
1

Situated robot learning for multi-modal
instruction and imitation of grasping
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a Bielefeld University, Neuroinformatics Group, Faculty of Technology,
P.O. Box 10 01 31, D-33501 Bielefeld, Germany

A key prerequisite to make user instruction of work tasks by interactive demonstration effective and convenient
is situated multi-modal interaction aiming at an enhancement of robot learning beyond simple low-level skill
acquisition. We report the status of the Bielefeld GRAVIS-robot system that combines visual attention and
gestural instruction with an intelligent interface for speech recognition and linguistic interpretation to allow
multi-modal task-oriented instructions. With respect to this platform, we discuss the essential role of learning for
robust functioning of the robot and sketch the concept of an integrated architecture for situated learning on the
system level. It has the long-term goal to demonstrate speech-supported imitation learning of robot actions. We
describe the current state of its realization to enable imitation of human hand postures for flexible grasping and
give quantitative results for grasping a broad range of everyday objects.

1. Introduction

How can we endow robots with enough cogni-
tive capabilities to enable them to serve as multi-
functional personal assistants that can easily and
intuitively be instructed by the human user? A
key role in the realization of this goal plays the
ability of situated learning : Only, when we can
instruct robots to execute desired work tasks by
means of a combination of spoken dialog, ges-
tures, and visual demonstration, robots will loose
their predominant role as specialists for repeat-
able tasks and become effective to support hu-
mans in everyday life.

A basic element of situated learning is the ca-
pability to observe and successfully imitate ac-
tions and – as a prerequisite for that – to es-
tablish a common focus of attention with the hu-
man instructor. For multi-modal communication,
additional perceptive capabilities in the fields of
speech understanding, active vision, and in the
interpretation of non-verbal cues like gestures or
body posture are essential and have to be in-
cluded and coordinated.

We report on progress in building an integrated
robot system within the framework of the Special
Collaborative Research Unit SFB 360 “Situated
Artificial Communicators”. In the course of this

long-term program, many modules implement-
ing partial skills were at first realized and eval-
uated as stand alone applications [4,7,18,20,34],
but their integration is an additional research task
and a key issue towards the realization of intelli-
gent machines.

As the development of integrated learning ar-
chitectures for real world tasks poses an enormous
challenge, there can hardly be found any efforts to
scale learning from the lower level of training sin-
gle skills up to a multi-stage learning across the
overall system. A primary reason is that most
learning approaches rely on highly pre-structured
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information and search spaces. Prominent ex-
amples are supervised learning of target outputs,
unsupervised learning of clusters, or learning of
control tasks with a (usually small) number of
predefined variables (pole balancing, trajectory
learning). Here exist well understood approaches
like gradient based learning, support vector ma-
chines, vector quantization, or Q-learning, which
yield for certain tasks remarkable results, e.g. in
speech-image integration [26], trajectory learning
[22,19,44], in object recognition and determina-
tion of grasp postures [28], sensor fusion for grasp
planning [1], or grasp optimization [30].

In real world learning a well defined pre-
structuring of the data with respect to the given
task is an essential part of the learning itself:
the system has to find lower-dimensional rele-
vant manifolds in very high-dimensional data and
to detect important regularities in the course of
learning to use these to improve its capabilities.
Furthermore, for a sophisticated robot with many
motor degrees of freedom or for a cognitive sys-
tem – as the one discussed here – finding a solu-
tion by exploration of new actions is not suitable
because the search spaces involved are extremely
high-dimensional and by far too complex.

Current practice aims at developing well-
scalable, homogeneous and transparent architec-
tures to create complex systems. Somewhat iron-
ically, successful examples of this strategy tend
to cluster in the small- or mid-size range, while
truly large and complex systems seem to defy our
wishes for ”formatting away” their complexity by
good bookkeeping alone. It seems not unlikely
that it is one of the hallmarks of complex sys-
tems that they confront us with limited homo-
geneity, evolutionarily grown layers of overlap-
ping functionality and bugs that may even amal-
gamate with features. Looking at biological sys-
tems with their enormous complexity, we see that
these by no means resemble orthogonal clock-
works; instead, they consist of a tangle of inter-
woven loops stabilized by numerous mechanisms
of error-tolerance and self-repair. This suggests
that a major challenge for moving to higher com-
plexity is to successfully adopt similar approaches
to come to grips with systems that we cannot an-
alyze in their full detail.

