
Applied Intelligence 21, 195–224, 2004
c© 2004 Kluwer Academic Publishers. Manufactured in The United States.

Information Extraction from the Web: System and Techniques

LUO XIAO AND DIETER WISSMANN
CT SE 5, Siemens AG, Erlangen, Germany

Luo.Xiao@siemens.de

Dieter.Wissmann@siemens.de

MICHAEL BROWN
Global Transactions, Ltd., Berlin, Germany

Mike@GTCT.com

STEPHAN JABLONSKI
Department of Computer Sciences VI, University of Erlangen-Nuremberg, Germany

Stefan.Jablonski@informatik.uni-erlangen.de

Abstract. Information Extraction (IE) systems that can exploit the vast source of textual information that is the
internet would provide a revolutionary step forward in terms of delivering large volumes of content cheaply and
precisely, thus enabling a wide range of new knowledge driven applications and services. However, despite this
enormous potential, few IE systems have successfully made the transition from laboratory to commercial application.
The reason may be a purely practical one—to build useable, scaleable IE systems requires bringing together a range
of different technologies as well as providing clear and reproducible guidelines as to how to collectively configure
and deploy those technologies.

This paper is an attempt to address these issues. The paper focuses on two primary goals. Firstly, we show that
an information extraction system which is used for real world applications and different domains can be built using
some autonomous, corporate components (agents). Such a system has some advanced properties: clear separation
to different extraction tasks and steps, portability to multiple application domain, trainability, extensibility, etc.
Secondly, we show that machine learning and, in particular, learning in different ways and at different levels, can
be used to build practical IE systems. We show that carefully selecting the right machine learning technique for the
right task and selective sampling can be used to reduce the human effort required to annotate examples for building
such systems.

Keywords: information extraction, machine learning, knowledge acquisition, internet applications,
methodology and design

1. Introduction

There has been an explosive growth in the amount of
information available on networked computers around
the world, much of it in the form of natural language
documents. An increasing variety of search engines
exist for retrieving such documents based on matching
keywords. However, precision of retrieval is often sub-

optimal—it is all too often still a painful quest for a
user to try several search queries and read a number
of documents before a required piece of information is
found.

The vision of an internet capable of directly produc-
ing specific answers to specific queries still seems a
number of years away. A less ambitious goal may be
to allow more content-driven retrieval of documents



196 Xiao et al.

within a particular vertical domain. Hence a traveller
may want to retrieve all holidays to a Mediterranean
island, in a hotel with water sports and less than 100
meters to the beach. Similarly, someone searching for a
new career move might want to see all openings for an
IT manager in a content management company within
commuting distance of London. Answering such ques-
tions about available information requires a deeper “un-
derstanding” of the original natural language text (such
as those terms highlighted above in italics) than simply
matching keyword variations. One way of providing
more “understanding” is through Information Extrac-
tion (IE) technology. IE is the task of locating specific
pieces of data within a natural language document.
In recent years, IE has been the focus of such large-
scale research initiatives as the DARPA’s MUC (Mes-
sage Understanding Conference) program [1]. More-
over, the advent of the internet has given IE a particular
commercial relevance.

As will be described in this paper, there are a wide
range of techniques that are applicable to the problem
of information extraction. For example, recent research
in computational linguistics indicates that empirical or
corpus based methods are currently the most promis-
ing approach to developing robust, efficient natural
language processing (NLP) systems [2]. These meth-
ods automate the acquisition of much of the complex
knowledge required for NLP/IE by training on large
volumes of annotated text, e.g. tree-banks of parsed
sentences [3], or by Rule Induction and Generalisation
[4]. Such approaches are commercially appealing be-
cause of the relatively low manual cost of maintenance,
under the conditions that suitable training data can be
cheaply provided.

Another approach is to use more carefully crafted
syntactic rules that identify and extract fine pieces of
information from structured or semi-structured docu-
ments. The precision of such approaches makes them
interesting for many industrial and business domains
[5, 6]. Supervised (training by example) machine learn-
ing techniques [7, 8] can also be used to augment or
even replace human rule encoding, which can greatly
reduce the construction task. Several different symbolic
and statistical methods have been employed, but most
of them are used to generate one part of a larger IE
system.

A complete IE system has a framework, which con-
sists of various IE components. Each component car-
ries out one or more IE tasks. Such systems normally
apply more than one IE techniques. Some systems are

designed not only for information extraction but also
for other language engineering tasks (e.g. GATE [9]).
Nevertheless, a ubiquitous difficulty with IE systems is
that they are difficult and time consuming to build, and
they generally contain highly domain specific compo-
nents, making porting to new domains time consum-
ing. Furthermore, many IE systems are designed for
limited research problems (such as MUC evaluation).
However, often the technology and methodology be-
hind such systems is not scaleable and therefore it is
difficult to make the transition to successful commer-
cial applications. Thus, more efficient means for devel-
oping generally-applicable IE systems are desirable,
combing multiple techniques in a complementary way.
A complete top down design has to be made from sys-
tem architecture to complicated underlying extraction
algorithms. Hence, two levels of designs for a practi-
cal oriented IE system are required: the whole system
architecture design and the underlying methods to un-
dertake the IE tasks stepwise.

Recently, information extraction from online-
documents (e.g. HTML-web pages) and well-formed
structured XML-documents has gained significantly
in importance [10]. Researchers used various empir-
ical methods and algorithms to apply information ex-
traction to web pages [5, 11–13]. However, most ap-
proaches are specialist non-standard solutions. On the
other hand, advanced techniques in the XML-family
can provide powerful searching, querying and selec-
tion functionalities (such as XPath, XML-Query, XQL
etc.) across a wide range of applications. A promising
strategy therefore is to seek to apply these developed
mature techniques for information extraction from web
pages.

This paper has focused on two primary goals. First,
we show how an IE system (CapturePlus), which is
used for real world applications and different domains,
can be built using a combination of autonomous, corpo-
rate components (agents). Such a system requires: clear
separation of different extraction tasks and steps, porta-
bility to other application domains, trainability and an
open interface. Second, we show that machine learning,
and, in particular, learning in different ways and levels,
can be used to build practical information extraction
systems. Although the system architecture is designed
both for normal and web (HTML) documents, this pa-
per focuses primarily on techniques for information
extraction from web pages.

The rest of this paper is organized as fol-
lows. Section 2 presents background knowledge on



Information Extraction from the Web System and Techniques 197

information extraction, and machine learning ap-
proach. Section 3 describes the system architec-
ture and introduces each component of the system
briefly. Sections 4–6 describe algorithms, methods
and learning in each information extraction step (pre-
processing, name extraction and template filling).
Then, in Section 7 we describe and discuss evaluation
results. Finally, Section 8 has a conclusion and suggests
ideas for future research directions.

2. Background Knowledge

The aim of this section is to provide a more exten-
sive background on the techniques used in information
extraction systems and to further qualify some of the
problems involved in building IE systems.

2.1. Information Extraction

Information Extraction (IE) is a process, which takes
unseen texts as input and produce, fixed format, unam-
biguous data as output. This data may be used directly
for display to users, or may be stored in a database
or spreadsheet for direct integration with a back-office
system, or may be used for indexing purposes in search
engine/Information Retrieval (IR) applications.

It is instructive to compare IE and IR; whereas IR
simply finds texts and presents them to the user (c.f.
classic search engines), IE analyses texts and presents
only the specific information extracted from the text
that is of interest to a user. For example, a user might
want to create an overview of share price companies
in the content management sector. First they may have
to enter a list of relevant terms (e.g. “content manage-
ment, knowledge management, information manage-
ment,” . . .) and then read each returned ‘hit’ themselves
to see if (I) it relates to a relevant company and (II) what
the actual share price is. In contrast, in an idealised sce-
nario, a user could set up an IE system that is able to (I)
more accurately classify company websites by a deeper
understanding of their content and (II) having found a
correct web site, to extract the company name and share
price automatically and add it to a database.

There are advantages and disadvantages of IE with
respect to IR. IE systems are more difficult and knowl-
edge intensive to build. Much manual effort goes into
tailoring IE rules, whereas IR is often based just on
statistical weightings of keyword lists. This makes IR
very generalized whereas specific IE applications may

not port easily to new applications or domains. More-
over, at run time, the matching techniques of IE are
more computationally expensive. This means that it is
difficult to build complex IE techniques into the kind
of search engine needed to provide general querying
across the whole internet where the volume of online
documents is massive and processing time per docu-
ment must be minimal—IE is at best suited to specific
vertical domains. However, the cost benefit of IE with
respect to IR comes primarily through reducing the
amount of search and reading effort required by end
users to find the relevant information from large docu-
ment collections.

There are five basic tasks that can be associated with
Information Extraction (as defined by the leading fo-
rum for this research, the Message Understanding Con-
ferences [14])

• Named Entity recognition (NE): Finds and classifies
items of information in text, e.g. names, places etc.

• Co-reference Resolution (CO): Identifies identity re-
lations between items of information texts.

• Template Element construction (TE): Organizes and
combines different NE results to create a single entity
description.

• Template Relation construction (TR): Finds relations
between TE entities.

• Scenario Template production (ST): Fits TE and TR
results into specified event scenarios—i.e. creates a
narrative structure.

For current commercial requirements, the tasks of NE
and TE are the most interesting. For example, a mar-
keting division might use IE to create a market analysis
database by extracting product data from online cata-
logues. Similarly, a call-center might use IE to analyse
the content of incoming emails in order to sort and de-
liver them to responsible people or to make automatic
replies.

The general process to build an IE system could be
described as follows. First, a knowledge engineer de-
fines an empty template. A template is a structured
object made up of a set of slots (attribute value pairs)
which represents a checklist of the types of information
item that need to be extracted from a particular type of
document/website. Secondly, the knowledge engineer
must create a set of (NE) agents capable of finding in-
formation items to fill each slot in the template. Thirdly,
the knowledge engineer may need to add rules to adju-
dicate when different NE agents produce possibly am-
biguous results—i.e. interpret the same piece of text



198 Xiao et al.

in two different ways (note, this problem is inevitable
in any real IE application!) Finally, the output format,
which can be a database, XML file, text report, etc.
must be defined. In particular for the second (NE agent
definition) and third tasks (template filling) machine
learning can be applied to greatly reduce the manual
construction effort and hence cost of deploying an IE
solution.

2.2. Machine Learning Approaches

Many well known Machine Learning (ML) approaches
are used to help build high performance IE systems.
ML usually refers to the changes in systems that per-
form recognition, planning, diagnosis or control tasks
associated with Artificial Intelligence (AI).

There are several reasons why machine learning is
important in Information Extraction. Some of these are:

• Some tasks cannot be easily defined except as ex-
amples of input-output pairs (either because no well
defined function can be formulated, or because too
much effort and expertise is required to manually de-
fine such a function). For example, a straightforward
task is to mark a sequence of text as being an exem-
plar of a given type of information. Indeed, in some
commercial scenarios, such as content factories, this
may occur indirectly as a natural bi-product of hu-
man operators filling out standard content forms (e.g.
via drag and drop). ML can be used to make useful
generalisation from such training examples.

• ML can be used to find hidden relationships that
are emergent from large volumes of data. For in-
stance, template elements in semi-structured doc-
uments may have spatial relationships, which are
not easily discovered by manual inspection. Machine
learning methods can often be used to extract these
relationships.

• Human designers produce IE systems in the labora-
tory that do not perform robustly in the real world
because it is difficult to predict a priori all text vari-
ations for occurrences of a particular type of infor-
mation. Machine learning methods can be used for
on-the-fly improvement of deployed systems. Incre-
mental machine learning algorithm (such as Case-
Based Reasoning) are particularly well suited for
this.

• The pure size and volume of required extraction rules
may prohibit human encoding. For instance, a sin-
gle XSL-Pattern used to extract information from

HTML documents can be more than 1000 bytes
long. Similarly, just to reliably extract dates from
text may require hundreds of rules to cover all vari-
ations. Manual creating such patterns causes errors
and is time consuming. ML may automate the pro-
cess or “fill in the gaps” in manually encoded rules.

• Information is continually being created. Vocabu-
lary changes. Even within a single vertical domain,
there is a continual stream of new information and
concepts. Continual manual maintenance of an IE
system is usually prohibitive to commercial success.
However, ML techniques, e.g. using statistical ma-
chine learning approaches to track new terminology
on the internet, may be applied to drive a continual
maintenance process.

