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Abstract Machine learning offers a systematic framework for developing metrics
that use multiple criteria to assess the quality of machine translation (MT). However,
learning introduces additional complexities that may impact on the resulting metric’s
effectiveness. First, a learned metric is more reliable for translations that are similar
to its training examples; this calls into question whether it is as effective in evaluating
translations from systems that are not its contemporaries. Second, metrics trained from
different sets of training examples may exhibit variations in their evaluations. Third,
expensive developmental resources (such as translations that have been evaluated by
humans) may be needed as training examples. This paper investigates these concerns
in the context of using regression to develop metrics for evaluating machine-translated
sentences. We track a learned metric’s reliability across a 5 year period to measure the
extent to which the learned metric can evaluate sentences produced by other systems.
We compare metrics trained under different conditions to measure their variations.
Finally, we present an alternative formulation of metric training in which the features
are based on comparisons against pseudo-references in order to reduce the demand on
human produced resources. Our results confirm that regression is a useful approach
for developing new metrics for MT evaluation at the sentence level.
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1 Introduction

The establishment of an appropriate evaluation methodology is central to machine
translation (MT) research. In order to explore new approaches, an unbiased metric is
needed to quantify the degree of improvement. Ideally, the metric will not only judge
the translation system’s performance as a whole but will also be able to provide more
detailed feedback at a finer granularity (e.g., how well the system performed on each
sentence). Furthermore, for the evaluation to have a practical impact on the direction
of system development, it must also be both computationally efficient and cost-effec-
tive. Recent efforts in metric development have been especially concerned with the
desiderata of practical efficiency. Widely used metrics such as Bleu (Papineni et al.
2002) predict translation quality by making deterministic measurements of similarity
between MT outputs and human translations. Studies have shown these metrics to
correlate with human judgments at the document level, but they are less reliable at the
sentence level (Blatz et al. 2003). This suggests that the deterministic metrics do not
fully reflect the set of criteria that people use in judging sentential translation quality.

One way to capture more judging criteria is to form a composite metric that incor-
porates numerous indicators, each of which might focus on a particular aspect of the
evaluation task. This formulation of the problem lends itself to a machine learning
solution: determine how to represent and combine the criteria into a composite metric
by optimizing it for a set of translations whose quality is known. To this end, sev-
eral learning paradigms have been proposed, including classification (Corston-Oliver
et al. 2001; Kulesza and Shieber 2004), regression (Quirk 2004), and ranking (Ye et al.
2007). Of the three, regression most directly corresponds to the evaluation task, and it
has been shown to be effective for developing metrics under several different condi-
tions (Lita et al. 2005; Albrecht and Hwa 2007a; Liu and Gildea 2007; Uchimoto et al.
2007). On the other hand, regression learning introduces additional complexities to
metric development. In this paper, we address several concerns about applying regres-
sion for metric development: representation, generalizability, stability, and scalability.

– Knowledge exploration and interpretation: A multitude of judging criteria have
been considered for MT evaluation. They may range in scope from lexical choices
to syntactic constraints to discourse coherence. Under a learning approach, the
extents to which an input translation meets these criteria are expressed as numeri-
cal measurements, or features, and a composite metric of these criteria is modeled
as a mathematical function parameterized by these features. The learning process is
a search for parameter values such that the function’s outputs are optimized for the
training examples. In addition to the choice of features, the success of learning also
depends on the choice of the form of the function and the learning algorithm. We
conduct experiments to compare metrics represented as linear and nonlinear func-
tions and trained with different learning algorithms. We perform model tampering
(Goldberg and Elhadad 2007) to analyze the contributions of different knowledge
sources.

– Generalization: Perhaps the most central question about the applicability of machine
learning to metric development is whether the resulting metric will have a long
shelf-life. Because a learned model tends to give more reliable predictions for new
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Regression for MT evaluation 3

inputs that are similar to its training examples, a valid concern is that the learned
metric will become out of date as MT systems improve and produce translations
that are very different from those used as training examples. In our experiments,
we track how well a learned metric generalizes over a span of five years.

– Stability: The training process introduces a certain degree of variability to metric
development. How much does the diversity in training examples impact on the
effectiveness of the learned metric? Is the learned metric more suited to the evalua-
tion of certain kinds of MT systems than others? We conduct experiments in which
the diversity and variability of the training examples and of the test sentences is
controlled. Our results suggest that while some variability is an inherent part of
a learning approach, the resulting metrics are relatively stable and robust against
training variations.

– Scalability: Finally, we tackle a challenge faced by regression (and supervised
learning in general): learning when appropriate training examples are scarce or
unavailable. This is especially problematic when the metric is complex (e.g.,
an expressive function parameterized by a large feature set). Because regres-
sion approximates continuous functions, it is important to ascertain how well the
approach scales up, and to find ways to minimize the cost of resources for devel-
oping training examples. Since human processing is expensive, previous work
has proposed feature representations that do not compare against human-produced
references (Gamon et al. 2005; Albrecht and Hwa 2007b). Here, we further inves-
tigate the use of pseudo-references, which are machine-produced translations, as
input features. We find that in combination with a learning framework, the metrics
that compare against pseudo-references rival standard metrics that use a human
reference.

This paper reports a set of experiments that we have designed to address the above
concerns. These efforts augment previous work in terms of the scope of our studies.
We track metric performance across a longer period of evaluation data, and we make
more detailed comparisons between metrics developed under different training con-
ditions. Our results confirm that machine learning is a useful approach for developing
new metrics for MT evaluation at the sentence level.

2 Automatic MT evaluation metrics

Many different taxonomies of desiderata and methods of evaluating MT systems have
been proposed (Carbonell et al. 1981; Dorr et al. 1999; Hovy et al. 2002). The focus
of this paper is restricted to automatic metrics that evaluate MT outputs according to
two factors: their adequacy in retaining the meaning of the original source text, and
their fluency in presenting the material in the target language.

2.1 Deterministic metrics

Most deterministic metrics are defined in terms of different ways of comparing
against references. First, similarity can be expressed in terms of string edit distances.
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4 J. S. Albrecht, R. Hwa

In addition to the well-known word error rate (WER), more sophisticated modifi-
cations have been proposed to distinguish actual linguistic differences from superfi-
cial differences; these include position-independent error rate (PER) (Tillmann et al.
1997), translation edit distance (Snover et al. 2006), and CDer, which allows for block
movements (Leusch et al. 2006). Second, similarity can be expressed in terms of com-
mon word sequences. Since the introduction of Bleu (Papineni et al. 2002) and NIST
(Doddington 2002), the basic n-gram precision idea has been augmented in a number
of ways. Metrics in the Rouge family allow for skip n-grams (Lin and Och 2004a);
Kauchak and Barzilay (2006) and Owczarzak et al. (2006) take paraphrasing into
account; metrics such as METEOR (Banerjee and Lavie 2005; Lavie and Agarwal
2007) and GTM (Melamed et al. 2003) calculate both recall and precision;1 METEOR
and SIA (Liu and Gildea 2006) also make use of word class information. Finally,
researchers have begun to look for similarities at a deeper structural level. For exam-
ple, Liu and Gildea (2005) developed the Subtree Metric (STM) over constituent
parse trees and the Head-Word Chain Metric (HWCM) over dependency parse trees.
Owczarzak et al. (2007) have also proposed a syntax-based evaluation metric using
dependencies from a Lexical-Functional Grammar parser.