In the present paper, we address these issues in
the context of a longer-term research project aim-
ing at the realization of a robot system that is in-
structable by speech and gestures. For the afore-
mentioned reasons, we have pursued the develop-
ment of this system in an evolutionary fashion,
without the requirement that a global blueprint
had to be available at each stage of its develop-
ment. In Sec. 2, we report our experiences with
this approach and give an overview of the current
stage of the evolved system.

In Sec. 3, we focus our discussion on the is-
sue of learning within such a system and argue
for three major levels at which learning has to
be organized: (i) an ontogenetic level which ex-
ploits learning methods in order to create initial
system functions (such as object classifiers) from
previously acquired training data in an off-line
fashion, (ii) a refinement level at which on-line
learning is used locally within a functional mod-
ule, with the main effect of increasing the mod-
ule’s robustness or refining its performance, but
with no or little need of explicit coordination with
adaptive processes in other modules, and (iii) a
situated level at which different learning meth-
ods are combined in a highly structured way in
order to achieve short-term situated learning at
the task level. While all three learning levels are
important, undoubtedly it is the uppermost, situ-
ated level which currently poses the most exciting
research challenge.

In Sec. 4, we propose an approach how to or-
ganize learning at this level. Our proposal is
strongly motivated by the idea of imitation learn-
ing [2,3,6,8,23,24,32], which attempts to find a
successful “action template” from the observa-
tion of a (human) instructor. This requires (i)
to endow the robot system with sufficient percep-
tive capabilities to recognize and observe the ac-
tion to imitate; (ii) to transform the observed ac-
tion into an internal representation, which is well
matched to the system’s own operating charac-
teristics (in particular, its different “sensory per-
spective” and “instrumentation” with actuators);
(iii) to be able to physically execute a suitable ac-
tion by itself. Focusing on the important task of
imitation grasping, we describe in Sec. 5 an initial
implementation of this scheme, using our current
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system as a platform for the necessary and con-
siderable, perceptual and motor anchoring of such
an imitation learner in its environment. Sec. 6
then presents some results on imitation grasping
of common everyday objects with the system im-
plemented so far.

At all levels, the results of learning can – by its
very nature – at best be partially predicted, erod-
ing further the idea of the availability of a fixed
system blueprint. In Sec. 7, we therefore argue
for a datamining perspective for coping with sys-
tems of such kind. As a concrete example, we
briefly describe a powerful multi-modal monitor-
ing system (AVDisp) that has been developed in
our lab very recently and we report some expe-
riences from applying this approach to our robot
system. Finally, Sec. 8 presents some conclusions.

2. System Design and Overview

Due to the long-term development of our sys-
tem, the ideal perspective to define constraints
and a unified framework beforehand to facilitate
building a cognitive learning architecture had to
be replaced by an “evolutionary approach” to in-
tegrate also modules that were developed in dif-
ferent research contexts and not necessarily de-
signed in view of being utilized in the described
system. This led to the development of a rather
flexible architecture, based on a distributed ar-
chitecture communication system (DACS [14])
developed earlier in the framework of the SFB
360. In this framework, very heterogeneous com-
ponents can be accommodated as separate and
parallel processes, distributed over several work-
stations and communicating mainly via message
passing supported by DACS (some modules also
use more sophisticated communication facilities
of the DACS package). In this way, we have
been able to integrate a large number of mod-
ules, which use different programming languages
(C, C++, Tcl/Tk, Neo/NST), various visualiza-
tion tools, and a variety of processing paradigms
ranging from a neurally inspired attention system
to statistical and declarative methods for infer-
ence and knowledge representation.

The current system can be coarsely subdi-
vided into four major functional clusters depicted

−

3D
−C

o
o

rd
in

at
es

3D
−R

eg
io

n

re
fe

re
n

ce
d

 o
b

je
ct

s
re

fe
re

n
ce

d
 o

b
je

ct
s

state

Dialog
Interaction

Image
Speech

  

Robot Arm/Hand 

Recognition

Direction
Pointing

Grasping 

Motion

Visual 
Feedback 

Feedback
Tactile

Visual Attention

Recognition 

Hand 

Attention

Speech Processing 

Understanding 

Command  

Command  

Integration 

Visual 
Context

Figure 2. Schematic picture of the current system
architecture.

schematically in Fig. 2. The speech processing
(left) and the visual attention mechanism (right)
provide linguistic and visual/gestural inputs con-
verging in an integration module. This maintains
a short-term memory of objects and their 3D-
coordinates and passes control to the arm/hand
manipulator if an object is unambiguously refer-
enced by speech or gesture or their combination.
We found that the coordination of all these func-
tional modules can be very conveniently achieved
by finite state machines implementing data driven
state transitions. Additionally, speech commands
like “calibrate skin”, “park robot arm”, etc. can
trigger specific actions. The most important func-
tionalities of these four building blocks are sum-
marized below for convenience.