Many well known machine learning algorithms are
widely used in the area Information Extraction [7, 8].
Examples include; statistical approach [15], inductive
rule learning [5, 11, 16–18], Bayes network [12], deci-
sion tree [19], Hidden Markov Model [5, 17, 20], Case-
Based Reasoning [21, 22], Neural Network [23], etc.

In CapturePlus, supervised machine learning meth-
ods are primarily used. Manual examples of informa-
tion to be extracted are created by manually filling out
empty template slots with text values that are marked
and then drag&dropped into empty slots. From these
examples, the ML components generate rules and pat-
terns required by NE agents. Experience indicates that
sensible results from ML require at least 10 examples
per information item and may require upwards of 100
examples for complex information items.

As will be discussed, no one ML technique is suited
for all possible types of information, hence a hybrid
architecture is required. Additionally, statistical ap-
proaches are advocated for generating a spatial model
of the relative order in which information items occur
within a particular class of documents. This can be a
strong aid to disambiguating the results of individual
NE Agents.

2.3. Document Types

A practical IE-system must be able to process a range
of document types, from free-form text to the more
structured documents that constitute most web sites.

2.3.1. Structured and Semi-Structured Documents.
The complexity of the information extraction task is
fundamentally governed by the characteristics of the



Information Extraction from the Web System and Techniques 199

documents from which the information is to be ex-
tracted. Extraction of information from formal, well-
structured documents, where a strong syntax or mark-
up exists for the description of salient information,
can be achieved with 100% accuracy through the con-
struction of a parser. Such documents are for example
well-formed XML documents or automatically gener-
ated documents, which have strictly defined fields and
field position ordering. Many such documents are to be
found on the internet, e.g. online stock quotes, weather
reports, travel information, etc.

Conversely, where the source document is com-
pletely informal, with no restriction as to where or
in what format information is to be written, then the
knowledge extraction task is akin to a full-scale natural
language understanding application. Typical free-form
documents in the industrial field might be online news
reports, company white papers, etc.

The middle ground is where many interesting prac-
tical applications for IE currently lie. For these types of
application, the document can be referred to as semi-
formal. This term is taken loosely here to mean a num-
ber of things:

• There is some formality in the basic syntax of the
document that can be exploited to more reliably iden-
tify information occurrences.

• The boundary of an individual entity is reflected in
the structure of the document itself.

• The relative position/ordering of occurrences of
items of information within the overall text area rel-
evant to an entity (template instance) is predictable
and can generally be exploited to aid their recogni-
tion.

• The cardinality of a given item of information within
a template instance is predictable.

For semi-structured documents, the above types of con-
straint are not in themselves sufficient to unambigu-
ously locate required information. It is assumed that
enough syntactic formality exists to make feasible the
creation of high quality NE-components, e.g. based
on hand-coded rules. Nevertheless, it is assumed that
enough syntactic variation persists to make the con-
struction of perfect NE-components (i.e. 100% preci-
sion/recall) an expensive and difficult task. The struc-
tural constraints of semi-structured documents provide
supporting evidence that should be combined with tra-
ditional IE approaches to locating information in free-
text. Again this requires some form of hybrid IE archi-
tecture.

Note that the assumption that the scope of an occur-
rence of a template can be ascertained from the struc-
ture of a document is a strong one. This implies some
syntactic convention for delimiting the start and/or end
of an instance (it may even be that each instance is itself
a separated document). Moreover, it is assumed that the
document area for one template instance does not in-
fringe on that of another. In other words, the problems
of identifying how many template instances exist and
of determining to which template instance(s) a given
feature instance belongs are assumed trivial. This ap-
parently strong assumption is often justified in many
real-life applications, such as filtering email messages
or newsgroup entries etc.

The class of semi-structured documents is particu-
larly significant as most online documents of commer-
cial interest for IE applications fit this class. Examples
include; online product catalogue, monthly financial
analyse and report, online CVs and job adverts, online
hotel and holiday information, etc.

2.3.2. Normal Documents and Web (HTML)
Documents—The Addition of Tags. It goes without
saying that the WWW has become the most common
information and knowledge resource used for a wide
range of business activities. However, limitations of
the WWW, particularly in terms of the accuracy of
information retrieval, are well known. This has re-
cently prompted the vision of the “Semantic Web”
(see www.semanticweb.org) in which the content of
online documents is much more rigorously ‘marked-
up’ and therefore suitable for machine interpretation.
This in turn will enable a whole range of improvements
in web-based applications, as well as new possibili-
ties for automated information processing (see [10]).
Nevertheless, the migration from today’s informal and
chaotic WWW to the well organized Semantic Web
will not be easy and is likely to occur in isolated pock-
ets within specific vertical domains. Information Ex-
traction may become of major commercial importance
and, indeed, play a major role in the progression to-
ward the Semantic Web, because it allows this migra-
tion from text to formal representation within a ver-
tical domain to be carried out with high degrees of
automation.

The widely used document format in WWW is Hy-
per Text Mark-up Language (HTML), which is a sim-
ple mark-up language used to create hypertext docu-
ments that are portable from one platform to another.
Compared to normal (non marked up) documents, Web



200 Xiao et al.

documents consist of rich tag information which pro-
vides additional information about each piece of text,
e.g. determines the type of that text. HTML tags are
typically not precise enough to uniquely identify infor-
mation for IE purposes. However, tags provide help-
ful structure information, which can be exploited to
generate more accurate extraction rules. Thus, as pre-
viously stated, although some automatically generated
web documents may be considered as structured docu-
ments, most fall under the category of semi-structured
documents.

The recent direction for representation of informa-
tion on the Web is using XML and XSL (e.g. see
www.w3c.org). While XML describe layout indepen-
dent content, XSL is used to define the presentation
of content in a browser. Beyond these wide spread
formats, the W3C (World Wide Web Consortium)
Organisation is also trying to promote more expres-
sive formats, such as RDF, to more strongly support
machine-understandable information in web pages. If
online documents are written in XML (or derived, for-
mal formats), standard extraction technique, such as
XSL-Patterns, XQL etc., can be used to access desired
information. However, most web pages are still written
today in HTML, which lacks the formal rigor of XML
and therefore makes the task of extracting information
much more difficult.

2.3.3. Document Types—A Summary. In summary,
documents range from unstructured free text, through
semi-structured documents to (usually automatically
generated) structured documents. Most documents on
the internet are semi-structured. This is the type of doc-
ument which is of most interest for practical IE ap-
plications. Examples of different document types are
summarized in Table 1.

Table 1. Summary of document types.

Structured Semi-structured Free

Normal Software log files Commercial email (e.g. confirmations
of booking, product ordering)

Private emails
Questionnaire forms Fiction (novels)

Patent applications

Project reports

Online Stock quote Product catalogues Web news

Online weather forecast Company home pages White papers

Travel booking sites

Online job advertisements

3. System Architecture

In this section we introduce the system architecture of
our Information Extraction system, CapturePlus. The
architecture is a hybrid combining a number of different
IE agents, as shown in Fig. 1.

We partition the system into four components: Pre-
processor, NE-Agents, TE-Agents and Output Gener-
ator, each of which will be briefly described below. A
more detailed discussion of the main IE tasks will then
follow in subsequent sections.

3.1. Pre-Processing

In CapturePlus, the first step is pre-processing. In gen-
eral, pre-processing enables a consistent and formatted
input that makes the task of finding relevant informa-
tion and text zones more straightforward and efficient.
In this phase, documents are segmented and indexed.
In addition, for HTML documents, documents are con-
verted to well-formed XML format.

A more in-depth discussion of the Pre-Processing
problem is given in Section 4.

3.2. NE-Agent

In CapturePlus, Named Entity (NE) recognition is
carried out by a number of different modules, NE-
Agents, extract the content from pre-processed doc-
uments using structured information and classical IE
methods. Feature extracting is the most important step
in the overall IE process, and a number of different
and complementary techniques are built into Capture-
Plus in order to be able to do this task for a wide
range of document and content types. Each IE tech-
nique is represented as a different type of NE-Agent.



Information Extraction from the Web System and Techniques 201

Figure 1. System architecture of CapturePlus.

An NE-Agent instance is created to apply a specific IE
technique to a given type of textual information with
particular syntactic or semantic properties. Techniques
vary from simple keyword matchers through to com-
plex hierarchical expressions and Natural Language
grammars.

At run time, populations of NE-Agents can be ap-
plied independently. It is also possible to combine some
NE-Agents collaboratively to get optimal results, as is
illustrated in Fig. 2. NE recognition in CapturePlus ac-
tually involves three stages: text zone recognition, par-
allel contents extraction and result merging. NE Agents
that perform text zone recognition are configured to
segment an input document into regions which are dis-

tinct in terms of the types of content they contain. Note,
methods for delimiting text zones can vary depending
on document type—in structured or semi-structured
documents tags may explicitly delimit relevant text ar-
eas, whereas for freeform documents more ‘fuzzy’ text
zone boundaries (e.g. based on keyword distribution)
may be used. Text zones provide a limited context in
which other NE Agents can search for specific pieces
of information.

In order to distribute extraction tasks to correspond-
ing NE-Agents a NE-Scheduler is necessary. This can
include dynamic scheduling if more than one NE-
Agent is suitable for the same type of information (e.g.
the NE-Scheduler may first distribute the task of finding



202 Xiao et al.

Figure 2. Construction of NE-Agent.

a persons name to an NE-Agent that has reliable syn-
tactic rules, and if this NE-Agent fails, the task may be
distributed to a weaker NE-Agent that relies on name
lists for matching). Alternatively, multiple NE-Agents
may search for the same information in parallel. In this
case, the results of NE-Agents can contain overlapping,
redundant, or even conflicting values. Therefore, in a
final stage results from multiple NE Agents are merged
with duplications removed, using a voting algorithm,
to produce a final list of possible text values for each
different type of information to be extracted. Results
also include useful meta data, such as recognition con-
fidence and text position, that enables disambiguation
and organisation in the TE-Agent stage.

A more in-depth discussion of the NE recognition
problem is given in Section 5.

3.3. TE-Agent

In CapturePlus, as for many IE systems, the goal is to
fill out a template that represents the expected and re-

quired content of a particular type of input document.
Most IE systems incorporate NE results directly into
the template. In contrast, in CapturePlus, the incorpo-
ration of NE-Agent results into a template is regulated
by a TE-Agent. Beyond simply connecting NE-Agent
results to template slots, the TE-Agent plays two major
roles in CapturePlus (as described below): controlling
multiple instantiation of a given template, and, disam-
biguating between conflicting NE-Agent results.

Many documents in practical domains consist of
more than one template instance. For these documents,
template filling is complicated because different oc-
currences of the same template must be automatically
recognised and created. For example, for an online cat-
alogue, the TE-Agent must be able to delimit each sep-
arate product and fill out a product description tem-
plate for each product separately. The TE-Agent can
achieve this in two ways; (I) strongly, by using specific
NE-Recognisers to find template instance boundaries
in text, (II) weakly, by using an optimisation technique
to cluster NE-Agent results into candidate templates
based on order and proximity. The latter method is time



Information Extraction from the Web System and Techniques 203

consuming and often delivers only approximate results.
However, for most real applications, syntactic delim-
iters between instances exist and can be exploited—i.e.
case (I) is the norm.

Information Extraction in general suffers from one
fundamental deficit: it is possible to create NE-Agents
that are able to recognise particular types of informa-
tion with very high accuracy (Precision)—for example
specifically tailored syntactic rules; it is also possible to
create NE-Agents that find a high proportion of all oc-
currences of a particular type of information (Recall)—
for example keyword-based matchers; however, it is
very hard to create an NE-Agent that simultaneously
has very good Recall and Precision.

A solution to the above dilemma is to support popu-
lations of many NE-Agents and to employ some com-
bination logic to aggregate their result to produce better
overall performance. For example, if many (redundant)
NE-Agents are created to recognise the same piece
of information, a voting algorithm can be used to se-
lect the most likely result and boost overall precision.
Conversely, by creating more and more disjoint, high-
precision NE-Agents, overall coverage (recall) can be
gradually increased. The main practical problem with
the above two approaches is the high development costs
implied by creating large populations of collaborative
NE-Agents. Here, an alternative approach, exploiting
the TE-Agent, is proposed based on the observation
that spatial relationships between different slots of a
template can be used to allow precise knowledge about
the value of one slot to be used to disambiguate the
value of one or more other slot.