2.2 Learned metrics

Deterministic metrics tend to focus on specific aspects of the evaluation. Machine
learning offers a systematic and unified way to combine them into a single metric. The
deterministic metrics (or a set of numerical measurements related to a metric) partic-
ipate as input features for learning. The exact form of the learned metric depends on
the representation of the learning problem and the choice of the learning algorithm. In
previous work, most learned metrics fall into one of three major families: binary func-
tions that classify whether the input sentence is human-translated or machine-trans-
lated (Corston-Oliver et al. 2001; Kulesza and Shieber 2004); continuous functions
that score translation quality of input sentences on an absolute scale (Quirk 2004; Lita
et al. 2005; Albrecht and Hwa 2007a; Liu and Gildea 2007; Uchimoto et al. 2007);
and ordinal functions that give ranking preference between multiple translations (Ye
et al. 2007; Duh 2008). Many different measurements have been used as features in
developing these learned metrics. In the next section, we briefly summarize some of
the more commonly used features.

2.2.1 Features

There are many ways in which judging criteria can be formulated as features. Typ-
ically, they are expressed in terms of comparing the input translation against some
reference. Perhaps the most informative type of references, as discussed earlier, is a
set of well-formed translations produced by humans. More loosely speaking, a large

1 The parameters controlling the balance between recall and precision for these two metrics can be tuned.
In this sense, METEOR and GTM are also learned metrics. The currently publicly available version of
METEOR, for instance, has been tuned to improve correlations with human assessments from past NIST
MT evaluations (Lavie and Agarwal 2007).
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corpus of the target language might also be considered as a kind of reference because
it offers a comparison point for determining whether an input translation resembles
a sentence in the target language. The degree of similarity is calculated according to
different properties of interest. They may be similarities in surface string patterns as
well as deeper linguistic similarities. Thus, we group some commonly used features
into four categories according to their reference types and the properties they are trying
to capture.

2.2.1.1 String comparisons against reference translations Methods for computing
string matches against references are widely used both as stand-alone metrics as well
as features in a learned metric. For example, Blanc (Lita et al. 2005) can be seen as
a parameterized weighting between Bleu and Rouge; similarly, METEOR (Lavie and
Agarwal 2007) is a parameterized weighting between precision, recall, and fragmen-
tation. The feature set for the classifier of Kulesza and Shieber (2004) includes WER,
PER, as well as features constructed by decomposing Bleu (i.e., raw n-gram matches
normalized by sentence length). For the experiments in this paper, our string-reference
feature group consists of the following feature types:

– n-gram matches: the number of n-gram matches the input sentence has against
human references, normalized by the maximum number of n-gram matches
possible (i.e., sentence length −n + 1), where 2 ≤ n ≤ 5.

– Precision: the percentage of words in the input sentence that matched against the
human references.

– Recall: the percentage of words in a human reference that matched the input sen-
tence. If multiple references were given, the reference that is the most similar to
the input sentence is used.

– Fragmentation: a ratio that expresses to what extent the matched words are in
consecutive chunks (Lavie and Agarwal 2007).

– WER: Levenshtein’s minimum edit distance.
– PER: position-independent edit distance.
– Skip-m-bigram matches: nonconsecutive bigrams with a gap size of m, where

1 ≤ m ≤ 5.
– Rouge-L: longest common subsequence.

2.2.1.2 Linguistic comparisons against reference translations In addition to using
the same words, intuitively, information about whether the input translation and the
reference translation use the same syntactic constructs or the same semantic rela-
tions should also indicate the degree of similarity between them. In a recent paper by
Giménez and Màrquez (2008), deeper linguistic indicators have been combined (with-
out machine learning) into an evaluation metric. These indicators require additional
NLP processing on the input and reference translations so that their hidden structures
(e.g., parse trees) can be matched. A challenge is that many NLP applications do not
expect machine-translated sentences as inputs, so that they often do not produce correct
analyses for them. For the experiments in this paper, we focus on matching syntactic
constructs because automatic parse analyses can be more reliably obtained than seman-
tic and discourse analyses on translated sentences. Our linguistic-reference
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feature group consists of the two feature types based on STM and HWCM proposed
by Liu and Gildea (2005):

– Subtree matches: this class of features computes the similarity between the
constituent parse structures of the translation and the reference. Instead of
tallying the number of matches of a sequence of n words, the number of matching
subtrees of a depth of d is tallied. We construct a feature for each subtree depth,
2 ≤ d ≤ 4.

– Head-word chain matches: this class of features looks for matches in the depen-
dency tree structures of the sentences. Instead of matching on full subtrees over
the dependency tree, a sequence of head–modifier relationships is matched instead.
For example, in the sentence John saw a picture of Mary, saw → picture → of →
Mary forms a head-word chain of length 4. We construct a feature for each chain
length, c, where 2 ≤ c ≤ 5. The feature value is the number of head-word chains
of length c in a translation sentence that can be found in the references normalized
by the number of possible head-word chains of length c in the translation sentence.

2.2.1.3 String comparisons against general corpora This category of features focuses
on evaluating the degree of fluency of the translation. An example of this class of fea-
tures is simply to use the language model score. This was considered by Gamon et al.
(2005), who proposed to develop a metric that does not rely on using human-produced
translations as references. To recast this type of fluency judgment as some sort of
similarity measurement, we can compare characteristics of the input sentence against
large target-language corpora. In this work, we construct the feature group string-
general to be analogous to those in the string-reference set, except that a
target-language corpus (for our experiments, we used the English Gigaword corpus)2

is used as the “reference” instead of human translations. Because the emphasis is on
checking for fluency, we increased the window of n-grams to range from 2 to 7.

2.2.1.4 Linguistic comparisons over general corpora Similar to the string features, the
linguistic-general feature set is constructed as a counterpart to the
linguistic-reference feature set. Instead of parsed human translations, a
target-language corpus is automatically parsed to create a “reference” treebank.
Because the emphasis of this feature group is on checking for fluency, we included a
few more features in addition to subtree matches and head-word chain matches.