2.1. Visual Attention
The basic behavior of the active vision system

is – driven by an attention system – to explore
the scene autonomously and to search for salient
points and objects, including hands and pointing
fingers. The attention behavior is based on an ac-
tive stereo vision camera head and works in full
3D-space. At the lower level it consists of a lay-
ered system of topographically organized neural
maps for integrating different feature maps into
a continually updated saliency map [20], similar
to mechanisms proposed in [9,12,38]. Incorporat-
ing an additional fadeout map and results from
a hand detection module, it forms a final atten-
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tion map whose highest peak determines the next
fixation. If a pointing hand is detected, a fur-
ther module computes a 3D-pointing cone and
restricts the attention to the corresponding re-
gion. A holistic, neural object recognition system
[18] determines whether a known object has been
seen and can be transferred into the short-term
memory of the integration module.

2.2. Speech Processing and Understanding
To enable speech interaction and communica-

tion between the user and the artificial communi-
cator, our system imports a module for speaker-
independent speech understanding [13]. The
recognition process is directly influenced by a par-
tial parser which provides linguistic and domain-
specific restrictions on word sequences derived
from previous investigations on a word corpus.
Therefore, partial syntactic structures instead of
simple word sequences are generated, like e.g. ob-
ject descriptions (”the red cube”) or spatial rela-
tions (”in front of”). These are combined by the
subsequent speech understanding module to form
linguistic interpretations. The instructor neither
needs to know a special command syntax nor the
exact terms or identifiers of the objects. Conse-
quently, the speech understanding system has to
face a high degree of referential uncertainty from
vague meanings, speech recognition errors, and
un-modeled language structures.

2.3. Modality Integration and Dialog
In integration of speech and vision, this ref-

erential uncertainty has to be resolved with re-
spect to the visual object memory. Here the sys-
tem uses a Bayesian network approach [40], where
the different kinds of uncertainties are modeled
by conditional probability tables that have been
estimated from experimental data. The objects
which are denoted in the utterance are those ex-
plaining the observed visual and verbal evidences
in the Bayesian network with the maximum a-
posteriori probability. Additional causal support
for an intended object is defined by an optional
target region of interest that is provided by the
3D-pointing evaluation. The intended object is
then used by the dialog component for system re-
sponse and manipulator instruction. The dialog
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Figure 3. Evaluation of a predefined grasp se-
quence based on data collected by the system
monitoring tool AVDisp.

system is based on an investigation of a corpus
of human-human and simulated human-machine
dialogs [7]. In particular, it asks for a pointing
gesture to resolve ambiguities in the current spo-
ken instruction with respect to the actual state of
the memory. The overall goal of this module is to
continue the dialog in every situation.

2.4. Robot Arm and Hand
Manipulation is carried out by a standard 6-

DOF PUMA manipulator operated with the real-
time RCCL-command library [36]. It is further
equipped with a wrist camera to obtain local vi-
sual feedback during the grasping phase. The
grasping is carried out by a 9-DOF dextrous robot
hand developed at the Technical University of
Munich [37]. It has three approximately human-
sized fingers driven by an hydraulics system. The
fingertips have custom built force sensors to pro-
vide force feedback for control and evaluation of
the grasp. Recently we have added a palm and
rearranged the fingers in a more human-like con-
figuration in order to allow a larger variety of two-
and three-finger grasps and to equip the hand
with a tactile display of 8 × 8 force sensors on
the palm.

The grasp sequence starts with an approach
movement to the 3D-coordinates determined by
the vision and integration modules. Based on vi-
sual feedback, it centers the manipulator above
the object and finally grasps it, starting from an
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initial hand pre-shape, slowly wrapping all fingers
around the object and employing force-feedback
from the fingertip and palm sensors to detect con-
tacts. Notice, that this grasping strategy signif-
icantly differs from analytical approaches, which
first compute optimal grasp points on the known
object surface and finally employ inverse hand
kinematics to achieve these contact points [17].
Fig. 3 shows a time-evaluation of the grasp se-
quence for a preprogrammed grasp. After a suc-
cessful grasp, a similar chain of events allows the
robot to put the object down at another gestu-
rally selected location. To add flexibility to this
fixed grasp behavior and to enable grasping of ir-
regular shaped real world objects, we added an
imitation capability in the choice of grasp proto-
types based on human observation as detailed in
Sections 4 and 5.