For example, suppose that in a product description,
the product code and price (both numbers) are known
to occur in a particular order (e.g. price before prod-
uct code). Initial, weak NE-Agents developed for both
price and product code may just recognise numbers
and confuse prices and product codes (high recall poor
precision). Knowing that a spatial relationship exists
between these slots means that a developer need only
improve the precision of just one of these NE-Agents to
get overall high precision for both slots. For example, if
the price NE-Agent is strengthened (e.g. to recognise
a number in context of a currency), then the product
code will also be found unambiguously because the TE-
Agent can eliminate the false recognition of a price as
a product code. This approach is discussed in more
detail in Section 6 and is important because reliance
on a TE-Agent to perform disambiguation can lead to
a development methodology whereby effort can focus

on a subset of critical slots/information items within a
template (see also [15]).

So in summary, the experience embodied in the Cap-
turePlus architecture is that a robust approach to infor-
mation extraction is two-stage, with relatively crude
NE-Agent achieving high recall rates followed by a
TE-Agent that restores the overall precision. Individ-
ual NE-Agent only apply locally within a document and
therefore, in many cases, do not have enough input in-
formation to be able to make a wholly accurate decision
as to the meaning of a piece of text (at least without re-
sorting to a more profound Natural Language Process-
ing analysis of the raw text). Accuracy requires a com-
bination of local syntactic clues (that can be captured
easily in the NE-Agent) combined with the broader
dependency that a piece of information has with other
types of information within the document (as captured
by the TE-Agent).

The TE-Agent of CapturePlus therefore relies on
knowledge about expected spatial dependencies be-
tween different types of information within a docu-
ment. Normally, dependence between different slots is
complicated, so that a probabilistic, spatial model is re-
quired. However, such a model can be created automat-
ically using statistical approaches, assuming a number
of manually filled out templates can be provided. Ex-
tensive and diverse empirical studies have shown that
this allows generally around a 10% boost to the Preci-
sion of the overall IE system, without adversely effect-
ing the Recall, with respect to the results of NE-Agents
alone.

3.4. Output Document Generation

CapturePlus can generate arbitrary ASCII formats from
the intermediate template instances it creates by apply-
ing a scripting language to these results. As this ap-
proach is highly similar to standard approaches in other
areas, e.g. XSL-T transformation for XML documents,
this part of the overall IE process is not discussed in
detail in this paper.

4. Pre-Processing

Having given a brief description of the overall Capture-
Plus architecture in the preceding sections, this and fol-
lowing sections will treat each of the main Information
Extraction processing stages separately and in more
depth.



204 Xiao et al.

The first major IE task is pre-processing. The generic
role of pre-processing can be defined as: reformatting
and normalising input documents in order to make the
task of identifying relevant occurrences of information
items easier and more efficient. Typical pre-processing
tasks might include: converting all documents to a sin-
gle format and file type (e.g. ASCII), structuring a
document into segments (e.g. sections->paragraphs-
>sentences), building indexing structures, e.g. for
rapid access of individual words, normalising and tag-
ging individual words (e.g. part of speech and stem-
ming), etc.

4.1. Pre-Processing HTML

Specifically for IE for internet applications, input doc-
uments are usually HTML documents. A major pre-
processing task for such documents is to standardise
the mark-up tag structure of the document, e.g. by con-
version to standard XML format.

As mentioned in Section 3.2, internet documents
with explicitly tagged structures allow for more ac-
curate IE because specific NE agents can be localised
to search in text zones delimited by specific tags. Al-
though HTML documents have structure defined by
HTML tags, these are not well suited for IE purposes
because HTML documents are not well-formed (e.g.
tags do not always have closing tags). The syntactic
structure of HTML documents cannot always be for-
mally parsed by a structured parser (such as SGML).

The eXtensible Mark-up Language (XML) is the
universal format for structured documents and data on
the Web. XML documents have a complete and well
formed hierarchical structure specified by start tags and
end tags. The validity of an XML document can be
verified with reference to a DTD or XML-Schema that
defines constrains on allowable instances of a given
type of XML document (i.e. constraints on the car-
dinality and structure of possible hierarchical struc-
tures). Hence it is advantageous to convert HTML to
well formed XML as part of the pre-processing task.
If this is achieved, then the hierarchical structure of
a HTML document can be used, e.g. to define differ-
ent text zones or to identify the beginning and end of
multiple template instances within a website.

As Kushmerick [18] points out, emerging standards
such as XML will simplify the extraction of structured
information from heterogeneous sources. Knoblock
and Minton [24] observed also, that wrapper induc-
tion algorithms may be able to use XML as a source

of supervised training data. The extension considered
here is to apply suitable pre-processing to HTML doc-
uments so that the (implicit) structured information
in HTML sites can be parsed with help of XML-
Parser to more rigorously determine the structure of
the content. Normally a HTML site can not be parsed
by an XML-parser directly. However, the conversion
from HTML to XML is relatively simple: e.g. elim-
inate all single tags and enclose all attribute values
in quotes (”). This conversion can be made automat-
ically. For CapturePlus, the standard open source soft-
ware program TIDY (provided by W3C organization—
http://www.w3.org/People/Raggett/tidy) was used to
convert HTML to XML automatically. TIDY is able
to fix a wide range of formatting problems and syntax
errors.

Note TIDY does includes some limitations, such
as not adequately converting special characters (such
as ‘&’) to allowable XML notation (i.e.\amp). Hence
some additional clean up specific to the purposes of
CapturePlus needed to be performed.

Note also that the documents generated from HTML
pages are not real XML-documents because they do not
have DTD or XML-schema. However, such converted
documents are well-formed and therefore can be parsed
by an XML-parser. Hence they are sufficient for the
purposes of Information Extraction.

4.2. Related Work and Further Aspects
of Pre-Processing

In general, pre-processing for HTML documents has
two major tasks: tokenisation and clean-up. In the first
task, a system decomposes HTML into different tokens
for later processing. A token can be thought of as a syn-
tactic unit of text. STALKER [10], for example, uses a
token-based Wrapper and therefore needs to tokenise
HTML texts into a sequence of tokens (e.g., words,
numbers, HTML tags, etc.).

The second task concerns the conversion of HTML
into a well-formed document, as already discussed
above. For example, XWRAP [12] also cleans up
HTML documents in a pre-processing phase. The bad
tags are deleted and the uncompleted tags are recov-
ered. The cleaned HTML document is fed to a source
language compliant tree parser.

For CapturePlus, use of standard tools made avail-
able by W3C was considered important to allow for
portability. However, the pre-processing of Capture-
Plus, and for similar systems, currently has some



Information Extraction from the Web System and Techniques 205

limitations. Possible improvements include:

• Normalising the text within a HTML document, e.g.
by using linguistic methods such as stemming.

• Augmenting the original tag structure with addi-
tional tagged mark-up which represents some a priori
domain knowledge.

The latter actually implies a two-staged approach to
Information Extraction—in pre-processing use simple
IE agents, such as predefined name lists etc. to do a
simple mark up of the original text in order to improve
the accuracy of more complex IE carried out by the NE
Agents. For example, ontologies of places, products
types etc. could be developed and applied to help pre-
process websites in this way and create a more struc-
tured and normalised input to NE-Agents. Examples
of systems that have tried this approach include SRV
[12], which annotates HTML source documents with
predefined feature tags. Similarly, WHISK [5] requires
input documents to be additionally segmented to aid in
retrieval of multiple bits of information. However, for
both these systems, some manual effort is required at
the pre-processing stage which may detract from their
applicability in real-world applications.

5. NE-Agent

Following pre-processing, the next step is the extraction
of individual items of information via NE-Agents. As
introduced in Section 3.2, this stage of the IE process
has three sub-steps carried out by different types of
NE-Agent: Text Zone recognition, content extraction
and result merging. Each of these stages is described
separately below.

5.1. Text Zone Recognition

The input of Text Zone recognition is a pre-processed
document. Text Zones are defined as part of a doc-
ument, where useful contents can be extracted. Text
Zone detection is usually dependent on actions carried
out in pre-processing, e.g. to standardise HTML struc-
ture into XML structure. Text Zone detection depends
on the syntactic properties of the text, such as signifi-
cant start or end delimiters, which do not belong to the
underlying content, but can help the system to locate the
useful content. A Text zone may also be defined sim-
ply by exploiting a standard structure of a document

(e.g. section->paragraph->sentence) as produced in
pre-processing.

If the inputs to the IE system are internet pages, an-
other opportunity for text zone recognition is possible.
For HTML document XSL-patterns can be used, in
order to get the text zones enclosed by tags. A require-
ment for text zone recognition in this manner is that
the HTML files are already converted to well-formed
XML documents in the pre-processing phase.

5.1.1. XSL Patterns. XSL-patterns are used to
find element nodes in XML document (see e.g.
http://www.w3.org/TR/1998/WD-xsl-19981216 for
details). An XSL pattern describes a path to a type of
branch of an XML tree, which in turn consists of a
set of hierarchical nodes. To a first approximation, the
syntax used for XSL patterns resembles that used to
specify paths on a disk drive (though complications to
include, e.g. attribute constraints, are also possible—
thus providing more accurate selection criteria).
For example, given the XML document showed
in Fig. 3, the pattern “addressbook/contact/phone”
selects “phone” elements that appear beneath a
“contact” element, which itself appears beneath an
“addressbook” element. In other words “12345” and
“67890” would be selected. XSL-patterns also support
wildcard such as “∗”. For instance, the results after
executing XSL-pattern “addressbook/contact/∗” could
be all values in sub-elements “Name” and “phone”.

Each item of information to be extracted by NE-
Agents can have one or more XSL-pattern(s) associ-
ated with it to locate the relevant text zones. For some
item of information, the text found by the XSL-pattern
corresponds exactly to the to-be-extracted Value. Such
item of information are often elements in table or some

Figure 3. An XML example.



206 Xiao et al.

other HTML structure generated automatically by a
Robot in the web server. In this case, the task of NE-
Extraction is already finished.

5.1.2. Automatic Learning XSL Patterns. Manually
generating XSL Patterns is time consuming and error-
prone. A XSL-pattern in a real application can be quite
cumbersome. For instance, Fig. 4 shows a real XSL-
pattern to detect the current temperature value in the
CNN weather forecast web sites. Moreover, website
structures can change overtime, requiring an update
to XSL-pattern. Development of a machine learning
algorithm to perform an automatic generation of XSL-
patterns from given examples, is highly beneficial. In
this section we will introduce a supervised bottom-
up learning algorithm used in CapturePlus to generate
XSL-patterns automatically. A simple worked exam-
ples is also given, so that the principle can be better
understood.

Automated training of XSL patterns can be driven by
a user manually marking text values of interest within
an XML file. A standard XML parser can be used to de-
termine the actual XML nodes specified by marked ex-
amples. Because the examples are typically defined as
text positions, all XML nodes need to be annotated with
position information. For each XML node returned by

Figure 4. A real XSL-pattern to extract a temperature value from CNN weather web site.

Figure 5. Algorithm for learning of XSL-patterns.

the Parser, an XSL pattern can be generated. The gen-
erated XSL pattern is processed bottom-up: from the
actual XML text node, parent nodes are accessed recur-
sively until the root of the XML document is reached.
An XSL pattern is then generated as the path of node
names with their attributes. Once all initial XSL pat-
terns are generated in this way, a supervised learning
algorithm is used to induce the patterns. The algorithm
is shown in Fig. 5.

The system induces rules bottom-up. For each it-
eration, all overlapping XSL patterns are produced,
based on new training examples and previously gen-
erated XSL patterns. A generalization of the overlap
is produced by introducing wild cards and/or deleting
attributes into XSL paths of the same length. The over-
lapping pattern covers all content extracted by both
input patterns. For example, the overlapping pattern
of html/body/table/td/tr and html/body/table/td/font is
html/body/table/td/∗. The metric used to accept the
overlapping pattern is the expected error rate of the new
pattern, given by the following formula, where n is the
number of extractions made on the training document
set by the new pattern and e is the number of errors
among those extractions (i.e. matches not previously
given as examples).

Error rate = (e + 1)/(n + 1)



Information Extraction from the Web System and Techniques 207

If the error rate is lower than a defined threshold, the
overlapping pattern will be added as a trained pattern,
otherwise the specific XSL-pattern for the new training
example is set as a new trained pattern. After adding
a new XSL-pattern, the set of all trained patterns is
reorganised to make sure that there are only disjunctive
patterns in the trained pattern set. In Fig. 6 we give an
example to illustrate how XSL patterns are inductive
generated.

5.1.3. Related Work. Information Extraction from
Web Pages is a topical IE task. Techniques, which try
to extract useful information from HTML/XML, are
commonly referred to as wrappers. There are two ba-
sic types of wrappers: Tag-based and structure-based
wrapper.

