

Speech & Language Rhythm

- 1. Introduction
- 2. Language rhythm/ rhythm classes
- 3. Early rhythm measurements
- 4. Recent rhythm measurements
- 5. Rhythm measurements & speech rate
- 6. Conclustion

What is rhythm?

Rhythm in music? Rhythm in speech?

Possible definition of rhythm:

Rhythm is the systematic organization of prominent and less prominent speech units in time.

Speech units:

e.g. syllables, vocalic intervals

Prominence:

higher fundamental frequency higher duration higher intensity

Speech & Language rhythm

Speech rhythm

Rhythmical patterns in speech that are not language specific.

Language rhythm

Language specific rhythmical patterns of speech rhythm

Discussion since the 1950s is mainly about language rhythm.

Isochrony Hypothesis

Pike (1945) Abercrombie (1967)

Two Rhythm Classes

stress timed rhythm

Languages showing patterns of equal duration between stressed (prominent) syllables.

(morse code rhythm)

e.g. English, Dutch, German

syllable timed rhythm

Syllables are of equal duration.

(mashine gun rhythm)

e.g. French, Spanish, Italian

Abercrombie (1967): Language rhythm related to the physiology of speech production:

chest pulses: puffs of air to produce a syllablestress pulses: reinforced chest pulsefoot: unit of a stress pulse and the following chest pulses

stress-timed languages:

- stress pulses are equally spaced chest pulses are not
- no isochrony between feet measurable

syllable-timed languages:

- chest pulses are equally spaced stress pulses are not
- no isochrony between syllable durations measurable

The nature of syllable & stress timing

syllable timing: (syllable isochrony = here: 11 equally timed syllables)

Conclusion:

MAIN PROBLEM:

finding experimental evidence i.e.:

finding acoustic correlates of language rhythm in the speech signal

since the late 1960s researchers have been trying that with more or less success...

... suggestions!?

Roach (1982) – hypotheses:

If isochrony-theory holds then...

- (i) ...there is considerable variation in syllable length in a language spoken with stress-timed rhythm whereas in a language spoken with syllable-timed rhythm the syllables tend to be equal in length.
- (ii) ...in syllable-timed languages stress pulses are unevenly spaced.

Roach (1982) – method: syllable-timed languages

- French
- Telugu
- Yoruba

stress-timed languages:

- English
- Russian
- Arabic
- (i) Calculate & compare variation of relative syllable duration
- (ii) Calculate & compare variation of relative foot duration

Roach (1982) – results:

- (i) Syllable variation is not significantly different for between stress-timed and syllable-timed languages.
- (ii) High variability in foot variation for stress-timed languages (especially for English).

Problem:

Where is rhythm in the speech signal?

What level has so far been neglected in rhythm studies?

The perception of rhythm:

Benguerel and D'Arcy (1986):

 Acoustically irregular sequences of syllables are rated as being regular

Beckman (1992):

 Stress-timing is a perceptual product more than an acoustic or production phenomenon.

O'Connor (1965):

- Stress units are not produced regularly
- Irregularly produced stress units are perceived regularly

Conclusion:

At the beginning of the 1990s the discussion about rhythm classes stopped with the result:

- Rhythm cannot be measured in the speech signal.
- Rhythm is a mere perceptual phenomenon.

New idea already put forward in Roach (1982):

- a.) stress-timed languages allow complex consonant clusters
 - → higher variation or content of complex consonant clusters
- b.) stress-timed languages allow vowel reduction

 \rightarrow higher variation or content of vocalic intervals

Ramus (1999):

- ΔC = standard deviation of consonantal intervals
- ΔV = standard deviation of vocalic intervals
- **%C** = percentage of consonantal intervals
- %V = percentage of vocalic intervals

Grabe & Low (2002):

raw & normalized pairwise variability index

nPVI = normalized PVI for vocalic intervals **rPVI** = raw PVI for consonantal intervals

Grabe & Low (2002) findings

Problem:

Ramus (1999) and Grabe & Low (2002):

- only one speaker per language
- speech rate not well controlled

Idea:

Checking the measure on a large database at different speech rates.

Barry et al. (2003):

- $\Delta C \& \Delta V$ decrease with an increase in speech rate
- nPVI does not normalise for speech rate

Dellwo & Wagner (2003):

- $-\Delta C$ decreases with an increase in speech rate
- %V is constant over all speech rates

Diagram 1: Results for %V and ΔC under different intended speech rate conditions (s2, s1, no, f1, f2) for the languages English, French, and German.

Dellwo (forthcoming):

Decrease of ΔC and ΔV to be expected since shorter intervals in fast speech will cause lower standard deviation

p.t.o.

Diagram 2: Results for %V and varco∆C under different intended speech rate conditions (s2, s1, no, f1, f2) for the languages German, French, and English.

1.) The major questions in language rhythm still remain untouched:Perceptual evidence for stress- and syllable-timing

2.) We seem to be still far from a satisfying description of rhythm.

Question for discussion:

Why do we need to study rhythm at all?

7 Literature

Abercrombie, D. (1967) Elements of general phonetics. Aldine: Chicago.

- Barry, W. J., B. Andreeva, M. Russo, S. Dimitrova, and T. Kostadinova (2003): *Do rhythm measures tell us anything about language type?* In: *Proceedings of the 15th ICPhS*, Barcelona, 2693-2696.
- **Beckman, M. E. (1992)** *Evidence for speech rhythm across languages.* In: Y. Tohkura, E. Vatikiotis-Bateson & Y. Sagisaka (eds.) *Speech Perception, Production and Linguistic Structure.* IOS Press: Amsterdam, 457-463.
- **Dellwo, V (forthcoming)** *Rhythm & Speech Rate: A variation coefficient for deltaC.* In: *Proceedings of the 38. linguistic Colloquium*, Budapest 2003.
- **Dellwo, V. and P. Wagner (2003)** Relationships between speech rate and rhythm. In: Proceedings of the ICPhS, pp.
- **E. Grabe and E. L. Low (2003)** Durational variability in speech and the rhythm class hypothesis. In: Papers in laboratory phonology (7), 515-546.
- **O'Connor, Joseph (1965)** The perception of time intervals. In: UCL Working Papers in Phonetics and Linguistics (2) 10-15.
- Pike, K. L. (1945) The intonation of American English. University Press: Michigan.
- Ramus, F., M. Nespor, J. Mehler (1999): Correlates of linguistic rhythm in the speech signal. In: Cognition (73), 265-292.