3. Structuring of Learning

Learning is a very multi-faceted phenomenon
and its complexity is amply reflected in the nu-
merous different proposals how to relate and im-
plement its various aspects. Theoretical consid-
erations motivate a “horizontal subdivision” of
learning into the major types of unsupervised,
supervised, and reinforcement learning (with still
a substantial number of approaches distinguish-
able both at the conceptual and algorithmic level
within each type). Recently there has been a
stimulating discussion that such a subdivision
may even be reflected in anatomically distinguish-
able subsystems of the brain [11]. While such a
subdivision is highly attractive in many respects,
we think that there is another very important but
different dimension of learning: the time scale at
which learning can take place.

At the slowest time scale (which we will call
the ontogenetic level) learning methods are used
in order to create initial system functions by off-
line algorithms, usually operating on rather large
data sets prepared in contexts that do not re-
quire an already trained system. Examples in our
system are the unsupervised training of the sen-
sory front end of a neural-network-based object
classifier, the supervised training of recognition
modules (e.g. for object identity [18] or for con-

tinuous hand posture [27] as explained in some
more detail in Sec. 5). Learning at this ontoge-
netic level does not involve any behavior of the
robot; instead, it permitted us the creation of
important initial subsystem functionalities which
would have been much harder to obtain by ex-
plicit programming alone. While this level can
extend even into quite high levels of abstraction
(e.g. the computation of probability tables for
Bayes nets to integrate visual and speech recog-
nition results at the symbolic level [40]), its con-
tribution becomes “frozen” afterwards, since the
employed techniques frequently assume the avail-
ability of the target modules in isolation, without
the complex interactions resulting from being em-
bedded in the complete and working system.

The second local refinement level comprises
those learning processes whose adaptive changes
occur on-line, during (and based on) the ac-
tual behavior of the robot and refine its ini-
tial capabilities. The increased complexity im-
posed in this way is compensated by requiring
the adaptive changes to be (at least largely) lo-
cal to each module, so that learning processes at
the second level can become “encapsulated” in
a single functional module, thereby allowing to
achieve a good balance between benefits and im-
plementability. Typical examples in our system
are the adjustment of subsystem calibrations (e.g.
on-line color-recalibration of the vision system),
slow adaptation to changing environment condi-
tions (e.g. “habituation” of the fingertip sensors,
dynamic renormalization of the feature weights
in the saccadic system with respect to the cur-
rent feature statistics, continuous update of the
skin color model, or forgetting factors in the ob-
ject memory), and mechanisms to ensure that sys-
tem variables remain well inside their operating
ranges. This level can be considered as hosting
most of the “long-term plasticity” of our system,
and its algorithms can largely be based on ideas
of statistical learning. We found that the isolated
contribution of the adaptivity of single modules
on system performance is often rather small; how-
ever, the good tuning of many parameters has a
big impact on overall system reliability and per-
formance.

Finally, the third situated level addresses the
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challenge to make rapid (ultimately “one-shot”)
learning feasible. This cannot rely exclusively
on slow and repeated adaptations; instead, this
level has to rapidly coordinate adapted subsys-
tem functionalities in very structured, situation-
specific and cross-modular ways. Clearly, coming
up with workable learning mechanisms at this sit-
uated level poses a significant research challenge.
The notion of imitation learning has emerged as
a very promising paradigm to cope with this chal-
lenge. There is a considerable debate in cur-
rent literature, in which way an architecture for
imitation learning could coordinate the required
subsystem functionalities. Some researchers fo-
cus on using “neurally inspired” building blocks
of visual processing [42] as their primitives, oth-
ers approach the problem from the perspective of
attention modeling [12], or perception-action sys-
tems [6], implementing either a kind of “imitation
at the processing level”, or focusing on imitation
at the level of joint angles [19]. Whenever such
systems execute actions in the real world, their
“inner workings” are considerably affected by the
physical constraints of the real robot system avail-
able. In particular, the advent of more human-
like and human-sized robots has had a major im-
pact on the development of techniques for motor-
learning and skill transfer in this area.

In the context of our own system, we have
started to pursue these ideas within a paradigm
of situated learning for imitation grasping. In the
following Sec. 4 we propose a learning architec-
ture intended to address the issues at the situ-
ated level. With the system described in Sec. 2
as a basis, we have started to implement learning
on this highest level of abstraction to enable our
robot system to carry out a variety of grasps of
everyday objects, visually observing and imitat-
ing a human instructor who indicates useful grasp
postures with his or her own hand.