– Verb structures: This class of features loosely matches on verb–argument relation-
ships. For each verb in the dependency tree of the input translation, we check
whether any of the dependency trees in the corpus treebank contain the verb
with the same modifiers. The feature value for the sentence is the percentage
of verbs whose modifier structure was found. In addition to exact word matching,
we also consider variations in which the modifier words are backed off to their
part-of-speech tags and to their grammatical role label.

– Noun structures: This class of features is similar to the verb structure features, but
the focus is on nouns and their modifiers in the translation sentence.

2 Available from Linguistic Data Consortium, Philadelphia PA, catalog number LDC2003T05.
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– Head-modifiers: This class of features is another variation in which the head word
is backed off to its part-of-speech tag, but the modifiers remain as words. The
feature value is the percentage of head nodes whose modifier structures have been
found in the target-language corpus treebank.

3 Regression for MT evaluation

An MT evaluation metric can be naturally seen as an ordinal function. Regression
provides a straightforward way to learn this type of metric. In regression learning, we
are interested in approximating a function f that maps a d-dimensional input feature
vector, x = x1, . . . , xd , to a continuous real value, y, such that the error over a set
of m training examples, {(x1, y1), . . . , (xm, ym)}, is minimized according to a loss
function. A commonly used loss function is the quadratic error function, as in (1).

1

2

m∑

i=1

(yi − f (xi ))
2 (1)

In the context of MT evaluation, y is the “true” quantitative measure of translation
quality for an input sentence.3 The function f represents a mathematical model of
human judgments of translations; an input sentence is represented as a feature vector,
x, which encodes a collection of criteria for judging the input sentence, such as those
described in Sect. 2.2.1, that are relevant for computing y.

One concern raised about applying regression to MT evaluation is its scalability,
since a large set of training examples may be required to fit an arbitrary continuous
function (Kulesza and Shieber 2004). We argue that regression can be made more
tractable. Because we have some knowledge about the domain of the problem, we can
make reasonable assumptions to place constraints on the form of the target function.
For instance, if the input features are binary indicators that represent a collection of
independent desiderata for a good translation, the metric can take the form of a linear
combination of all the feature measurements weighted by a vector of parameters w
(with b as the bias), as in (2).

f (x) = w · x + b (2)

The advantage of modeling the metric as a linear function is that the number of training
examples needed is relatively small. It is proportional to the dimension of the feature
vector (d + 1).

Nonlinear interactions between the input measurements can be modeled by mapping
them to a more complex feature space by some nonlinear transformation function�(x).
A simple example of a �(x) is one that consists of pairwise products of individual

3 Perhaps even more so than grammaticality judgments, there is variability in people’s judgments of transla-
tion quality. However, like grammaticality judgments, people do share some similarities in their judgments
at a coarse-grained level. Ideally, what we refer to as the true value of translational quality should reflect
the consensus judgments of all people.
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features (xi × x j , where 1 ≤ i, j ≤ d), but for many problems, the exact form of the
� transformation function does not have to be explicitly specified. For example, in
a feed-forward neural network, the hidden layers can be seen as a representation of
�(x). Once the input feature vector has been projected up to this transformed feature
space, the metric can be learned once again as a linear function, as in (3).

f (x) = w′ · �(x) + b′ (3)

Note that the new parameter vector, w′, has the same dimensionality as the transformed
feature vector, �(x), which is usually much larger than the original d.

An alternative representation of the function f is to express it in terms of a linear
combination of comparisons between an input instance, z, and the training examples
(x1 . . . xm), as in (4),

f (z) =
m∑

i=1

αi yi�(xi ) · �(z) + b (4)

where αi are the parameters associated with each training example and b is the bias.
Moreover, for many feature transformation functions �(x), there exists some kernel
function, K , that equals the inner product of the feature vectors of the input and the
training examples, as in (5),

K (x, z) = �(x) · �(z) (5)

but K (x, z) can be computed more efficiently as a direct function of the input vectors
x and z.

Support vector machines (SVMs) leverage this form of representation and efficient
kernel function computations to learn nonlinear functions (Cortes and Vapnik 1995).
SVMs are most commonly trained for binary classification, in which the learned func-
tion f is a dividing hyperplane that provides the largest margin between the positive
and negative training examples. For the experiments in this paper, we use SVMs for
regression so that f is the target function that outputs a scalar prediction of translation
quality. During training, support vector regression aims to minimize an ε-insensitive
error function as its loss function (cf. Eq. 1). An ε-insensitive error function allows for
errors within the margin of ε, a small positive value, to be considered as having zero
error (cf. Bishop 2006, pp. 339–344). We compare trained metrics based on the follow-
ing three kernel functions (cf. Hastie et al. 2001) that map to feature transformations
of increasing expressivity:

– linear kernel: this is the identity case where the input features are not transformed
(6).

K (x, z) = x · z (6)
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– p-degree polynomial kernel: the input features are transformed such that �(x)

contains all p-way products of the original input features (7),

K (x, z) = (1 + x · z)p (7)

– Gaussian kernel: the input features are mapped to a transformed space of infinite
dimensionality (8),

K (x, z) = exp(−|x − z|2/g) (8)

where g controls the variance of the Gaussian.

3.1 Feature analysis

One of the motivations for taking a machine learning approach to metric development
is to gain insights into the relative importance of different criteria and how they come
together to form a metric. Therefore, feature analysis is an important part of the metric
development process.

One way to perform an analysis is to examine directly the weight parameters asso-
ciated with the features. As a rule of thumb, a large value placed on a weight should
indicate that the corresponding feature is important; however, this is not always the
case because not all features share the same value ranges. In other words, a weight
parameter might converge on a large value to compensate for a feature that tends to
take on small values. Moreover, for nonlinear functions, it is less intuitive to determine
the relative importance of features from the parameter values. For instance, the values
of the parameters α in Eq. (4) indicate which of the associated training examples are
important, but they do not explicitly point out which features contributed the most to
the weighting of these examples. Therefore, an analysis of the weight values would
require additional conversions and normalizations. Finally, the weight values reveal
their relative importance to the learned model, but they are not directly linked to the
model’s performance.

A simple but effective alternative is model tampering (Goldberg and Elhadad
2007). With this approach, a model (i.e. the function) is first trained in the usual
manner, and we assess how well the model fits the training data. Next, we modify
the model to prevent the chosen features from having any effect on the prediction
of test instances. In models such as perceptrons (see Eq. 2), this can be achieved
by zeroing out the weight parameters associated with chosen features; for SVMs,
since all the training examples are embedded in the model (see Eq. 4), this can be
achieved by directly zeroing out the values of the chosen features for all training
examples. Comparing the performance of the tampered model with the original, we
obtain a quantitative estimate regarding the impact of the tampered features on per-
formance.