The Tag-based wrappers treat a HTML-document as
a flat text string with mark-up tags. Such wrappers try to
identify tags-properties around underlying content and
use such properties to perform extraction. For structure-
based wrappers, HTML-documents are tree-structures
and extraction rules are learnt and applied in a similar
way to navigating a file directory path.

STALKER [11] is a well known example of a Tag-
based wrapper using the principles of finite automata.

Figure 6. A worked example for learning XSL-pattern from given examples.

For STALKER a document is a sequence of tokens S
(e.g. words, numbers, HTML tags, etc.) A key idea
underlying this work is that the extraction rules can
be based on “landmarks” (i.e., groups of consecutive
tokens) that enable a wrapper to locate the content of
x within the content of p. For instance, a STALKER
wrapper rule can be defined as following:

R1 = SkipTo(Name)SkipTo(〈b〉) or

R2 = SkipTo(NamePunctuationHtmlTag)

R1 has the meaning “ignore everything until you find
a Name landmark, and then, again, ignore everything
until you find 〈b〉”, while R2 is interpreted as “ignore
all tokens until you find a 3-token landmark that con-
sists of the token Name, immediately followed by a
punctuation symbol and an HTML tag.” Such rules
can be learned and generated automatically with an in-
ductive learning algorithm. The learning algorithm of
STALKER iterates until there are no more uncovered
positive examples. When all the positive examples are
covered, STALKER returns the solution, which con-
sists of an ordered list of all learned disjuncts. Accord-
ing to the author, the function for learning perfect dis-
juncts is a greedy algorithm: it generates an initial set



208 Xiao et al.

of candidates and repeatedly selects and refines the best
refining candidate until it either finds a perfect disjunct,
or runs out of candidates.

STALKER considers HTML as only as flat set of
strings with some useful tokens (tags). This feature
of STALKER allows a very high extraction speed,
because the SkipTo operation can be implemented
as a straightforward pattern matcher. Conversely, in
CapturePlus, and similar structure-based wrappers, a
document has to be at first parsed by an XML parser
before the XSL-patterns can be applied. The XSL pat-
tern matching is more complicated and therefore more
computational intensive than the algorithm used in
STALKER. However, the STALKER approach breaks
down when the underlying tree structure of the docu-
ment is highly complicated. Todays, professional web
pages contain high degrees of layout and formatting
information. Simple flat SkipTo operation will tend
to extract too many false instances within such doc-
uments. Moreover, CapturePlus uses not only hierar-
chical tags but also attribute information, which can
help to locate the underlying content more precisely.
Similar structure-based wrapper systems include e.g.
[5, 13, 17,18].

An excellent example of a structure-based wrapper
is XWRAP [13]. As for CapturePlus, XWRAP relies
on pre-processing to clean up HTML documents and
a tree parser to generate the document structure. The
next step is region (text zone) extraction, to identify
regions of interest, as specified through interaction
with a user and defined in terms of the parse tree.
For example, a region extraction rule in XWRAP is:
“HTML.BODY.TABLE[0].TR[0].TD[4].TABLE[2]”—
note that this rule format is similar but not conformant
to standard XSL syntax. Finally, Semantic Token
extraction is performed to create a set of semantic
token extraction rules that can be used to locate
and extract information of interest in similar Web
documents from the same web site. The output is a
comma-delimited file, containing all the element type
and element value pairs of interest.

XWRAP is an interactive system which, unlike Cap-
turePlus, does not provide machine leaning to help cre-
ate general pattern rules. The user has to interact with
the IE-system to define text zones and accept extracted
contents. Furthermore, XWRAP the use of its own rule
format makes XWRAP less easy to combine with stan-
dard XML tools. In short, the usage of XSL in Cap-
turePlus is seen as a major advantage for the general
applicability of the tool and approach.

5.2. Content Extraction

After detecting text zones, content extraction can be
performed within relevant text zones only, which sig-
nificantly boosts overall precision in most practical ap-
plications.

There is no fundamental restriction on the range
or type of content that can be handled by an IE sys-
tem. Typical example include; specifically formatted
numbers (price, telephone, . . .) dates, names (of peo-
ple, places, products, . . .), narrative description, object
properties etc. Because of the variety of types of con-
tent, there is no general technique, which can be used
to locate and extract all relevant information. Hence, in
more successful IE systems, such as CapturePlus, con-
tent extraction uses various techniques; from simple
full text extraction, extraction based on fuzzy matching,
extraction with regular expressions, through to compli-
cated trainable token based rules.

In the following subsections, a number of different
IE techniques are described and compared with respect
to their relative strengths and weaknesses.

5.2.1. Basic IE Techniques—Full Text Extraction,
Extracting with Similarity and Regular Expressions.
The simplest form of extraction is full text searching,
whereby exact matches in text can be located. This
technique is rapid and simple and may be well suited
to types of information that can be represented as lists
of predefined strings, such as lists of names (e.g. places,
products in a product family,. . .) or constants (e.g. cur-
rencies).

The downside of full text searching is that (I) it often
leads to false matches and, conversely, (II) the success
of matching on desired information is often sensitive
to the exact wording in the original text. To solve these
problems, a common extension to this technique is to
use a thesaurus which connects words via relationships
(typically “synonyms”, though other relationships such
as acronym, abbreviation, etc. are common). The role
of the thesaurus is to allow query expansion, i.e. when
a given term is used for full text search, its related
terms are also used. Hence, in this way, a search for
“USA” might match on “United States of America”,
and indeed any other term synonymous with “USA”.
Alternatively, a synonym set itself may be used as a
search term, hence 〈Currency〉 might return a match
on “dollar”, “Euro”, “GPD”, etc.

Provision of a thesaurus is equivalent to providing a
type of “background knowledge” or even “ontology”



Information Extraction from the Web System and Techniques 209

in other systems [5]. Such background knowledge
can be a powerful aid for high quality information
extraction—it provides much better coverage (Recall)
when searching but can also be used to disambiguate
words with multiple meanings (Precision). Word sense
disambiguation of this type is achieved by selecting the
most plausible meaning for a given word in a text by
consideration of the words that have occurred in the
same text region and their (thesaurus) relationships to
possible meanings of the word in focus [25].

One of the main draw back with using a thesaurus
is the cost of creating the “background knowledge”.
Synonyms can be created manually. However, a man-
ual creation of all words and their relationships to one
another is highly laborious. One solution is to apply sta-
tistical techniques, such as co-location analysis, to gen-
erate candidate synonyms based on large text volumes.
Alternatively, synonyms can be generated by observ-
ing manual tasks, such as template filling, and creating
synonyms from examples. The effort can be avoided
by using an existing thesaurus, at least to provide gen-
eral word relations (domain specific terminology may
still need to be created for the IE application). Alter-
natively, terms can be mined from existing databases,
where available.

In CapturePlus, two thesauri are used: an auto-
matically created domain specific thesaurus and a
standard thesaurus. The former is created and main-
tained by an example-driven approach, monitoring
human correction to the results of the IE system.
The latter is a standard NLP component (WordNet,
http://www.cogsci.princeton.edu/∼wn/). Additionally,
a thesaurus editor provides an interactive GUI to allow
users to add, delete, and change words and relations.

One problem with keyword driven matching is that
there are often many different variations of the same
word (morphology). One general solution to this is to
match keyword strings using a similarity measure that
is tolerant to variants, rather than using an exact match.
For example, extracting the word “product” with sim-
ilarity will find content such as “product”, “products”,
“productivity”, etc. Extraction based on similarity is
particularly suitable for documents which may con-
tain noise. For example, if electronic documents are
generated by scanning and by OCR (Optical Character
Recognition), errors can occur during the conversion
process. Original characters within a word may be re-
placed by similarly written characters, e.g. ‘0’〈-〉‘D’,
‘3’〈-〉‘8’, ‘m’〈-〉‘rn’, etc. Extraction based on similar-
ity can overcome such problems. Similarity of words

can be calculated with a general purpose “fuzzy match”
algorithm. Alternatively, linguistic models of morphol-
ogy can be used in conjunction with a thesaurus to more
formally represent word variants—such linguistic tech-
niques are less generic and also more noise sensitive.
On the other hand, a general purpose similarity algo-
rithm will inevitably produce some superficial similar-
ity matches between strings that have no underlying
semantic relationship. Therefore, in conclusion, fuzzy
keyword matching gives improved robustness (recall),
particularly in applications including noise, but may
have a detrimental effect on accuracy/precision.

Keyword spotting, with or without a similar-
ity matching algorithm, has fundamental limitations.
There persists the problem that the same word may
have different meanings depending on how it is used.
Moreover, much useful information, particularly nu-
meric information, cannot be captured by keywords
alone. The next level up in sophistication therefore is
to apply regular expressions.

A regular expression is a general pattern that de-
scribes a set of string instances. Regular expressions are
suitable for matching content with significant syntac-
tic properties (such as number, date, time, price, etc.).
Regular expressions are constructed by using various
operators to combine smaller expressions (alternatives,
options, repetitive sequences, . . .). For example, the
rule “[a, p]m[0−9]+ : [0−9]+” could be used to ex-
tract times represented in a format such as “AM 12:45”.
Regular expressions are widely used in the Unix world
as searching/replacing tool and can be applied for in-
formation extraction in a similar way. In general, the
processing of regular expressions is very fast, because
the regular expression can be compiled to a finite state
transition network and no background knowledge or
lexicon is needed. However, highly nested expressions
and expressions containing large numbers of options
can still be computationally expensive.

Because regular expressions are based on FSA (Fi-
nite State Automata), learning and automatic generat-
ing regular expressions are theoretical possible, though
typically only very simple regular expressions can be
learnt due to the complexity of the syntax involved.
Moreover, regular expressions have some limitations
in terms of the expressive power, including;

• Searching in context is only partially handled
• Explicit representation of hierarchical grammars is

hard (i.e. using the same basic pattern to construct
many more complex expressions)



210 Xiao et al.

Table 2. Summarization of simple extraction techniques.

Typically suitable for Advantages Disadvantages

Full Text Domain specific names, Performs medium precision and recall. Significant effort required to generate
(incl. Thesauri) constants etc. Lookup speed is very fast. domain-specific thesauri

Similarity Contents with noise, morphological Domain independence, no background Often poor precision, may be
variants knowledge, very high recall slow lookup

Regular Contents with significant syntactic Good precision, can be generated Expressions are often hard to read.
Expressions properties, numeric information through training examples Some expressive limitations

(context and hierarchy)

• Regular expressions cannot elegantly be combined
with other search techniques, such as keyword
lookup and thesauri

Table 2 summarizes the basic extraction methods dis-
cussed in this section with respect to their applicability,
advantages and disadvantages.

5.2.2. Extraction Using Token Based Rules. In Cap-
turePlus, a rule based approach to information extrac-
tion was developed in order to (I) make expressions
more easy to learn from example (simplified syntax)
and (II) allow more explicit handling of contextual
constraints. The Token-Based Rule (TBR) approach
to information extraction was initially developed by
DFKI (The German Research Centre for Artificial In-
telligence GmbH - http://www.dfki.de/).

Token-based rules consist of three parts: pre-core,
core and post-core. While the core describes the under-

Figure 7. Token-based rules (TBR).

lying content to be extracted, the pre- and post-core de-
fine expected information before and/or after this con-
tent (respectively), thus allowing for the definition of
more precise rules. The expression of all three parts of
a TBR are constructed as sequences of tokens, whereby
tokens are grouped into; digits, alphabetic characters,
or ‘special characters (i.e. all other characters). White
space characters are treated as separators between other
tokens. Additionally, skip operators can be included
that match up to a given maximum of to-be-ignored to-
kens. Finally, the special tokens ‘{c’ and ‘c}’ in a TBR
rule denote the separation of pre-core and core, and
core and post-core, respectively. Figure 7 shows some
simplified, artificial examples of the usage of TBR.

Extraction using TBRs proceeds as follows: At first,
documents are tokenised into the previously stated
string types (digit sequences, alphabetic sequences, se-
quences of other non-white-space characters; After to-
kenising, the system interprets token-based rules as



Information Extraction from the Web System and Techniques 211

Figure 8. Example of learning token-based rules.

finite state automata and matches pattern within a de-
fined text zone. As soon as the matching is successful,
the Extractor outputs result with position information
and relevance values (relevance values are established
during training and specified as part of the TBR itself,
as will be described below).