4. An Architecture for Situated Learning

As pointed out in the previous section, to en-
able learning at the short time scale of the situ-
ated level will depend in an essential way on the
highly structured interplay of several functional
loops, complementing each other in a tightly cou-
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Figure 4. Multistage architecture for integration
of different learning paradigms to enable situated
learning on the system level. Shown are the in-
terlocking three functional loops of observation of
example actions, internal simulation, and senso-
rimotor exploration.

pled fashion to cope with the joint constraints of
high-dimensional search spaces and small number
of training samples. In the following, we argue
that a suitable interlocking of the three functional
loops of observation, internal simulation, and sen-
sorimotor exploration can lead to a scheme that
appears sufficiently powerful to enable fast situ-
ated learning.

The objective of the observation loop is to
gain a promising “action template” that per-
mits to dramatically cut down the otherwise huge
search spaces for the other two learning loops.
This requires to watch the environment, respec-
tively the instructor, in order to (i) extract rele-
vant features, events, and chains of observed par-
tial actions, (ii) translate these from the observed
to an intrinsic perspective, and (iii) exploit them
for forming an action template that is focused
on promising regions of the a-priori very high-
dimensional search space.

At a second stage the observed action template
has to be improved further using an internal
simulation loop, exploring possible actions in
the vicinity of the observed template and select-
ing promising action candidates. At this stage it
is important to perform learning from an ”intrin-
sic” perspective in order to incorporate available
model knowledge (e.g. about kinematic and sen-
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sor constraints of the actually used hardware),
which becomes merged with constraint informa-
tion made available from the observation compo-
nent. The computational basis of this component
is a dynamics-based grasping simulation, allowing
the application of reinforcement learning meth-
ods to improve the grasping strategy. Due to the
availability of full information about joint angles,
applied wrenches, or contact points in the simula-
tion, we can make predictions (valid to the extent
that the model is accurate) about grasp quality
to generate a suitable reward signal even in the
absence of corresponding tactile sensors in the ac-
tual TUM-hand.

We think that this search space restricted re-
inforcement learning, where the exploration of
actions can be restricted to a neighborhood of
the observed successful trajectory, is the ade-
quate technique to generate promising action can-
didates. This combination of observation and re-
inforcement learning appears very flexible: the
neighborhood can be chosen small where highly
reliable observations are available, whereas more
exploration may be needed where poor data are
given. A typical candidate for the application of
this approach in our scenario would be the initial-
ization of a grasping sequence with respect to the
approach direction and hand pre-shape based on
visual observation of a human hand, which can be
obtained by earlier developed hand and fingertip
recognition methods (see Sec. 5 and [27,29]).

Finally, the third sensorimotor loop is re-
sponsible for actually carrying out those action
candidates that have been identified as most
promising by the other two components. Since
the internal simulation model and its observation-
based refinement can always only approximate
the actual situation, actual execution of the ac-
tion is faced with two alternative evaluation cri-
teria: (i) a maximization of knowledge gain with
the consequence of “risky” actions, for instance
near decision boundaries; (ii) a maximization of
robustness with the consequence of conservative
actions in maximal distance to decision bound-
aries, leading only to minimal information gain.

Fig. 4 shows the interaction of the different
loops. The observation loop acquires example ac-
tions from the human instructor, the simulation

loop provides refinements of the observed strate-
gies and adaptation to the constraints imposed
by the robot system. This changes robot learn-
ing into an interactive situated learning process,
which uses speech and the multi-modal percep-
tual channels for an effective optimization of the
system’s exploration.

5. Towards Imitation Grasping: Observa-
tion, Simulation, and Control of Hand
Posture

While we have not yet a full implementation of
the described architecture, we can report an ini-
tial implementation of some of its major features
for the scenario of situated learning of grasping
of common everyday objects, such as depicted in
Fig. 8. In this scenario, the observation compo-
nent is a vision module permitting observation
and 3D-identification of a human hand posture
indicating to the robot a sample of the to-be-used
grasp type. The identified hand posture is trans-
formed to the joint angle space of the robot hand
and is used at the same time as an initial posture
for the physics-based simulation of a correspond-
ing grasp as shown in Fig. 5.