Model tampering differs from feature selection because the model is modified after
training rather than before. By tampering with the features after training, we can
observe the importance of different features on the same trained model. A second
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benefit is the simplicity of the approach. Unlike standard feature selection strategies,
which may require multiple iterations of retraining with different feature subsets, the
post-training tampering is orders of magnitude faster.

3.2 Learning with pseudo-references

Many of the measurements described in Sect. 2.2.1 are comparisons between the
input translation and human reference translations. Each numeric measurement can
be thought of as a distance, describing how far away the input is from a known good
translation according to some criterion. Since there are usually multiple acceptable
translations, automatic deterministic metrics such as those described in Sect. 2.1 (and
thus, the features based on them) are more reliable when they compare the input against
more than one reference. This is problematic because creating references requires bilin-
gual humans, not just for the training examples, but also for evaluating new inputs with
the trained metrics.

For a formally organized event, such as the annual MT evaluation program spon-
sored by National Institute of Standard and Technology (NIST), it may be worthwhile
recruiting multiple human translators to translate a few hundred sentences for evalua-
tion references. However, there are situations in which multiple human references are
not practically available (e.g., the source may be of a large quantity, and no human
translation exists). One such instance is translation quality assurance, in which one
wishes to identify poor outputs in a large body of machine-translated text automat-
ically for humans to postedit. Another instance is in day-to-day MT research and
development, where new test sets with multiple references are also hard to come by.
One could work with previous datasets from events such as the NIST MT evaluations,
but there is a danger of overfitting. One also could extract a single reference from
parallel corpora, although it is known that automatic metrics are more reliable when
comparing against multiple references.

To reduce the demands on humans for generating references, we consider whether
sentences produced by MT systems might stand in as a kind of a “pseudo-reference”
for human references. For example, one might use commercial off-the-shelf systems,
some of which are freely available over the web. For less commonly used languages,
one might use open-source research systems (Al-Onaizan et al. 1999; Burbank et al.
2005). Of course, pseudo-references are not perfect themselves; thus, even if an input
translation were identical to a pseudo-reference, it might not be a good translation.
The key shift in perspective is that we view the reference not as an ideal to strive for
but as a benchmark to compare against. We hypothesize that comparing MT outputs
against imperfect translations from MT systems that use different approaches may
result in a more nuanced discrimination of quality.

As a toy example, consider a one-dimensional line segment. A distance from the
end-point uniquely determines the position of a point. When the reference location
is anywhere else on the line segment, a relative distance to the reference does not
uniquely specify a location on the line segment. However, the position of a point can
be uniquely determined if we are given its relative distances to two reference locations.
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The problem space for MT evaluation, though more complex, is not dissimilar to
the toy scenario. There are two main differences. First, we do not know the distance
of translation quality between two sentences; this is what we are trying to learn. The
distances we have at our disposal are all heuristic approximations to the true transla-
tional distance (i.e., the features). Second, unlike human references, whose quality is
assumed to be maximally high, the qualities of the pseudo-reference sentences are not
known. In fact, we may not even have a precise estimation of the quality of the MT
systems that produced the pseudo-reference sentences.

Both issues of combining features and deciding how much to trust each pseudo-ref-
erence system can be addressed through machine learning. As with normal regression
learning, the training data is a set of MT outputs whose qualities have already been
judged by humans, but the feature vector of each example is made up of measurements
between the pseudo-references and the assessed MT output. If many of a reference
system’s outputs are similar to those MT outputs that received low assessments, we
can conclude that this reference system may not be a high quality system. Furthermore,
if a new translation is found to be similar to this reference system’s output, it is more
likely for the new translation also to be bad.

4 Experimental methodology

To gain a better understanding of the strengths and weaknesses of using regression to
develop metrics for MT evaluation at the sentence level, we designed five experiments
to compare the performance of the metrics that are trained and tested under a variety
of controlled conditions.

– We compare different algorithms for regression learning. To consider functions of
different expressivity, we trained an SVM with a linear kernel, with a polynomial
kernel, and with a Gaussian kernel. The implementation used in our experiments is
SVM-Light (Joachims 1999). Additionally, we tried two other nonlinear function
approximation methods: neural networks and regression trees, using the WEKA
implementation for both (Witten and Frank 2005).

– In order to develop better future MT systems, it is helpful to know which features
contribute more heavily to the metric function. We perform feature analysis on
different subgroups to measure their contribution to the learned metrics.

– We measure the learned metric’s ability to generalize to novel inputs. The training
examples for the learned metric are outputs of Chinese–English MT systems from
a particular year; we test the metric on sentences produced by Chinese–English
MT systems from different years as well as sentences produced by Arabic–English
MT systems.

– Unlike deterministic metrics, the outputs of a learned metric may show some varia-
tion depending on the training examples. To understand the degree of the variations,
we compare metrics that were developed under different training conditions, con-
trolling for the diversity and quality of the training examples. We measure the
extent to which the resulting metrics can reliably provide the same levels of pre-
dictions for a large heterogeneous test set. We also examine the performance of
the metrics on sentences from individual MT systems.
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12 J. S. Albrecht, R. Hwa

– To investigate whether learning with features extracted with respect to pseudo-ref-
erences instead of human references is a viable approach, we compare the learned
metrics of the two representations in terms of stability and generalization.

This section describes the common experimental data and methodologies used by
all the studies.

4.1 Data

Our experimental datasets are taken from five years of NIST MT evaluations
(2002–2006). Each year’s dataset consists of a set of source sentences, four human
reference translations for each source sentence, translations from participating MT
systems, and human assessments of those sentences. The texts used in these datasets
are from different news sources. The 2002–2005 datasets contain newspaper articles;
the 2006 dataset contains both newspaper articles and online newsgroup articles. The
generalizability and the stability of the learned metrics with respect to genre variations
is thus beyond the scope of the experiments reported in this paper.

Table 1 summarizes some statistics of the datasets. All sentences from the par-
ticipating MT systems have been evaluated by at least two human judges. For the
datasets from years 2002–2005, each judge assigned a separate score for fluency and
for adequacy; in 2006, the judges assigned only a single composite score. Each score
is given as an integer from 1 to 5. Because each human judge has a somewhat different
standard, the collected scores may be from differently biased distributions. To reduce
the impact of these variations, we normalize the human judges’ scores following the
process described by Blatz et al. (2003), who found score normalization to increase
the correlations between human judges.

