, the results of

the translation model with query expansion are comparable to that of the base-query model.

This is a clear indication that query expansion can be helpful in improving the selection

performance using the translation modeling approach. Second, the greatest improvement can

be seen when 50 terms are used for selection in both datasets. When more expansion terms

take part in selection, the performance begins to deteriorate. The possible explanation for

this phenomenon is that the most distinguished features for the class could be contained in

the top 50 features. For this reason, selecting a larger number of features for query expansion

does not bring any larger benefit.
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Fig. 9 The effect of query expansion size on selection performance in the LookSmart data set
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5.5. The comparison of the two-stage database selection approach with the one-stage

approaches on selection performance

The aim of the experiments in this subsection is to check the overall influence of our proposed

two-stage database selection approach on selection performance. As mentioned earlier, one

of the distinguish characteristics of our proposed database selection approach different from

most current one-stage database selection approaches is that the search focuses on a small

set of databases associated with the most related topic classes to the query. In the previous

Sections 5.2 and 5.3, we separately evaluate the performance of the language models at

different search stages, and compare their effectiveness of selection. Here, we deliberately

conduct a set of experiments to compare the overall selection performance of the estimated

two-stage language models with the best results achievable using the one-stage model—the

CORI model in both test datasets.

Three types of language models are measured in the experiments: one two-stage model—

the JM + QE + DP model, and two one-stage models—the QE + DP model and the baseline

CORI model. To compare the selection performance of these three models, we select a group

of best runs for each model on each testing dataset and compare the average R̂k(E, B) value

at the top 20 databases of the selected runs. The plots in Figures 10 and 11 show the average

R̂k(E, B) value for different database selection models.

In all the results, it seems to be a clear ordering among the three selection approaches

in terms of the R̂k(E, B) metrics. The performance difference is clearly significant for
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Fig. 10 The comparison of three different language models on selection performance in the reuters data set
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Fig. 11 The comparison of three different language models on selection performance in the LookSmart data
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the JM+QE + DP model and the QE + DP model compared to the baseline model—the

CORI model. Figure 10 shows that, the overall R̂k(E, B) value of these two models in-

crease greatly with 51.67% and 31.54%, respectively, on the Reuters-21578 dataset. The

same effect is also observed in the LookSmart dataset, as illustrated in Figure 11. It ap-

pears that the statistical language model is quite a robust language model for database

selection.

We also notice that, the performance of the JM + QE + DP approach is consistently better

than the best performance of the QE + DP approach. Indeed, some results in Figures 10 and

11 suggest that the category-specific search stage is usually helpful in improving the selection

effectiveness on relevant databases.

6. Conclusions and future works

We have presented a novel way of looking at the problem of database selection based on two-

stage language models that are rooted on the solid foundation of statistical natural language

processing. For databases categorized into a topic hierarchy, instead of searching them in

an ad hoc manner, we intentionally keep the database language models separated according

to individual natures of different search stages. It makes our models easy to be understood

and extended. We also conducted a number of experiments to prove the effectiveness and

robustness of our language models. The experimental results have demonstrated that this

approach holds great promise of improving search performance. Due to the simplicity of

our models, we believe that our model can be easily extended to incorporate with any new

language-based techniques under a general, well-ground framework.

We plan to investigate the following matters in the future work. First, due to time con-

straint, our current language models do not incorporate many familiar ideas into our selection

system such as relevant feedback and semantic-based information retrieval. It is possible that

additional knowledge added to the models will further improve our selection system. For

example, using relevant feedback techniques, a user can provide more meaningful words

which facilitate the formation of better queries.

Second, as mentioned previously, we simply take all the words occurring in the databases

independently. Such unigram models completely ignore word phrases that are likely to be

beneficial to probability estimate of the query. To compensate for this shortcoming, a possi-

bility is to combine bigram or trigram models into our current language models. However,

parameter estimation of these complex language models remains a major difficulty. Thus, we

hope to borrow the techniques in other related areas to help solving the word phrase problem.

For example, in the kernel-based SVM, Cancedda et al. proposed the use of word-sequence
kernels, a novel way of computing document similarity based on matching sequences of

words (Cancedda et al. 2003). The idea of sequence kernels to process document as a se-

quence of words is interesting, which is worth investigating in our future work. We wish that

we could combine this technique into our current database selection model.

Third, we only employ simple smoothing methods in our current work. We are planning

to explore other more elaborate smoothing methods to extend our models. It is also possible

that this will improve selection results.

Fourth, in our experiments, we used the frequently occurring words as long queries. This

approach to produce queries probably leads to the problem of a self-fulfilling good evaluation

in database selection. To avoid this problem, one of the possible appropriate methods is the

direct participation of the human being in query formation. The users will create more natural
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queries with their own language. This kind of queries will be useful for our proposed language

model used in the real-world applications. We will leave this for further research.

Finally, in our current datasets used for the experiments, we use the Reuters 21578 dataset

which contains a very small set of homogeneous documents. This dataset is not enough for

simulating a huge, complex, and heterogeneous real environment. Recently, a new Reuters

dataset - Reuters Corpus Volume 1 (RCV1) is introduced by Lewis et al. (2004), which is a

collection of over 800,000 documents manually categorized newswire stories made available

by Reuters, Ltd for text categorization. One of the important features for this dataset is that

this collection is constructed with the hierarchical category taxonomies. This feature makes

RCV1 dataset suitable for our current research. We are planning to replace the Reuters

21578 dataset with the RCV1 dataset to further investigate the performance of our proposed

two-stage approach in a more complex environment.
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