The hand posture recognition uses a system
for visual recognition of arbitrary hand postures
which was previously developed in our group. It
works in real time, however, currently is restricted
to a predefined viewing area. For a more detailed
description of the underlying multi-stage hierar-
chy of neural networks which first detect the fin-
gertips in the hand image and then reconstruct

Figure 5. Grasp evaluation in physics-based sim-
ulation using contact friction cones (left) and the
force closure polytope (lower right).
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Figure 6. Observation and recognition of con-
tinuous human hand postures to obtain an initial
pre-grasp posture for autonomous grasping of the
anthropomorphic robot hand. In the upper right
part the observed human hand is shown on the
screen together with the reconstructed hand pos-
ture visualized by the rendered computer hand.
Below is shown the operation of the PSOM net-
work which obtains the inverse transform from
fingertip positions found from observation in the
2D-images to the joint angles of the hand. To the
left the resulting TUM-hand posture can be seen.

the joint angles from the fingertip positions see
[27,29]. In the context of the present paper, it is
a good example for a neurally inspired process-
ing module, which has been refined in an evolu-
tionary way over a number of years and employs
learning mainly at the ontogenetic and, to a mi-
nor extent, also at the refinement level. Image
locations of the fingertips are identified by a two-
level hierarchy of several neural networks trained
during an off-line phase. A further processing
stage, employing a Parameterized Self-organizing
Map (PSOM, [41]), transforms the obtained 2D-
features (fingertip locations) into the joint an-
gles of an articulated hand model approximating
the geometry of a five-fingered human hand. Be-
cause the PSOM replaces the discrete lattice of
the SOM with a continuous manifold and allows
to retrieve the inverse of each learned mapping
automatically, it can be trained with data of the
analytically computable forward transform from
the 3D-posture to the 2D-locations.

However, to actuate the robot-hand, the re-
constructed joint angles cannot be used directly,

because the robot hand shown in Fig. 6 has three
fingers only and differs in palm and finger sizes,
proportions of the phalanges, and the arrange-
ment of the fingers at the palm. Additionally, the
sensory equipment and control concepts differ,
such that we first have to transform the observed
human joint angles into an internal perspective
to obtain a posture of the robot hand that is ap-
proximately equivalent with respect to the func-
tional properties of the grasp. Geometrically
this transformation maps the different joint angle
workspaces and reflects the kinematic constraints
imposed by the coupled joints of the robot hand.
Further we lack direct joint angle measurements
in the TUM-hand and therefore rely grasping on
force feedback obtained from the custom built fin-
gertip sensors and a recently added palm sensor
(see Fig. 6). With the latter we can evaluate the
shape of an object when carrying out a power
grasp, while the fingertip sensors are primarily
used for precision grasps.

From the perspective of imitation learning,
these incompatibilities between a human and our
robot hand are nothing but the manifestation of
the gap between the characteristics of the ob-
served system and the imitator’s own sensorimo-
tor equipment plus the different sensory views of
the situation. In the present system, the observa-
tion component contributes to closing that gap by
providing a good initial hand posture from which
the robot grasping is started.

This initial posture can be used by the inter-
nal simulation to generate a grasping sequence.
The simulation utilizes the real-time dynamics-
based package Vortex [39], which allows accurate
object motion and interaction based on Newto-
nian physics. We extended the package to provide
static and dynamic friction for contacts, which is
crucial for successful grasp simulation. To gen-
erate the finger trajectories, we use an algorithm
that attempts to confine the object by incremen-
tally flexing the fingers in a cage-like fashion, eval-
uating contact conditions on the way. Although
contacts are simulated on the basis of point con-
tacts and thus are necessarily coarse, they provide
full force feedback, which is not available with
our real world tactile fingertip and palm sensors.
When all further finger movements have become
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blocked by object contacts, the grasp is consid-
ered as complete and evaluated according to a
quality function [5], which we evaluate by numer-
ical solution of Linear Matrix Inequalities as re-
cently suggested in [15]. Fig. 5 illustrates the fric-
tion cones of a successful grasp together with the
resulting polytope of applicable forces. One of the
next steps will be to use this information in order
to conduct a search for an improved initial condi-
tion before the grasp sequence is actually carried
out with the real hand.

6. Results for Imitation Based Grasping

Before implementation of the imitation grasp-
ing subsystem described above, our system had to
use pre-programmed associations between known
objects and suitable grasps that had been “hand-
tuned” for a limited range of objects in rather
labor-intensive experiments. From this work, we
also knew that our artificial hand – despite its
serious limitations – can grasp a large number of
real world objects. However, due to the enor-
mous range of possible shapes, generalizing pre-
programmed grasps to new and general objects is
a rather hard task. Therefore we tried two imi-
tation strategies with our system: (i) a “naive”
imitation strategy, in which the observed joint
angle trajectories (after their transformation into
the three-finger geometry) were directly applied
to control the fingers of the TUM hand during
the grasp, until complete closure around the ob-
ject; (ii) a strategy in which the visually observed
hand posture is matched to the initial conditions
of a power grip, a precision grip, a three-finger
and two-finger grip, respectively, in order to iden-
tify the grip type. Then, using the initial condi-
tion for that grip type, the closing of the fingers
takes place autonomously using the same algo-
rithm as employed in the simulation, evaluating
tactile feedback from the fingertips to sense stable
object contact (Fig. 7).