To perform this normalization, each score (s) by a given human judge (J ) is con-
verted into a quantile (x), which represents the normalized score. The quantile can be
computed as P(S < s|J ), the probability that judge J would assign a score less than
s. This would simply be the number of scores by J that were less than s divided by
the total number of scores by J . An alternative would be to consider the scores that

Table 1 Some statistics about
the datasets used for the
experiments

The number of sentences
assessed is the product of the
number of source sentences, the
number of MT systems and the
number of human judges per
sentence

Year Source No. of source No. of MT No. of sentences
language sentences systems assessed

2002 Chinese 879 3 5,787

2003 Arabic 663 2 2,652

2003 Chinese 919 6 11,028

2004 Arabic 347 10 6,940

2004 Chinese 447 10 8,940

2005 Arabic 266 7 3,724

2005 Chinese 272 7 3,808

2006 Chinese 300 5 3,000
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Regression for MT evaluation 13

were less than or equal to s. The final normalized score, x̂ , can be seen as a mix of
these two approaches (P(S < s|J ) and P(S ≤ s|J )) (9).

x̂ =
(∑s−1

i=1 n(i)
)

+ n(s)/2
∑MaxScore

i=1 n(i)
(9)

where n(i) is the number of times that judge J gave a score of i to the sentences in
the dataset.

For the years in which both fluency and adequacy were judged, the scores are first
normalized separately. We compute a judge’s overall score for a sentence by normal-
izing the sum of the raw fluency and adequacy scores (i.e., MaxScore = 10), whereas
in the 2006 dataset, the single score is directly normalized. For evaluating the learned
metric, we consider the “gold standard” score for a translation output to be the average
of all judges’ overall scores for that sentence.

For all but one experiment, we use the 2003 Chinese–English set as training data
because it is the earliest year that had a large number of human-assessed sentences.
The exception is in the stability study for learning from pseudo-references; in that
experiment, we worked with the 2004 Chinese–English set because it has the most
participating systems. In all experiments, we reserve one fifth of the training data as
held-out data for parameter tuning for the learning algorithms (e.g., the slack variable
and the width of the Gaussian for the SVM).

4.2 The evaluation of evaluation metrics

The success of a metric is determined by how closely its scores for the translation
qualities of the input sentences agree with those given by human judges for the same
sentences. We compute the Spearman rank-correlation coefficient between the met-
rics’ scores and the averaged human assessments on a set of test sentences. We use
Spearman instead of Pearson because it is a distribution-free test. The coefficient,
denoted as ρ, is a real number ranging from −1 (indicating perfect negative correla-
tions) to +1 (indicating perfect positive correlations). A good metric, therefore, should
correlate positively with human judgment.

It is not straightforward, however, to decide whether one metric is better than
another based on the correlation coefficients directly. That is, we cannot simply con-
clude that MetricA with ρA = 0.65 is necessarily better than MetricB with ρB =
0.62. To gather more reliable statistics for making comparisons between metrics, we
need multiple test trials to perform hypothesis testing to determine whether the dif-
ference between the metrics’ correlation coefficients is statistically significant. One
commonly used strategy is to generate multiple test trials out of one test set via boot-
strap resampling (Koehn 2004); however, it has been criticized for being overly opti-
mistic due to its assumptions about the sample distribution (Riezler and Maxwell
2005). Riezler and Maxwell proposed to use the approximate randomized test as
an alternative. The idea behind this test is that if the null hypothesis (that the two
metrics have the same evaluative capabilities) were true, then random swaps of met-
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14 J. S. Albrecht, R. Hwa

ric scores on some test instances would have no adverse effect on the delta differ-
ence between the correlation coefficients. Let p be the percentage of trials in which
no adverse effect was detected. The null hypothesis is rejected if p is less than or
equal to the desired rejection threshold. We have implemented both and empirically
observed the approximate randomized test to be more conservative than the boot-
strapping resampling method; thus in the following experiments we use the former
to compute statistical significance. For statistical tests in our experiments, 500 tri-
als are conducted, and we consider two metrics to be qualitatively different if p ≤
0.05.

As baseline comparisons, we report the correlations of three automatic metrics:
Bleu, which is precision-centric; METEOR,4 which incorporates recall and stem-
ming; and HWCM, which uses syntax. Bleu is smoothed to be more appropriate for
sentence-level evaluation (Lin and Och 2004b), and the bigram versions of Bleu and
HWCM are reported because they have higher correlations than when longer n-grams
are included. This phenomenon was previously observed by Liu and Gildea (2005).

5 Results and discussions

Five sets of experiments were conducted to investigate the choice of learning algo-
rithms, the role of the features, the learned metric’s ability to evaluate translations
from future systems, the impact of variations in the distribution of training examples
on the metric’s effectiveness in evaluating different test systems, and whether training
with pseudo-references is a viable option for metric development.

5.1 The choice of learning algorithm

In this first experiment, we compare the effects of training with different function forms
and learning algorithms. Although the learning models differ, they share the same input
feature vector, which consists of all the measurements presented in Sect. 2.2.1.

The learned metrics are all trained and tested in the same manner. We performed
five-fold cross validation on the NIST 2003 Chinese–English dataset. The sentences
are randomly grouped into five subsets. For each fold, four subsets are used for training
while the fifth is reserved for testing. Overall, each sentence in the dataset is evaluated
once by a metric that has not seen it during training.5 The correlation coefficient is
then computed comparing the trained metrics’ outputs against human assessments for
the full dataset.

The results are summarized in Table 2. As points of comparison, the results of the
baseline deterministic metrics are shown in the first column. Each of the remaining
columns presents a family of learning algorithms; SVM metrics of different kernels
are in the second column; metrics modeled by additional learning algorithms such as a

4 In this paper, we used the earlier METEOR proposed by Banerjee and Lavie (2005) rather than the latest
downloadable (version 0.6) because its tuning data overlaps with our test dataset.
5 Note, however, that the metric has seen other instances from the same MT system that produced the test
instance. We evaluate the metric’s ability to evaluate outputs from new MT systems in later experiments.
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Regression for MT evaluation 15

Table 2 A comparison of metrics trained with different learning algorithms

Baselines SVM Kernels Other algorithms

Bleu 0.465 Linear 0.501 Neural net (two layers) 0.501

METEOR 0.480 Poly (p = 3) 0.501 Regression tree 0.461

HWCM 0.412 Gaussian 0.502

We performed five-fold cross validation on the NIST 2003 Chinese dataset and computed the Spearman
correlation coefficient between each metric’s scores and the human assessment scores for the dataset. With
the exception of learning with regression tree, the learned metrics performed significantly better than the
baselines, but they are not distinguishable from each other

Table 3 A comparison of the impact of different input feature groups on the learned metric

Feature group Remove this group Use only this group

All the features − 0.512

String-references 0.428 0.499

Linguistics-references 0.509 0.415

String-general 0.507 0.064

Linguistic-general 0.508 0.126

For each feature group, we observe the change in the Spearman correlation coefficient when all its features
are disabled, and when only its features are allowed. The values that are not significantly different from the
original correlation coefficient (0.512) are shown in italics

two-layer feed-forward neural network and regression trees are presented in the third
column.