Token-based rules can be learned and generated au-
tomatically from examples. The simplified view of doc-
ument content that the tokenisation provides makes
automated learning more straightforward. The Trainer
uses an inductive supervised training algorithm. The
trainer generates at first a rule only with core pattern.
The trainer then tries to specialize the rule by adding
pre- or post-core constraints and to generalize the rule
by adding skip operators. Modified rules are then eval-
uated over all given examples. The output of training is
a set of token-based rules that cover all examples and
a set of relevancies for the rules. Figure 8 shows a sim-
ple example of learning token-based rules. The number
at the begin of rule depicts the estimated accuracy of
the rule w.r.t. training example coverage, the following
string defines then pre-core, core and post-core.

Token-based rules are typical syntactic rules. They
work similarly to as regular expression but combine
the search for a core match with contexts (pre-core and
post-core). Such rules can be widely used to extract a
wide range of information from websites. The TBR are
particularly well suited to extraction of:

• Numeric information followed by units
• Values of formally or informally tagged fields
• Information inside commonly occurring sentence

structures.

5.2.3. Hierarchical Grammars. The relative simplic-
ity of TBR expressions occurs because tokenisation of
the original document is performed prior to applying
or learning TBR. Tokenisation of this type is common
within natural language processing. A logical extension
is to allow rules themselves to act as tokenisers. In this

way, hierarchical grammars are constructed whereby
rules for complex or specialized types of information
are constructed from more basic elements. For exam-
ple, the following rule;

{c <TELEPHONE NUMBER> c}[3]work

expresses the specialized concept <WORK
TELEPHONE NUMBER> in terms of the more basic
concept <TELEPHONE NUMBER>. In other word,
<WORK TELEPHONE NUMBER> can only be rec-
ognized if instances of <TELEPHONE NUMBER>

are first found and, for each of these instances, the
corresponding text is normalized to be replaced by
just a symbolic name for the concept <TELEPHONE
NUMBER>. This type of hierarchical relationship
allows arbitrarily structured grammars to be con-
structed and hence very complex types of information
to be extracted. However, disadvantages include;
complexity of learning and construction, as well as
relatively slow runtime application. A more detailed
discussion of hierarchical information extraction is
given in [26].

5.2.4. Text Zone Classification for Information Ex-
traction. The difference between Information Ex-
traction (IE) and Information Retrieval (IR) has already
been discussed in Section 2. However, some IR tech-
niques can be used for some IE tasks. In particular,
classification of text zones within a document, e.g. a
particular tagged field of a website, can be performed
by adapting standard IR techniques. For example, IR
could be used to extract a short description of a product
from a catalogue, a plain text description about travel
destinations, job adverts within a certain field, etc. A
precondition is that the segmentation of the website
into logical text zones has been already carried out (see
Section 5.1).

In Information Retrieval (IR) there is no lack of clas-
sification models: for example, Boolean, vector space,



212 Xiao et al.

probabilistic, and fuzzy models are all well known
and widely used [27]. Most, including the approach
adopted in CapturePlus, base text classification on a
match against a weighted set of keywords. In the train-
ing phase of CapturePlus, the Keywords Trainer first
eliminates stop words from the examples and then anal-
yses statistical information about the remaining words.
As is typical, keywords are generated if the frequency
of keyword occurrence with the given positive exam-
ples is greater than the expected frequency (e.g. as mea-
sured against a control corpus). The output of training
is a set of keywords with relevance. In the extraction
phase, the Keywords Extractor classifies a text zone
based on the number and weighting of relevant key-
words that are to be found within that text zone. For
example, a keyword-based query for recognizing hol-
iday advertisements might be {{0.40, “travel”}, {0.37,
“accommodation”}, {. . .}}. Relevance value R can be
calculated using the following formula, where ri is rel-
evance of a keyword found in the text zone, N is total
number of keywords.

R =
∑

ri/N

If the relevance is greater than a defined threshold,
the text zone is output as a result with position and
relevance information. Note, while such classification
is generally based purely on identifying relevant key-
words, other types of NE-Agent can also be used to
provide the ‘symptoms’ for a classification. For exam-
ple, a regular expression for finding distances might be
part of the classification for holiday advertisements, as
a typical description of a hotel includes descriptions of
how far the hotel is from the beach, airport, town cen-
tre, etc. Using more complex NE Agents to tokenise
text descriptions prior to classification is a promising
approach to providing much more accurate classifica-
tion (e.g. see [22]). The trade-off is typically one of
runtime performance—the more sophisticated the to-
kenisation, the more computationally expensive is the
overall classification task.

5.2.5. Related Work. The range of techniques that
have been applied for content extraction are too numer-
ous to adequately review here. The basic approaches
have ranged from keyword matching, syntactic rules
and Natural Language Processing (NLP), through to
advanced techniques which combine basic techniques
with well-known artificial intelligence or machine
learning methods. The best that can be done here is

to point out some noteworthy examples. Issues of par-
ticular practical interest will include; manual effort re-
quired to construct the IE system, type of information
that can be extracted, and general performance quality
and speed.

Syntactic rules are widely used for extracting in-
formation which has significant syntactic properties.
This technique is popular because of the clear defini-
tion of pattern matchers (ease of maintenance), lan-
guage independence and good time performance. No
dictionaries or lexicons are generally required (though
in some cases such resources are useful—see [6]). Syn-
tactic rules are suitable for such content as time, speed,
currency, name, number etc. However, syntactic rules
work best only in relatively local contexts and can have
performance limitations for more complex informa-
tion; typically a syntactic rule results in either high
precision but poor recall (too specialized rules) or poor
precision but high recall (too generalized rules). Var-
ious constraints can enhance extraction performance
considerably. Much like the Token Based Rules dis-
cussed in Section 5.2.2, such constraints can include
pre-patterns and post-pattern [12, 16, 23], or semantic
constraints [6].

Natural language processing has been an active area
of related research for many decades. Many advanced
IE technologies rely on NLP techniques. NLP tech-
niques are used not only for NE tasks, but also for TE
and TR construction. The MUC researchers developed
IE systems primarily based on NLP techniques [14].
NLP techniques are especially suitable for free text or
semi-structured texts written in a natural (free form)
way. However, the goal of simulating human under-
standing of natural text is still a long way off and many
fundamental unsolved problems in NLP still persist.
Thus, care must be taken in applying NLP techniques
in practical IE applications—often the application does
not demand the full power of theoretical NLP in order
to produce acceptable results and at the same time limi-
tations in NLP may impact on the overall system. As an
example, an open problem is so called Word Sense Dis-
ambiguation (WSD) [25], whose aim is to identify the
correct sense of a word in a particular context, among
all of its senses defined in a dictionary or a thesaurus.
WSD could be used to pretokenise documents and thus
simplify the overall IE task. However, errors caused
by WSD problem will be propagated to later process-
ing. To work around this problem almost all advanced
algorithms use a combination of various syntactic and
semantic constraints to identify the contents of interest.



Information Extraction from the Web System and Techniques 213

Applying NLP to information extraction tasks also
implies significant construction overheads as a number
of knowledge resources (full grammars, dictionaries,
morphology rules, etc.) may need to be provided. Ma-
chine learning may help reduce the amount of manual
cost involved. A promising approach of this type is to
apply Case-Based Reasoning (CBR) to NLP/IE prob-
lems. In CBR, reasoning and classification is performed
purely by reference to similar, previously encountered
examples. Learning is simplified to the task of adding
missing examples to memory.

Riloff [22] pioneered a practical system (CIRCUS)
using CBR for information extraction. A case is repre-
sented as a structure with five slots: signatures, perpe-
trators, victims, targets, and instruments. During train-
ing, each document in the training corpus is manually
converted into a set of cases. Each document is rep-
resented as a set of cases, one for each sentence that
produced at least one useful piece of information. The
resulting case base contains thousands of natural lan-
guage contexts from hundreds of texts. The heart of the
algorithm is its ability to accurately judge the relevancy
of new cases at a sentence level. The application in [22]
is for document retrieval, hence content extraction at a
sentence level using CBR was shown to give improved
performance for document retrieval tasks.

Actually, CBR techniques can be used in several IE
tasks. At the lowest level, CBR can be used to extract
context with more flexibility than syntactic rules—
syntactic rules are good for capturing the most com-
monly occurring patterns whereas CBR can use the
principle of precedent to capture rarely occurring pat-
terns as well as the general cases. At the template filling
level, filled templates may provide a case base which
can be referred to in order to disambiguate NE-Agent
results or to supply missing (default) slot values for
similar future template instances. However, in practice,
some problems in using CBR have to be faced: first,
an adequate, and often application specific, case base
must be constructed—this may be large and require
significant manual effort even if cases are created by
just marking examples. Secondly, defining an adequate
and balanced metric for similarity comparison may be
application specific. Thirdly, unless significant effort
into designing adequate indexing strategies is carried
out, the runtime cost of comparing new cases to a large
case base may mean that the processing speed in a
CBR system is normally not satisfactory for large text
volumes. Nevertheless, the simplicity and flexibility of
CBR make it an interesting candidate for many IE tasks.

Alternative machine learning approaches try to cre-
ate a more compact model of text content to provide
high runtime performance. Interesting in this respect
are regression trees (model trees), one of the family of
divide-and-conquer algorithms that includes categori-
cal decision trees (such as C4.5, [28]).

Recently, a system called RoboTag has been devel-
oped which uses decision trees to learn the location of
slot-fillers in a document [19]. RoboTag uses C4.5 to
learn decision trees which predict whether a given place
in the text is the start or end of a slot-filler value—in
this way information to be extracted is located. Prior
to learning and applying decision trees, texts are pre-
processed, to segment them into text zones and to to-
kenise text based on morphological analysis and lexical
lookup. The trees consider the token for which the deci-
sion is being made along with a fixed number of tokens
around it. In the training phase some parameters have
to be set in order to improve tagging performance. In
the extraction phase RoboTag applies the learnt deci-
sion tree classifiers to a new text to produce a list of
potential begin and end tags for each piece of informa-
tion to be extracted. Each potential begin and end tag
produced by the decision tree also has a confidence rat-
ing. A scoring function is used to evaluate the relative
merits of different sets of begin-end parings to provide
the overall optimal content extraction results.

The critical factor in C4.5 is to select relevant train-
ing features. The extraction based on of C4.5 alone
is very quick. However, the total processing speed
is depended on the selection of features and the pre-
processing of features. Robotag has e.g. four features:
Token Type, POS, Location and Semantic Type. Such
features are based on other basic IE technologies (such
as token rules, POS tagging etc.). However, such fea-
tures are selected only for defined problems and defined
document class, making the selection of features indi-
vidual to a specific solution and the solution itself less
portable. Additionally, to be able to learn reliable de-
cision trees, relatively large numbers of examples may
be required.

Other approaches to information extraction make use
of statistical machine learning techniques such as Hid-
den Markov Models [29] or artificial neural networks
[23]. For example, Merkl describes in [23] the use of
hierarchical self-organising maps to extract key infor-
mation from documents. A self-organising map (SOM)
is an unsupervised artificial neural network, consist-
ing of layers of neurons, starting with an input layer,
proceeding through intermediate layers to an output



214 Xiao et al.

layer. As SOMs are unsupervised, they possess self-
learning qualities that use a genetic algorithm style
approach to perpetuate the best performing layers. In
[23], it is pointed out that this approach may be partic-
ularly well suited to text classification problems (see
Section 5.2.4). However, neural networks have rarely
been applied to extraction of the fine-grained informa-
tion typical of IE tasks [12]. A reason may be the need
for relatively large numbers of training examples to
get accurate identification/classification with a neural
network.

So in summary, from this brief overview of related
work it can again be emphasized that no one technique
has yet to emerge as the silver bullet for all IE tasks.
NLP techniques may provide the power for most com-
plex scenarios, at high construction costs. Symbolic
machine learning techniques may provide the key to
building practical, application specific content extrac-
tors, whereas statistical machine learning approaches
may be complementary in terms of providing text clas-
sification capabilities. Only in a hybrid architecture,
such as CapturePlus, can the merits of these disparate
approaches be combined to provide an overall solution
to content extraction problems.

5.3. Results Merging

In a multi-NE-Agent system, each underlying NE-
Agent will operate in independence and create a list
of possible document positions for occurrences of the
corresponding type of information. These disparate re-
sults need to be merged. In some text zone classifi-
cation cases, this requires combining results from dif-
ferent NE-Agents via a logical operator (“AND” and
“OR”). For “AND” operation, intersection of all in-
stances are selected (a hotel description is a text zone
which contains information on the number of stars of
the hotel AND its name), while for “OR” operation,
union of instances are calculated (a room description
includes facilities such as has-TV OR has-mini-bar OR
has-double-bed OR . . .)