Success with the “naive” strategy (i) was very
limited such that a quantitative analysis was not
even worthwhile. This reflects the fact that a
purely visual servoing is hardly appropriate for
successful grasping, which has to take into ac-
count haptic feedback as well. It underlines that

power grasp

three−finger grasp precision grasp

two−finger grasp

Figure 7. Prototypic grasps with two or three
fingers.

in such cases a mixed strategy is required, us-
ing information from visual observation as a use-
ful constraint for an action sequence guided to a
significant extent under proprioceptive feedback.
Indeed, and in line with this expectation, strat-
egy (ii) yielded by far better results, permitting
successful grasping of many previously unknown
objects. Here, the human grasping gesture in-
structs the robot to select the most appropriate
grasp type for the given object and its orientation
on the desk. The Table in Fig. 8 shows the results
of a quantitative experiment in which 21 objects
were repeatedly grasped (10 trials for each ob-
ject) under setting (ii) (numeric entries showing
the number of successful trials for the particular
grasp type/object pairing, while dashes indicate
infeasible pairings).

The evaluation of the experiment reveals some
interesting details. Six objects can successfully
be grasped in all of 10 trials if the most suit-
able grasp type is used. An additional object,
the wooden “propeller” (object no. 2 in Fig. 8),
is of a particularly complex shape and cannot
be grasped by any of the aforementioned grasp
types. However, successful grasping of this ob-
ject is possible with a specialized grasp derived
from the three-finger grasp (see lower left corner
image of Fig. 8). The last two objects (keys, no.
20, and pencil, no. 21) are very close to the limits
of the hardware capabilities of our hand and can
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no. power prec. three two grasp
grasp grasp finger finger stability

1 10 - + - +

2 requires specialized grasp

3 (+) - + 10 +

4 10 - - - 0

5 10 - + - +

6 10 - + - +

7 9 - (+) - +

8 + (+) 8 (+) +

9 8 - - - 5

10 9 - - - +

11 - 7 - - 5

12 - - 6 - +

13 7 - - - +

14 + (+) 7 (+) +

15 6 - (+) - 4

16 - - 5 - 4

17 - 4 - - 3

18 - 3 - - 2

19 - 4 - - +

20 - - 0 - 0

21 - 0 - - 0

Figure 8. Imitation based grasping of everyday
objects sorted with respect to the number of suc-
cessful trials (10 to 0) out of 10 grasp attempts,
using the most suitable strategy. The remaining
standard grasps are indicated as ”+”: also pos-
sible, ”(+)”: possible but with less chances of
success, ”-”: not possible. The propeller (no. 2)
needs a specialized grasp. The final column gives
the number of trials, which are robust against ro-
tation of the hand after lifting up (”+”: robust
in all trials).

currently not be grasped at all, remaining as a
challenge for further improvements.

Further experiments revealed that often small

changes in the pre-grasp posture have a large im-
pact on the grasping success. Therefore our next
step will be to exploit the simulation stage for op-
timizing the initial condition before actually exe-
cuting the grasp, as indicated in Sec. 5. Possible
free parameters to be evaluated in such a sim-
ulation are the exact initial joint angles of the
fingers, the exact relative position of the hand to
the object, and the closing speeds of the fingers.

7. A Datamining Perspective on Robot
Learning

Regarding learning as a central ingredient to fa-
cilitate the construction of complex systems shifts
our view from a complex robot whose behavior
unfolds according to well-chosen, explicitly de-
signed control mechanisms to a view in which a
robot much more resembles a kind of “datamin-
ing engine”, foraging flexibly for information and
regularities in the sensory images of its environ-
ment. This suggests to adopt a similar perspec-
tive as in the field of datamining, and to exploit
algorithms from that area, which appear of con-
siderable interest for advanced robots with their
need to cope with uncertainty and situations too
complex to be amenable to full analysis on the
basis of “first principles”.