We observed that while nearly all the learned metrics correlated better with human
assessments than the baseline metrics, the choices of the form of the function and the
learning algorithm do not have a perceivable effect on the resulting metric. This may
be because many features are individual indicators of translation quality, and can be
combined by a linear function such that the more expressive functions do not offer
additional benefits. To reduce the possibility of overfitting to the training examples,
for the rest of the experiments in this paper, we train the regression metrics using SVM
with a linear kernel.

5.2 Feature analysis

In Sect. 2.2.1, we presented an overview of four groups of features that have been
commonly used in previous work on evaluation metrics. In this experiment, we aim
to quantify the contribution of these features.

We first train the metric with the entire NIST 2003 Chinese dataset. We then
estimate an upper limit for the learned metric’s performance by testing it on its
training data. Next we modify the model to demonstrate the impact of the chosen
features. We retest the modified model and recompute the correlation coefficients.
This study is conducted with respect to the training dataset rather than a new test
set because its purpose is to determine which set of features have been deemed
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16 J. S. Albrecht, R. Hwa

important by the training process, rather than which tampered model generalizes
better.

Table 3 presents the changes in correlation coefficients. The correlation coeffi-
cient between the original metric’s prediction and the human assessments is 0.512.
If the tampered features were important, the modified metric would become less
correlated with human assessments. For each of the four main feature groups, we
modified the model in two ways: removing the group by zeroing out its feature
values, and the complement, keeping only that group by zeroing out all the other
features.

Of the four groups of features, the learned metric relies the most on string compar-
isons against references. Using only features of this group, the metric’s correlation is
slightly lowered (to 0.499); without the features of this group, the metric’s correla-
tion dropped significantly. When the other feature groups are excluded, the metric’s
correlation with human assessment was not significantly worsened. This suggests that
these features served a more auxiliary purpose in the learned metric. However, it does
not necessarily mean that these features are not informative. When all the features
from string-reference are disabled, the metric still has a correlation coeffi-
cient of 0.428.6 The results of this experiment suggest that the full feature set contains
some informational redundancies, but taken together, the features contribute to a more
informed metric than the baseline metrics.

5.3 Generalization

The results from the cross-validation experiments showed that regression can train
competitive metrics to evaluate new translations from the MT systems that generated
the sentences used as training examples. For a metric to be effective, however, it should
provide reliable assessments to outputs from different systems. In this experiment, we
measure the learned metric’s ability to generalize to new data.

A metric is developed using the NIST 2003 Chinese–English dataset as training
examples. We then apply it to evaluate sentences produced by two different types of
MT systems: Arabic–English systems and Chinese–English systems from different
years (all from NIST evaluations). If the metric were fitted too closely to the training
examples, we would expect it quickly to become ineffective at judging the newer,
more advanced MT systems.

Table 4 presents a summary of the results.7 We computed the correlation coef-
ficients between the metric’s assessments and the human assessments for sentences
from the same NIST dataset. We also computed the corresponding correlation coef-

6 Note that this value is a somewhat pessimistic estimation of the usefulness of the enabled features because
the metric has been optimized for the full feature set during training. The correlation coefficient should be
somewhat higher if the metric were optimized with the reduced feature set during training, in the manner
of feature selection.
7 This experiment is a modified and expanded version of our earlier work (Albrecht and Hwa 2007a).
Previously published results roughly correspond to the first three lines of this table. In that earlier study,
three references were used for feature calculation (because during training, the fourth reference was used
as a positive example for the classification metric); here, all four references are used.

123



Regression for MT evaluation 17

Table 4 A comparison between baseline metrics and a regression-trained metric on sentences produced
by different MT systems over multiple years

Test set Bleu METEOR HWCM Regr (2003 Chn)

2002 Chn 0.283 0.298 0.272 0.337

2003 Ara 0.460 0.454 0.457 0.505

2004 Chn 0.593 0.568 0.551 0.616

2004 Ara 0.577 0.580 0.521 0.611

2005 Chn 0.489 0.509 0.457 0.565

2005 Ara 0.427 0.427 0.376 0.459

2006 Chn 0.475 0.525 0.337 0.506

The regression metric is trained on the NIST 2003 Chinese–English dataset. The table reports the Spearman
correlation coefficients between a metric’s scores and the human assessment scores for the test sentences.
The highest correlation coefficient for each test set is highlighted in bold font, and the coefficients that are
not found to be significantly worse are italicized

Table 5 The six systems that
were evaluated by human judges
in the NIST 2003
Chinese–English MT evaluation
and the averaged sentence-level
score that each system received

SysID Average human
assessment score

03-C1 0.636

03-C2 0.562

03-C3 0.543

03-C4 0.498

03-C5 0.446

03-C6 0.315

ficients for the baseline metrics. The results show that the regression-trained metric
maintains a higher correlation coefficient than the baseline metrics for nearly all years.
This suggests that the learned metric generalizes well and is broadly applicable to a
wide range of MT systems.

As discussed earlier, the learned metric can be seen as a composite of the deter-
ministic metrics because it draws from much of the same information sources. The
consistent lead over the baseline metrics indicates that regression training is successful
in combining these indicators into one metric. As MT research continues to advance,
the baseline metrics may become less effective, and therefore the evaluative power of
this particular learned metric may also wane. In that case, regression training can be
used to develop a new metric from a new set of relevant features.