Having resolved logical dependencies, the next stage
is to remove redundancy. Many different NE-Agents
may be attached to the same slot in a template and
because extraction algorithms work autonomously, re-
sults can contain redundant information. Within Cap-
turePlus, possible redundant results can be:

1. Duplication: Two results have the same position
and length. In this case, one of instance has to be
dropped.

2. Overlapping: Extracted areas are overlapped. In this
case, the overlapped area may be merged. The new
result is added into the final list and the original two
are then deleted.

3. Containment: One extracted area contains the other.
Here only the bigger one is kept and the other is
dropped (special case of 1)

Following these rules, a single results list is produced
from all result lists of each NE-Agent attached to a slot.
This final results list represents all possible instances
of the template slot. This is passed on to the next pro-
cessing step (the TE-Agent), where from the basic in-
formation extraction results, one or more unambiguous
instantiations of the overall template will be produced.

6. TE-Agent—Template Filling

After NE-Agent for content extraction, extracted infor-
mation is fed into the TE-agent. In the phase of template
filling, the TE-agent tries to assign the right informa-
tion instances to the correct template slots. There at
least three tasks of a TE-agent:

1. Extracted instances have to be assigned to the slots
in template. If the relationship between instance and
corresponding slots is one-to-one, the assignment is
trivial, otherwise some intelligent sorting and con-
figuration is needed.

2. Normally NE-Agents can not extract information
perfectly, that is, with 100% precision and recall.
TE-agent can be used as a post-processor to enhance
the overall results. In particular, precision is enhan-
ced here by intelligent removal of false hits during a
conflict-resolution and disambiguation procedure.

3. If the document has multi-instance, the TE-agent
has to duplicate the template and correctly assign
the content to each template instance.

The following sections concentrate primarily on the
second task above. A new approach to disambigua-
tion is introduced based on spatial reasoning about the
structure of incoming documents. This approach will
be compared to related work.

6.1. The Spatial Model

The task of slot value disambiguation requires that a
TE-Agent drop the false instances and keep the right
one. To solve this problem, interrelationships between
different slots of a template can generally be exploited.



Information Extraction from the Web System and Techniques 215

In particular, for many types of document and partic-
ularly many websites, a predictable layout to content
within the document exists which means that the rela-
tive spatial relationships between slots can be used to
resolve ambiguities—i.e. a piece of information found
in the wrong place w.r.t. other pieces of information
may be removed. Nevertheless, even if all individual
items of information are correctly found, if the bound-
ary between template instances cannot be accurately as-
cribed and information instances accordingly grouped
then the overall quality of information extraction will
be severely degraded. For example, if there are multiple
products in an online product catalogue, then it is criti-
cal that each price extracted is paired to the appropriate
product name and description. Finding boundaries is
not always a trivial task, but again, spatial relationship
can strongly assist in this task, e.g. by identifying which
items of information occur early or late in typical de-
scriptions helps define a possible transition from one
template instance to the next. This section described
the contribution of the spatial model deployed in Cap-
turePlus to the overall information extraction task.

For the class of document that is of interest here
(structured and semi-structured—such as websites),
significant spatial relationships are expected between
the individual slots of a given template—in other
words, the order in which the information instances
occur in the original document is not completely ran-
dom. Furthermore, the capture of these spatial relation-
ships is a task that can be automated and achieved in a
non-intrusive manner—e.g. based on observing man-
ual Drag&Drop operations to fill out templates based
on example documents.

The model of the spatial relationships between the
instances of template slot values corresponds to the
profile of the TEAgent of CapturePlus. Note that the
user who, in effect, trains the TE-Agent need not be an
expert user with respect to the information extraction
technology; they merely must be capable of reliably
carrying out the template filling task manually.

Constraints:
After(JobTitle, Salary) // Salary always comes somewhere after JobTitle
After(City, State) // State always comes somewhere after City
. . .

Preferences:
Direct After (JobTitle, Salary, 0.333) // Salary often comes directly after JobTitle
Direct After (JobTitle, Required Experience, 0.259) // Required Experience often comes directly after JobTitle
Direct After (City, State, 0.815) // State usually comes directly after City
. . .

Several types of possible spatial relationship can be
captured between two slots A and B. Examples include:

• DirectBefore(A, B)—i.e. an instance of content B
comes directly before content A

• DirectAfter(A, B)—i.e. an instance of content B
comes directly before content A

• Before(A, B)—i.e. an instance of content B comes
somewhere before content A

• After(A, B)—i.e. an instance of content B comes
somewhere before content A

• Contain (A, B)—i.e. an instance of content B is only
a part of content A

These relationships are created based on the statistical
analysis of multiple manually filled templates (for the
experiments described in later sections, the TE profile is
generated from 100 manually filled templates—though
often considerably less examples would suffice). The
relationships are further sub-divided into:

• Constraints—i.e. spatial relationships that should not
be invalidated (they were observed always to hold)

• (Weighted) Preferences—relationships that are not
always valid but have a statistically significant fre-
quency. These relationships are typically represented
as a numeric weight <1.0.

An example of part of the TE-profile fore the Job Ad
experiment (see Section 7) is displayed below. This ex-
ample is derived from online Job Advertisement. Note
that the After/Before/Containment relationships gen-
erally result in constraints where as the more specific
Direct Before/Direct After relationships generally re-
sult in weighted preferences: this reflects a persistent
overall structure for the description of each template
instance although the detailed ordering of individual
content instances is less well defined. This observation
justifies the classification of the Online Job Advertise-
ment document type as being semi-structured.



216 Xiao et al.

6.2. Template Filling with Greedy Voting Algorithm

The preceding section briefly outlined the spatial model
for template slot dependencies that can be derived in
CapturePlus. This section introduces a local optimisa-
tion algorithm for controlling template filling based on
this spatial model.

The TE-Profile, described above can be used in order
to filter the results communicated from a collection of
NE-Agents—i.e. it is to be used to rule-out falsely iden-
tified template slot value instances while preserving the
correctly identified slot values. There are a number of
possible ways in which the statistically derived infor-
mation could be exploited. The algorithm tested here
resolves conflicting slot values based on a greedy vot-
ing algorithm.

The first stage is to identify conflicts. For example,
three types of commonly occurring conflict are:

• Ambiguity—Multiple instances for a given slot
have been found, although it is known in the tem-
plate that the slot has cardinality 1 (more gen-
erally, more instances are found than allowed
by cardinality constraints)

• Unexpected Ordering—The instances of two
different slots occur in an order that is contra-
dictory with respect to known constraints of the
TE Profile.

• Multiple Interpretation—A given part of the
text is used as the basis for the value of more
than one template slot.

As an example, assume the following tupple reflects
the order (with respect to document position) in which
slot values for a given template instance occur within
the document (as communicated by the NE agents):

(Salary 1, JobTitle 1, Required Experience 1,
City 1, Salary 2)

The conflicts that are generated (with respect to the
previously given example TE-Profile) are:

Conflict1(Salary 1, JobTitle 1) -> Unexpected
Ordering—Salary instance must come after
Title instance

Conflict2(Salary 1, Salary 2) -> Ambiguity—
Multiple instances of same slot (Salary)

Conflicts can be resolved by eliminating one of the
conflicting slot values. This is achieved by allowing all
slot values outside of the given conflict to vote for each
of the conflicting instances. Namely;

Votes(Fcon f ,i ) = ∑
Vote(Fcon f ,i , Fj ), where Fj is

a feature instance not in the current conflict.

The values for Vote(Fcon f ,i , Fj ) are as follows:

• −1 if the spatial relationship between Fcon f ,i

and Fj violates a known constraint
• +1 if the spatial relationship between Fcon f ,i

and Fj conforms to a known constraint
• −W if the spatial relationship between Fcon f ,i

and Fj violates a known Preference of weight
W

• +W if the spatial relationship between Fcon f ,i

and Fj conforms to a known Preference of
weight W

• else 0.

For example, for Conflict1

Votes(Salary 1) = Vote (Salary 1, Reguired
Experience Year 1) + Vote (Salary 1, City 1)
+ Vote (Salary 1, Salary 2)

= (0.0) + (0.0) + (0.0) = 0.0
Votes(Title 1) = Vote (Title 1, Reg Exp Year 1) +

Vote (Title 1, City 1) + Vote (Title 1, Salary 2)
= (0.26 + 0.35) + (0.0) + (1.0–0.33) = 1.28

The feature instance that receives least votes is elimi-
nated from the selected conflict, and all other conflicts.
In other words, Salary 1 would be eliminated on the
strength of Conflict1. As this also resolves Conflict2,
no further action need be taken, i.e. the resultant slot
value set after the filtering by the TE-agent would be:

(Title 1, Required Experience 1, City 1, Salary
2)

As shown in the above example, the elimination of
a slot value as a result of resolving one conflict is



Information Extraction from the Web System and Techniques 217

propagated to other conflicts. This means that the per-
formance of the TE-Agent is sensitive to the order in
which conflicts are resolved, even if the next conflict
to be solved is selected randomly The slot value elim-
inated by resolving the first conflict is not necessarily
the best slot value to be eliminated from other untried
conflicts. In this sense, the optimisation algorithm is
“greedy”. This provides good runtime performance but
does not guarantee an optimal global conflict resolution
. Nevertheless, as will be discussed below, this simple
approach has been empirically demonstrated to give
significant improvements in the overall accuracy of the
information extraction system.

6.3. Related Work

Several well known statistical techniques for classifi-
cation and recognition are based on Bayesian statistics.
Bayesian statistics provides a way of combining mul-
tiple pieces of evidence to reach an overall decision.
For example, Freitag used this technique to extract in-
formation based on prediction of position and length
[12]; specifically, to identify the name of the speaker
in a seminar announcement. This problem can be mod-
elled as a collection of competing hypotheses, where
each hypothesis (Hp;k) represents that a particular frag-
ment of text (i.e. a sequence of k tokens) at a given text
position (p) gives the speaker’s name.

The evaluation of Bayes [12] on seminar announce-
ments is relatively simplified, in that the size of docu-
ments is small, appropriate information to be extracted
does not vary significantly in length, and each docu-
ment contains only one description of a seminar an-
nouncement. Under such restrictions the Bayes model
is able to predict the position and length of tokens to
a high degree of accuracy. However, it is not proven
that the approach is scaleable to less well structured
documents and for more varied pieces of information
to be extracted.

Hidden Markov Models (HMMs) are a type of prob-
abilistic finite state machine, and a well-developed
probabilistic tool for modelling sequences of observa-
tions. As such, HMMs have strong potential for carry-
ing out the type of spatial reasoning advocated here
to improve the template filling task. There are sev-
eral systems using HMMs for information extraction
tasks [22, 27]. Such systems are often simplistic in
that they do not tend to automatically derive complex
spatial models; either they rely on using one state per

classification and/or they use manually assembled FST
models. They tend to focus also only on localised text
structure rather than relative position in the overall
document.

In general, in order to build a HMM for IE, it must
first be decided how many states the model should con-
tain, and what transitions between states should be al-
lowed. Each relevant word in the training data is as-
signed its own state. Each state is associated with the
class label of its word tokens. To bound each instance
in text, a transition is placed from the start state to
the first state of each training instance, as well as be-
tween the last state of each training instance and the
end state. Model structure can then be learned and re-
fined automatically from data, starting with either a
maximally-specific model, using techniques such as
Bayesian model merging.

The HMM system deployed by, Seymore [20] is a
good illustration of this general scheme and demon-
strates some complexity in that it focuses on learn-
ing the structure of one HMM to extract all the rel-
evant fields, taking into account field sequence. The
HMM is used for information extraction from research
paper headers. Each state of the HMM is associated
with a class to be extracted, such as title, author or
affiliation. Each state matches words from a “class-
specific unigram distribution”. Such state specific word
lists and the state transition probabilities can be auto-
matically learned from training data. In order to la-
bel a new header with classes, the words from the
header are treated as observations of different classes
and the most globally optimal interpretation is re-
tained. However, this system must first do some pre-
processing of documents to perform tokenisation e.g.
<ABSTRACT>, <EMAIL> etc.). In fact. The role of
the HMM is purely that of the template filling agent—
i.e. to model ordering relationships between tokens
rather than to extract the tokens themselves. As such,
this approach strongly mirrors the approach used in
CapturePlus.