Specifically, we think that recent progress in
content-based image database indexing and re-
trieval [31,33] may have much to offer for learn-
ing robots. Future intelligent robots should be
endowed with some kind of episodic long-term
memory to accumulate visual and other sensory
data. Using raw sensor images for this purpose
has many attractive features, provided we can
solve the task of efficiently indexing into and nav-
igating within large collections of such data [21].
Unlike symbolic scene descriptions, raw sensor
images are easy to acquire and collect. More-
over, they do not enforce a prior commitment
onto a narrow range of possible future queries but
remain “open” to inspection under aspects that
may be unforeseeable at the time of their acqui-
sition. This flexibility may be one of the reasons
why also the memory system in our brain offers
an apparently visually organized interface to our
episodic memory.
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In fact, recent progress in semantically organiz-
ing large image collections with machine learning
techniques for unsupervised category formation
[10] and automatic labeling with classifiers previ-
ously trained on a variety of visual object domains
[43] (so that human keyword assignment becomes
dispensable) can be seen as the first promising
steps towards the self-organized structuring of a
larger body of sensory experience for an artifi-
cial cognitive system. Obviously, any progress
along these lines is of immediate significance for
robotics also, a field which may motivate us to
extend such approaches to additional modalities,
e.g., collecting and organizing a database of hap-
tic experiences for dextrous object manipulation.
Such “life-long” learning may turn out to be the
only viable solution to acquire the huge mass of
world knowledge that is required for even moder-
ately “intelligent” behavior.

A very important prerequisite in this respect
is a system for data collection, diagnosis, and
monitoring. Our system currently employs more
than 30 distributed processes with many func-
tional submodules such that tracing their behav-
ior, the collection of sensor data, and the detec-
tion of errors becomes a non-trivial task. To bet-
ter cope with this challenge, we have combined
adaptive visualization techniques with the rather
recent approach of sonification in order to con-
vey an informative, yet intuitive multi-modal dis-
play [16] (AVDisp – Audio Visual Display, Fig. 9).
This application collects computational results,
useful status information, and data from all dis-
tributed processes, tags all these messages with
time-stamps, and displays the state of the over-
all system and the interactions of its functional
modules. It enables us to build up a database of
all relevant information describing the system be-
havior and to carry out an analysis of the time-
behavior of the complete system (like shown in
Fig. 3). We found that this interface, originally
inspired from the datamining perspective, was al-
ready very helpful in the final debugging and tun-
ing phases of the complex system on the engineer-
ing level and now provides a valuable basis for
implementing more sophisticated learning capa-
bilities of our system.

Figure 9. AVDisp: an Audio-Visual Display for
system monitoring, data collection, and genera-
tion of user feedback (see [16]).

8. Conclusions and Outlook

Our initial assumption is that situated and
multi-modal interaction is a key prerequisite for
learning in artificial intelligent perception-action
systems. Thus, we will proceed with the devel-
opment of the current platform and use it as a
basis for a systematic refinement of the described
learning architecture. The longer-term goal is
to demonstrate speech enabled imitation learn-
ing for instructing grasping tasks, because multi-
fingered grasping combines many of the highly de-
veloped capabilities of the human cognitive sys-
tem: the recognition of object shape, type, po-
sition and orientation in space; the respective
and for the intended task appropriate choice of
a grasp; the actual realization of the grasp un-
der complex kinematic constraints; and the fol-
lowing immediate optimization of finger positions
and contact force with respect to grasp stability
and manipulability.

We believe that this research program is
promising if a sufficiently developed technologi-
cal basis is available. This basis seems crucial
for higher level architectures and includes sophis-
ticated hardware for data acquisition and action
like an articulated dextrous hand as well as al-
gorithms for robust implementation of the per-
ceptual skills. In particular for the imitation of
grasps, we expect in the nearer future progress
from improvements in the field of multi-fingered
hands, especially with respect to robustness and
tactile sensing. Concerning intelligent control it
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is important to have at our disposal a sufficiently
high number of robust and adaptive partial skills,
a prerequisite toward which many efforts have
been made in the course of the Special Collab-
orative Research Unit SFB 360.

The key towards an integrated architecture is
a design, which endows the system with a fruitful
interrelation of different aspects of learning and
their various techniques on the different levels to
generate a flexible and incrementally improving
combination of these partial skills and modules.
Here we see the main focus of the described learn-
ing architecture, knowing that this goal may be
reached only by long term efforts and in incre-
mental steps. We are aware, that in view of the
enormous complexity of the respective challenges,
this research program also calls for a close collab-
oration of robotics with neighboring disciplines
like neurobiology or cognitive science and we ex-
pect many insights and inspirations from these
fields.
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