5.4 Stability

To evaluate the stability of the learning approach for metric development, we compare
several learned metrics that were developed with training examples from MT sys-
tems of different quality. In this study, the sets of training examples are selected from
the NIST 2003 Chinese–English dataset; all metrics are tested on the same test cases:
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Table 6 A comparison of metrics that were developed using subsets of the full NIST 2003 Chinese–English
training set

No 03-C1 No 03-C2 No 03-C3 No 03-C4 No 03-C5 No 03-C6

2002 Chn 0.346 0.331 0.336 0.345 0.327 0.331

2003 Ara 0.486 0.510 0.497 0.508 0.504 0.520

2004 Chn 0.591 0.624 0.613 0.616 0.605 0.634

2004 Ara 0.591 0.611 0.591 0.604 0.605 0.608

2005 Chn 0.553 0.558 0.546 0.563 0.549 0.559

2005 Ara 0.418 0.457 0.452 0.448 0.447 0.463

2006 Chn 0.498 0.500 0.520 0.516 0.519 0.468

Each column presents a metric’s correlation coefficients on different test sets. The header of each column
specifies the training condition of its metric. For instance, “No 03-C1” means that sentences produced by
the MT system 03-C1 were excluded from the training examples. The coefficients that are significantly
higher than the similarly computed coefficients of the regression metric in Table 4 are shown in bold font;
the ones that are not significantly worse are shown in italics

Table 7 The ten systems that
were evaluated by human judges
in the NIST 2004
Chinese–English MT evaluation
and the averaged sentence-level
score that each system received

SysID Average human
assessment score

04-C1 0.661

04-C2 0.626

04-C3 0.586

04-C4 0.578

04-C5 0.537

04-C6 0.530

04-C7 0.530

04-C8 0.375

04-C9 0.332

04-C10 0.243

the NIST 2004 Chinese–English dataset. We prepared six training sets; in each set,
one of the six assessed MT systems in the NIST 2003 dataset is withheld. Table 5 lists
the averaged human assessment score of each system (we assigned each system an ID
based on the rank of its human assessment scores). As the table shows, these systems
spanned a range of performance levels. Thus, when 03-C1 is left out of the training
set, the metric is tuned on MT sentences that received lower human assessments; in
contrast, when 03-C6 is left out, the training set is biased towards good MT sentences.
The goal of this experiment is to see how much the bias might impact on the reliability
of the metric.

Table 6 presents the results. This table can be seen as an extension of Table 4 from
the previous generalization experiment. Although the six metrics reported in this table
are trained on 83% of the examples used to train the regression metric in Table 4, the
smaller training size in and of itself does not seem to have a major negative impact. Of
the six metrics, we observe that the correlation coefficients of No 03-C1 are typically
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lower than those from the regression metric of Table 4 and the other metrics. The
results confirm our intuition that it is important to have sentences with a wide range
of assessment quality as training examples. Moreover, the results suggest that it is
more helpful to have sentences from higher quality MT systems as training examples.
That is, having seen extra training examples from a bad system is not as harmful as
having not seen training examples from a good system. This is also consistent with
our intuition. Since there are many ways to create bad translations, seeing a particular
type of bad translation from one system may not be very informative. In contrast, the
neighborhood of good translations is much smaller, and is what all the systems are
aiming for; thus, assessments of sentences from a good system can be much more
informative.

Another concern for the learned metric’s stability is whether the learned metric
might be systematically biased in favor of (or against) certain types of test MT sys-
tems. We further explore the relationship between variations in training data and the
metric’s ability to evaluate different MT systems. Specifically, we examine the fourth
column of Table 6 in more detail. In the previous experiment, we evaluated the learned
metrics against the entirety of the NIST 2004 Chinese–English dataset; here we com-
pute the metrics’ correlation coefficients for the ten MT systems individually. We
chose to focus on the NIST 2004 Chinese–English dataset because it has the largest
number of human-evaluated MT systems. The systems’ averaged human assessment
scores are shown in Table 7.

Table 8 summarizes the results.8 Each column presents the correlation coefficients
for the ten test systems using one metric. We compare the three baseline metrics and
three variations of the regression metrics: trained on the best five Chinese–English MT
systems from 2003 (excluding 03-C6); trained on the worst five systems (excluding
03-C1); and trained on all six systems. For each test system (per row), we display
the metric that has the highest correlation coefficient in bold font, and we italicize
all the other metrics’ correlation coefficients that were not found to be significantly
worse according to the statistical test. Note that in this experiment, the correlation
coefficients are computed from a smaller dataset (447 instances). Because the approx-
imate randomized test is relatively cautious, a larger difference between two metrics’
correlation coefficients has to be established than in previous experiments for the
difference to be deemed significant.

The results of this experiment reinforce some of the observations made earlier.
We find that the regression metrics typically have higher correlation coefficients than
the baselines. Of the three regression metrics, No 03-C1 often has a slightly lower
coefficient than the other two. It was also not as effective at evaluating the higher
quality MT systems (04-C1 and 04-C2), perhaps because it was not trained on as
many high quality translations. In contrast, No 03-C6 tends to have higher correlation
coefficients, even for lower quality MT systems. However, the differences between
the regression metrics are generally not large enough for the statistical test to conclude
a significant difference. This suggests that human assessments of good translations

8 This experiment is an update of our earlier work (Albrecht and Hwa 2007a). As mentioned in footnote 6,
the numerical differences are due to the slight change in the experimental setup.
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Table 8 A comparison of metrics by computing their correlation coefficients for each test system

Test system Bleu METEOR HWCM No 03-C6 No 03-C1 03-all
(top 5 sys) (bottom 5 sys) (all 6 sys)

04-C1 0.464 0.464 0.445 0.537 0.465 0.509

04-C2 0.370 0.343 0.363 0.449 0.371 0.399

04-C3 0.365 0.400 0.360 0.468 0.417 0.442

04-C4 0.422 0.421 0.378 0.477 0.435 0.462

04-C5 0.363 0.455 0.335 0.484 0.468 0.478

04-C6 0.403 0.365 0.388 0.402 0.408 0.417

04-C7 0.400 0.412 0.380 0.454 0.429 0.447

04-C8 0.239 0.255 0.167 0.311 0.289 0.274

04-C9 0.520 0.552 0.537 0.590 0.579 0.602

04-C10 0.318 0.316 0.377 0.389 0.348 0.371

The columns specify which metric is used. The rows specify which MT system is under evaluation. For
each evaluated MT system (row), the highest coefficient is shown in bold font, and those that are statistically
comparable to the highest are shown in italics

may make more helpful training examples but that some variation in training does not
have a large impact on the learned metrics.

In terms of the impact of the test systems, the results suggest that all six metrics are
biased against the lower-quality MT systems to some extent. The correlation coeffi-
cients between the metrics and the human assessments are the lowest for MT systems
04-C8 and 04-C10. Moreover, the improvements of the regression metrics over the
baselines for the lower-quality systems are not as obvious. This is because the baseline
metrics’ criteria are encoded as input features for the regression metrics. Thus, when
all the baseline criteria are unreliable, the regression metric would also make bad pre-
dictions. Because judging criteria are more naturally expressed as desiderata for good
translations, it may be harder for quantitative assessments of a bad translation to agree.