The major advantage of HMM for modelling order
relation of TE-slots is that a more global optimisation
algorithm for slot filling is produced. That is, the se-
lection of the best sub-sequence or combination of slot
values is calculated with respect of all relevant slot
values. Consequently, this causes a potential problem
of time performance, and, more significantly, a poten-
tial problem in terms of the number of training ex-
amples required. Evaluations show satisfactory results
with very simple templates, which contains less than



218 Xiao et al.

5 slots. However, for over 50 slots per template, the
number of training examples and runtime performance
may become prohibitive for practical applications.

By contrast, the greedy algorithm used in Capture-
Plus presents no significant run-time problems and can
operate on a less precise spatial model, which can be
derived from relatively few manually filled out tem-
plates. This approach has allowed the technique to be
applied to internet IE applications where a single detail
template may even include several hundred slots.

7. Evaluations and Discussion

The preceding sections have gone into some technical
detail concerning the separate stages of a combined in-
formation extraction systems and the alternative tech-
niques available to realise each stage. It is useful to
reiterate at this stage the two main thrusts of this paper,
namely;

1. The general problem of IE from websites provides
a comprehensive challenge to state-of-the-art IE
systems

2. A state-of-the-art IE system requires necessarily a
multi-levelled, hybrid architecture.

This section attempts to illustrate these claims fur-
ther through empirical studies on IE-from-internet
scenarios.

Figure 9. Sample page of CNN weather report.

7.1. Experiments Description

Most Web sites can be classified as being one of
two types of document: structured and semi-structured
text. Structured texts are formatted so uniformly that
a few examples are enough to learn perfect text
extraction rules. This class of text will be repre-
sented in this experimental evaluation by pages orig-
inally taken from the CNN weather forecast web
pages (http://www.cnn.com/WEATHER/). The CNN
Weather Forecast domain consists of Web sites for var-
ious domestic and international cities with a four-day
weather forecast. A sample page is showed in Fig. 9.
10 examples of these web pages were used for training
and 100 examples for testing.

Semi-structured texts have fairly stereotyped in-
formation but are not rigidly formatted. Exper-
iments for this type of website are reported
for two example online scenarios: (Accommoda-
tion) Rental Ads and Last Minute Holidays. The
Rental Ads domain was collected from the Seat-
tle Times online-classified ads, downloaded from:
http://www.isi.edu/∼muslea/RISE/repository.html. For
the empirical study, the template defined for the
WHISK IE system was used [5]. The template consists
of three main slots: neighbourhood, price and (num-
ber) bedrooms. As for WHISK [5], here 400 exam-
ples of rental ads were used for training and a further
400 examples used for testing. The Last Minute Holi-
days Services was collected from the Web site of last-
minute.com (http://www.lastminute.com). Templates



Information Extraction from the Web System and Techniques 219

Figure 10. Example page of Lastminute.com

were more expansive (>20 slots) and slots include:
names of offers, price range, a short description, travel
details (departure and arrival dates,. . .), additional in-
formation to children and infants, etc. . A sample page
is illustrated in Fig. 10. For Last Minute Holidays the
training set has 40 examples, while the testing set has
100 samples.

Table 3 shows some representative results of the ex-
perimentation using CapturePlus on these datasets. For
the CNN Weather Forecast domain, after just 2 train-
ing examples, the system gets 100% recall and 100%

Table 3. Experiments result.

Example name Examples Precision (%) Recall (%)

CNN Weather 2 100 100

Rental Ads 50 87 88

400 98 95

Last Minute Holiday 20 98 91

40 96 97

precision. In Rental Ads the recall and precision are
continually improved with more examples, reaching
95 and 98% respectively. For Last Minute Holidays the
recall is 91% and precision is 98% with 20 examples.
With 40 examples the recall is improved to 97%, but the
precision goes down to 96% (evidence of slight over
generalisation in the learning algorithm in this case).

The above results are taken after the whole IE process
is carried out (i.e. NE Agents and TE-Agent). Deeper
analysis identified the situations where particular NE-
agents are especially important.

In the CNN Weather Forecast, training with one ex-
ample can produce perfect results, as the web pages are
generated automatically by a robot (fixed structure) and
the values are simple and explicitly tagged. Because
the required values are exactly and unambiguously en-
closed by tags (that is, the whole texts of an XML
node), no information extraction within XML fields is
required for this application. All that is required is:
pre-processing (to produce normalised XML from the
HTML) and the induction of appropriate XSL-patterns
for identifying the right tags. Some ambiguity in the



220 Xiao et al.

XSL-patterns exist, e.g. the four temperatures for the
coming four days, have the same XSL pattern. How-
ever, they are ordered in a strict sequence. In this case,
the TE-Agent plays the final crucial disambiguation
role. Coupled in this way, these three standard com-
ponents of CapturePlus allow a 100% effective parser
for these web sites to be derived with minimal man-
ual configuration (i.e. with just 2 manually filled out
templates).

In contrast, in the Rental Ads application, learning
XSL patterns has no relevance because all information
is in one XML node. NE-Agents based on keyword
recognition and Token Based Rules (TBRs) play the
lead role here. In this case the extraction is equivalent
to Information Extraction from normal (not HTML-
coded) documents. In particular, continued addition
of examples leads to continued improvement of the
TBRs and keyword recognisers. For the slot “neigh-
boured”, the keyword recogniser creates a simple list
of all neighbourhood names. For slots “price and “bed-
room”, the TBR extractor is required. The TBR for
the slot “price” is created almost perfectly after 5 ex-
amples as “$ <int>”. For the slot “bedroom”, how-
ever, the TBR is at first learnt very crudely (i.e. over
generalised—see below). Hence, the recall reaches al-
ready 99% with 50 examples, while the precision is
only 33%. With 300 examples, the precision climbs to
88% and then stays more or less constant at this level.

More interesting is the Last Minute Holidays do-
main. Some slots are extracted purely using XSL
patterns (e.g. price), because they have unique XSL
patterns. Other slots require a combination of both
XSL patterns and TBR or keyword-based NE Agents
(e.g. short description, destination->city, destination
->country) as neither in isolation is sufficient. In this
way, the travel-offer websites are an ideal example of
semi-structured document whereby explicit (HTML or
XML) tags help select relevant regions but additional
focussed searching is required to identify exact content.
Indeed, for some of the holiday add slots, unambigu-
ously extraction can only be achieved after TE-Agent
processing (such as additional information about chil-
dren OR infants), because they have both identical XSL
patterns and keywords but different spatial location (for
example, additional information about children is al-
ways before infants). Hence, to tackle this problem a
genuine mix of techniques is required.

The final evaluation covered here was aimed at mea-
suring the effectiveness of the TE-Agent and was based
on the rental-Ad data set. For this experiment, both

NE-Agent and TE-Agent are trained automatically. The
TBR extractor was used to train and extract the NE val-
ues. Rules are generated with an inductive supervised
learning algorithm, as described in Section 5.2.2. As for
WHISK [5] we used a training set of 400 examples and
a test set of a further 400 examples. In this experiment
the recall and precision are improved with more ex-
amples. Recall begins at 88.4% from 50 examples and
climbs to 95.0% with 400 examples. Precision starts at
87.0% from 50 examples and reaches to 97.7% when
400 examples (see Table 3). These overall results are
marginally better than those achieved by the original
WHISK system.

To understand the overall results in more detail, pre-
cision and recall measures were taken after the NE-
Agent stage as well as after the TE-Agent stage. The
results are presented in Fig. 11. What is demonstrated
is that the NE-Agents typically give good recall but
poor precision at low numbers of training examples.
This loss of precision is largely resolved by the TE-
Agent meaning that CapturePlus attains relative good
performance overall, even for relatively low numbers of
training examples. Deep analysis reveals that the spatial
model used by the TE-Agent becomes unchanged after
100 examples. Therefore continued improvement can
be wholly attributed to improvement in the NE-Agents,
particularly w.r.t. precision. Indeed, further analysis
of the overall NE-Agent performance reveals that im-
provement can largely be attributed to a single agent:
after 100 training examples, the precision of the NE-
Agents for Neighbourhood and Price is already 90%,
while the NE-Agent for (number) bedrooms reaches
only 34% precision. In the document, there is normally
an acronym of bedrooms (such as “bd”, “bdrm” etc.)
after the to be extracted number. Most of the improve-
ment is therefore based on (I) learning the list of all pos-
sible bedroom acronyms and (II) using this list in the
(post-core) context constraints of TBR rules to avoid
overly general rules.

Note, the original WHISK system [5] avoided the
above problems by providing bedroom acronyms as
(manually) predefined background knowledge. This in-
dicates two lessons learnt from this application for more
effective deployment of CapturePlus, and IE systems
in general—i.e. to speed up the rate of automated learn-
ing:

• Where available, use application specific terminol-
ogy in a pre-processing stage to tokenise/normalise
the documents



Information Extraction from the Web System and Techniques 221

Figure 11. Learning Curve for the Rental ad domain.

• And/Or, carefully select NE-Agents to hierarchically
decompose the learning task (e.g. have a keyword-
based agent to learn acronyms and a TBR agent
that depends on this agent to learn more complex
patterns)

7.2. Discussion

To reiterate, because of the wide variety of content
type and level of formality in websites, a hybrid IE
system is required to provide a comprehensive so-
lution to information extraction from the web. This
view has been backed up by the experimental results
briefly described in the preceding section. This implies
that a knowledge engineer responsible for setting up
such an IE system must carry out many diverse tasks,
including:

• Defining the template structure to be filled out from
each web site

• Determine required pre-processing tasks (e.g. format
conversion, segmentation, tokenisation, . . .)

• Select the right (combination) of NE-Agent types for
each relevant type of information

• Manually Create or train the search profile of each
NE-Agent—i.e. the lists of keywords, regular ex-
pressions, context rules, etc. that the NE-Agent will
use to identify relevant information in text

• Establish an NE-scheduler that will distribute at run
time the extraction task to underlying NE-agents ac-
cording to the search profile definitions.

• Create a TE-Agent to adjudicate over potentially am-
biguous template slot values assigned by NE-Agents.

Machine learning plays an important role in this over-
all process by allowing a knowledge engineer to cre-
ate complex matching rules, not through direct manual
encoding, but through provision of training examples.
However, care is needed to match the appropriate IE
technique to the appropriate type of information, oth-
erwise prohibitively large numbers of training exam-
ples are required in order to attain acceptable perfor-
mance. Hence, there is a very strong need to provide
a methodology for configuring web-based IE systems
and to provide metrics for each type of Agent in the
IE system to determine when and in what configu-
ration they should be applied. Indeed, a new type of
NE-Scheduler could be envisaged that not only dis-
tributes tasks at runtime but also during the training
phases: Such an NE-Scheduler could at first analysis
the feature of given training examples and then decide
to choose which training algorithm to apply. For exam-
ple, the relative diversity and frequencies of keywords
with training examples for a given type of information
might determine whether rule-based or keyword-based
patterns, or some mixture thereof, are appropriate to
recognise occurrences of the information type. Addi-
tionally, over time, this new NE-Scheduler would use
test results to direct further development to those parts
of the overall system that are currently the “weakest
link”. As a step in this direction, a brief summary of
the strengths, weaknesses and applicability of the main



222 Xiao et al.

techniques used in CapturePlus and introduced in this
paper are given below.

• XSL-Patterns: The training algorithm for XSL-
pattern uses a supervised bottom-up machine leaning
approach. The number of required examples depends
on their quality—for strongly structured web sites,
highly accurate XSL patterns can be learnt from very
few examples. XSL-Patterns must be combined with
other NE-Agents if content within a tagged field must
be further analysed. A TE-Agent may be required to
finally resolve ambiguous XSL-Patterns.

• Keyword matching: Learning synonyms simply re-
quires an aggregation over all examples. The result-
ing recogniser may be well suited to any type of
document and types of information which are typ-
ically represented by unique names (at least within
the scope of the application). Under these circum-
stances, fast and accurate NE-Agents can be easily
produced and maintained. The main burden is in
providing the exhaustive list of all synonyms.
Augmenting the keyword matcher by allowing
similarity-based matches may help in this respect by
improving recall, though with a possible degradation
of precision.

• Text zone classification: Following statistical classi-
fication techniques borrowed from Information Re-
trieval, text zones can be categorised/extracted based
on weighted lists of keywords. The learning algo-
rithm is here a statistical word occurrence analysis
which requires relatively high numbers of training
examples. Empirical studies have shown that in most
cases the number of examples should be at least 30.
Runtime performance speed can be fast. Accuracy is
highly dependent on the content of the document—
for websites with several regions with similar con-
tent, text zone classification based on weighted key-
words may be imprecise. Moreover, this technique
requires good document segmentation during pre-
processing.

• Token based rules: Generally, the more training ex-
amples that are given to the inductive learning al-
gorithm to produce token-based rules, the better the
performance of the TBR both in terms of precision
and recall. In practice, about 5 training examples are
needed to reinforce a specific pattern and ensure it is
learnt as a TBR. Hence, the success of the learning
of TBRs is dependent on the nature of the docu-
ment content; if the content has significant syntactic
nature or very strong pre- and/or post-core strings,

and there are few pattern variations, very accurate
rules can be learnt rapidly. Otherwise, token-based
rule-learning tends to generate TBRs that cover the
more prevalent/strong patterns and ignores weaker
patterns (which may best be covered by adding new
rules manually). That is, automatically generated
TBRs guarantee high precision, but sometimes with
poor recall. TBRs are usually best used for formatted
numeric information and other fairly localised pat-
terns. TBRs may be used in parallel with less precise
techniques, e.g. keyword matching, to complemen-
tary effect—i.e. the weaker approaches are used to
improve recall when (and only when) precise TBR
fail.

• Spatial model: The spatial model based TE-Agent is
applicable to semi-structured and structured docu-
ments. Its primary role is to enhance the precision of
the overall system by removing ambiguous and false
matches produced by the NE-Agents—this allows
an overall better performance for the IE System than
trying to encode high precision into the NE Agents
themselves [15]. However, training the spatial model
is relatively intensive in terms of manual effort to pro-
duce sufficient training examples, therefore it should
first be established that a given application will ben-
efit from the TE-Agent.

7.3. Propose Methodology

The above observations leads to a proposed method-
ology for the construction of a knowledge extraction
system, at least for the sub-class of problems that in-
volve template filling from semi-structured documents
such as internet pages:

1. A knowledge engineer analyses the page contents
and designs a “template” to summarise the required
extracted information for a given application

• All possibly relevant NE-Agent types for each re-
quired template slot are pre-selected

2. Non-experts manually perform the template filling
task on a number of example documents

• An automatic learning technique is used to con-
struct a TE-Profile

• A set of primitive NE-Agents are trained based on
the known values of template slots.

3. The initial knowledge extraction system is applied
to a further set of test documents



Information Extraction from the Web System and Techniques 223

• The performance with respect to each template
slot/NE-Agent is evaluated

• Critically weak NE-Agents (i.e. those agents with
poor performance not compensated for by other
NE-Agents or the TE-Agent) are identified

4. The knowledge engineer refines the system

• Manual extension or correction to rules, key-
word lists etc. may be carried out.

• Focussed retraining of specific NE-Agents may
be required.

Two final comments on this methodology are worth
making. Firstly, for many industrial content manage-
ment scenarios it is well suited. A typical scenario in
a so called “content factory” is that teams of manual
labourers carry out a repetitive task of reading some
input information source (e.g. a product catalogue)
and re-enter the information into some form-like GUI
which is the front end to the content management sys-
tem. Thus Step 2 of the above methodology is in many
cases already being carried out, but the potential bene-
fit is not exploited, in terms of training IE Agents that
can then semi-automate the overall information entry
task .

A second comment is that the evaluation metrics of
“precision” and “recall” do not always make sense in
a commercial environment. Deeper cost-benefit analy-
sis should be included within the methodology to de-
termine how much real benefit (e.g. in terms of man
power savings) the effort needed to, say, increase pre-
cision or recall of the overall system by 10% would
actually bring. For example, if information extraction
is being used to provide slightly more sophisticated
search engine facilities for a web portal, then some
imprecision is surely tolerable by the end user and the
emphasis may be on higher recall rates so that all infor-
mation remains accessible. Alternatively, an IE system
that mines online financial news sites in order to pro-
duce summarised financial data relevant to an invest
portfolio may have much more stringent performance
measures. Management of this kind of trade-off may
benefit from ROC analysis (e.g. see [30]).

8. Conclusion

The ability to extract desired pieces of information from
semi-structured natural language texts is an important
task with a growing number of potential commercial

applications, particularly relating to content and knowl-
edge management. Tasks involving the locating of spe-
cific data in web pages and other online documents
(email, newsgroups, . . .) are particularly promising ap-
plications. As the amount of textual information avail-
able on-line grows, information extraction systems will
become more and more important as a method of mak-
ing this information available and manageable—indeed
IE may be an instrumental technology in enabling the
migration from todays ad hoc internet to tomorrows Se-
mantic Web (www.semanticweb.org). Manually con-
structing such information extraction systems is a la-
borious task; however, learning methods have the po-
tential to help automate the development process and
make commercial applications cost effective.

The contribution of this paper has been both from a
technical and from a system viewpoint. At a technical
level, as well as introducing an overall architecture, a
number of innovative components have been described
with an emphasis on machine learning, including: a re-
vised bottom-up algorithm to construct XSL-Patterns,
a statistical word occurrence analysis to generate key-
words for extracting parts of text, inductive to gener-
ate complex grammar rules and, finally, and, statistical
analysis approach to build a spatial model for template
filling. The techniques have been evaluated and shown
to be effective with different document types and vari-
ous web-based application scenarios.

From a system viewpoint, this paper has presented
a complete information extraction system not only for
research projects but also for practical applications. In
this paper, the focus has been on extracting information
from web pages. However, the complete system is de-
signed both for normal documents and web pages. The
system is designed as a hybrid architecture embodying
multiple agents that can not only be applied in parallel
but also in collaboration in order to provide optimal
overall performance. While this approach adds com-
plexity, in terms of runtime coordination of multiple
agents and, from a methodology perspective, in terms
of having to marry the appropriate technique(s) to each
relevant type of information, the hybrid approach is
viewed as a fundamental necessity. The diversity of
types and formats of textual information precludes a
“silver bullet” solution to information extraction—i.e.
no one technique can address all problems. In par-
ticular, the system clearly distinguishes between NE-
tasks (which find isolated occurrences of information
items of interest) and TE-tasks (which compile com-
plete content descriptions form the information items).



224 Xiao et al.

Moreover, it is supported by a general methodology
that allows construction of the IE system to be carried
out in a focussed and cost-effective way.

Note

1. To simplify the example, all attributes in nodes are not showed
in example patterns. In the real implementation the attributes
are used also to calculate overlapping pattern. Sometimes the
attributes play an important role to distinguish the XML nodes.

References

1. ARPA, “Defense advanced research projects agency,” in Pro-
ceedings of the Sixth Message Understanding Conference
(MUC-6). Morgan Kaufmann, California, 1995.

2. E. Brill, “Some advances in rule-based part of speech tagging,”
in Proceedings of the 12th Annual Conference on Artificial In-
telligence (AAAI-94), 1994, pp. 722–727.

3. M. Marcus, B. Santorini, and M. Marcinkiewicz, “Building a
large annotated corpus of English: The PennTreebank,” Compu-
tational Linguistics, vol. 19, no. 2, pp. 313–330, 1993.

4. F. Ciravegna, “Adaptive information extraction from text by rule
induction and generalisation,” Joint Conference on Artificial In-
telligence (IJCAI01), Seattle, Washington, USA, 2001.

5. S. Soderland, “Learning information extraction rules for semi-
structured and free text,” to appear in the Journal of Machine
Learning, 1998.

6. D.W. Embley, N. Fuhr, C.-P. Klas, and T. Roelleke, “Ontology
suitability for uncertain extraction of information from multi-
record web documents,” ADI’99 Proceeding, 1999.

7. S. Soderland, D. Fisher, J. Aseltine, and W. Lehnert, “Crystal:
Inducing a conceptual dictionary,” in Proceedings of the 14th
International Joint Conference on Artificial Intelligence (IJCAI-
95), 1995, pp. 1314–1319.

8. S. Huffman, “Learning information extraction patterns from ex-
amples,” in IJCAI-95 Workshop on New Approaches to Learning
for Natural Language Processing, 1995, pp. 127–142.

9. H. Cunningham, K. Humphreys, Y. Wilks, and R. Gaizauskas,
“Software infrastructure for natural language processing,” in
Proceedings of the Fifth Conference on Applied Natural Lan-
guage Processing (ANLP-97), 1997.

10. D. Fensel, B. Omelayenko, Y. Ding, M. Klien, A. Flett, E. Schul-
ten, G. Botquin, M. Brown, and G. Dabiri, Intelligent Informa-
tion Integration in B2B Electronic Commerce, Kluwer Academic
Publishers, 2002, ISBN 1-4020-7190-6.

11. I. Muslea, S. Minton, and C. Knoblock, “A hierarchical approach
to wrapper induction,” in Proceedings of the Third International
Conference on Autonomous Agents (AA-99), 1999.

12. D. Freitag, “Information extraction from html: Application of a
general learning approach,” in Proceedings of the 15th Con-
ference on Artificial Intelligence (AAAI-98), 1998, pp. 517–
523.

13. L. Liu, et al. “XWRAP: An XML-enabled wrapper construction
system for web information sources,” International Conference
on Data Engineering, 2000.

14. H. Cunningham, “A definition and short history of language
engineering,” Journal of Natural Language Engineering, vol. 5,
pp. 1–16, 1999.

15. L. Xiao, D. Wissmann, M. Brown, and S. Jablonski, “Where to
position the precision in knowledge extraction from text,” to be
published, IEA/AIE 2001; The 14th International Conference on
Industrial & Engineering Applications of Artificial Intelligence
& Expert Systems, Budapest, 2001 pp. 187–196.

16. L. Xiao, D. Wissmann, M. Brown, and S. Jablonski, “Infor-
mation extraction from HTML: Combining XML and standard
techniques for IE from the web,” to be published, IEA/AIE 2001;
The 14th International Conference on Industrial & Engineering
Applications of Artificial Intelligence & Expert, Budapest, 2001,
pp. 164–174.

17. R. Doorenbos, O. Etzioni, and D. Weld, “A scalable comparison-
shopping agent for the world-wide web,” in Proceedings of the
First International Conference on Autonomous Agents, pp. 39-
48, 1997.

18. N. Kushmerick, D. Weld, and R. Doorenbos, “Wrapper induction
for information extraction,” in Proceedings of the 15th Interna-
tional Conference on Artificial Intelligence (IJCAI-97), 1997,
pp. 729–735.

19. S. Bennett, C. Aone, and C. Lovell, “Learning to tag multilingual
texts through observation,” in Proceedings of the Second Con-
ference on Empirical Methods in Natural Language Processing,
1997, pp. 109–116.

20. K. Seymore, A. McCallum, and R. Rosenfeld, “Learning hidden
Markov model structure for information extraction,” in AAAI 99
Workshop on Machine Learning for Information Extraction.

21. M. Califf and R. Mooney, “Relational learning of pattern-match
rules for information extraction,” Working Papers of the ACL-97
Workshop in Natural Language Learning, 1997, pp. 9–15.

22. E. Riloff, “Information extraction as a basic for high-precision
text classification,” ACM Transaction on Information Systems,
vol. 12, no. 3, pp. 296–333, 1994.

23. D. Merkl, “Exploration of document collections with self-
organizing maps—A novel approach to similarity representa-
tion,” in Proceedings of the European Symposium on Principles
of Data Mining and Knowledge Discovery, Trondheim, Norway,
1997, pp. 101–111.

24. A. Knoblock and Minton, Accurately and Reliably Extracting
Data from the Web: A Machine Learning Approach, IEEE 1999.

25. N. Ide and J. Véronis, “Word sense disambiguation: The state of
the art,” Computational Linguistics, vol. 24, no. 1, 1998.

26. L. Xiao, D. Wissmann, M. Brown, and S. Jablonski, “Hierarchi-
cal concept description and learning for information extraction,”
in 6th Natural Language Processing Pacific Rim Symposium
(NLPRS), Tokyo, Japan, 2001.

27. F. Crestani, “The troubles with using a logical model of IR on a
large collection of documents,” TREC, 1994.

28. J. Quinlan, C4.5, Programs for Machine Learning. Morgan
Kaufmann Series in Machine Learning. Morgan Kaufmann,
1993.

29. T.R. Leek, “Information extraction using hidden Markov mod-
els,” Master’s thesis, UC San Diego, 1997.

30. D. Provos and T. Fawcett, “Analysis and visualisation of clas-
sifier performance: Comparison under imprecise class and cost
distributions,” in Third Intl. Conf. of Knowledge Discovery and
Data Mining, 1997, pp. 43–48.