5.5 Metrics that compare against pseudo-references

Thus far, our experimental results suggest that regression can be an effective training
method for developing complex metrics for evaluating sentences from a diverse set of
MT systems. In terms of scalability, the amount of resources needed for the training
infrastructure is arguably not an exorbitant investment. In the previous experiments,
metrics were trained relying only on the NIST 2003 Chinese–English dataset, which
consists of 11,028 instances of human assessment scores. The hidden cost, however,
is that many of the features require comparisons against multiple reference transla-
tions. Since test instances have the same feature representation, it means that multiple
references are always necessary (this is true for Bleu and other deterministic metrics
as well).

We have argued that in a machine learning setting, metrics can be trained with fea-
ture values computed from pseudo-references. To investigate whether the proposed
approach is viable, we conduct two experiments. The first examines the role of learn-
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ing. We measure the impact of the variation in the quality of the pseudo-reference
MT systems on evaluation metrics. In the second experiment, we explore whether the
pseudo-reference training approach is effective for metric development in practical
situations; we evaluate the learned metrics over diverse test sets in a manner similar
to the studies in Sect. 5.3.

For these experiments, we made two modifications to the feature representation
to adapt the learning framework from using human references to using pseudo-refer-
ences. First, we did not include the linguistic-reference features. Because
the automatically produced parse structures for the MT references may be too unre-
liable, comparisons of structural similarities between a candidate translation and MT
references are unlikely to be strong indicators. Second, in order to allow the model
to learn to differentiate between the qualities of multiple pseudo-references, a feature
is individually associated with every reference, whereas in the case with human ref-
erences, a feature value is computed either as an aggregate over all references (e.g.,
Bleu-style n-gram matches) or as the value of the best matching reference
(e.g., recall).

5.5.1 Impact due to the quality of the MT references

In this study we examine the interaction between pseudo-references and machine
learning in a controlled setting. Therefore, the pseudo-references, the training and the
test instances are all taken from the NIST 2004 Chinese–English dataset because it
contains the highest number of participating MT systems and the systems span over a
range of performance levels (see Table 7 for a ranking of the systems and their averaged
human assessment scores). Specifically, we reserved four systems (04-C2, 04-C5, 04-
C6, and 04-C9) for the role of pseudo-references. Sentences produced by the remaining
six systems are used as evaluative data. We perform five-fold cross validation on the
evaluative dataset. Baseline metrics can also use pseudo-references without learning;
as points of comparison, we also score all the sentences of the evaluative set with Bleu
and METEOR using pseudo-references.

Table 9 presents a comparison of the different metrics’ performance (in terms of
correlation coefficients) on the six-system evaluative dataset given different reference
configurations. The reference configurations are varied in terms of their number, type,
and quality. For the case when only one human reference is used, the reference was
chosen at random from the 2004 NIST evaluation dataset.9

Some trends are as expected; comparing within a metric, having four human ref-
erences is better than having just one, and having high-quality systems as references
is better than having low-quality systems as references. Perhaps more surprising is
the trend that metrics do significantly better with four MT references than with one
human reference. This is consistent with the common wisdom that a metric would have
a great variation in reliability if it is based on one reference. Moreover, when trained

9 In the NIST datasets, human reference translations were not assessed by human judges. To get a feel for
the quality of the references, we compared each reference against the other three with deterministic MT
evaluation metrics. We rank this particular translator third, but the quality of all four human references are
significantly higher than that of the best MT systems.
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Table 9 A comparison of metrics (columns) using different types of references (rows)

Ref type and # Ref quality Bleu METEOR Regression

4 Human – 0.627 0.591 0.672

1 Human Human Ref #3 0.531 0.512 0.623

4 Systems – 0.612 0.583 0.666

2 Systems Best 2 MT Refs 0.601 0.577 0.651

Mid 2 MT Refs 0.577 0.555 0.644

Worst 2 MT Refs 0.539 0.508 0.626

1 System Best MT Ref 0.575 0.560 0.636

Mid MT Ref (04-C5) 0.531 0.529 0.627

Worst MT Ref 0.379 0.329 0.575

The full regression-trained metric has the highest correlation coefficient value (shown in boldface) when
four human references are used. When four MT system references are used, the coefficient is slightly
decreased (shown in italics), but our statistical test could not conclude that the difference is significant
(p = 0.39)

with regression, the metric that uses four MT references has a correlation coefficient
that is only slightly lower than that of the metric trained to use four human refer-
ences such that the statistical test could not conclude that the metrics are significantly
different (p = 0.39).

Another observation is that while MT references can be used for standard metrics
such as Bleu and METEOR, they may not be appropriate. Because they treat each
reference as a gold standard, their reliability suffers more when the MT references are
bad. In the regression-trained metric’s case, it learns to assign higher weights to the
more helpful features. Further, the learned metrics have access to additional features
that do not depend on reference translations (string-general and linguis-
tic-general); thus when the metric only has access to the worst MT system as its
reference, it can learn to rely on those other corpus-based features. The results of this
experiment suggest that learning is important for metrics to exploit pseudo-references
properly.

5.5.2 Generalizability of pseudo-reference metrics

The goal of this experiment is to determine whether a metric learned from pseudo-ref-
erences is effective in practical situations. We consider the case in which the metric is
to be used during the internal evaluation of an MT system under development. Using
a portion of the parallel text for testing, the developers would have a single reference
translation for each sentence; they would also need access to multiple MT systems that
are relatively different to create pseudo-references; finally, they need some human-
assessed sentences as training examples (such as the NIST MT evaluation datasets).
For this experiment, we chose three MT systems to generate the pseudo-references:
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Systran,10 GoogleMT,11 and a syntax-aware SMT system by Gimpel and Smith (2008).
They have been shown to produce good quality translations, and their approaches are
relatively different from each other.

As with the earlier generalization experiment, we use the regression-trained met-
rics to evaluate sentences produced by a diverse set of MT systems. The metric is
trained on the NIST 2003 Chinese–English dataset and tested on the Chinese–English
datasets from NIST 2002, 2004, 2005, and 2006. We consider two pseudo-reference
configurations. In one, no human-produced reference is used (this is labeled as 3 MT
Refs); in the second case, we augment the three pseudo-references with a human ref-
erence. The two pseudo-reference configurations are compared against the condition
when four human references are available (the same as in Table 4) and when only one
human reference is available. Since metrics are more robust when they have access to
multiple references, we performed this experiment to see whether pseudo-references
may supplement the single human reference.

The resulting correlation coefficients of the metrics using different reference config-
urations for the four test sets are shown in Table 10. The highest correlation coefficient
for each test set is highlighted in bold font, and the coefficients that are not found to be
significantly worse according to the statistical test are italicized. For the datasets from
2002 and 2004, using pseudo-references seems to be as informative as using all four
human references, and all three metrics have significantly higher correlations than
when they use just one human reference. In the later datasets, however, the metrics
perform better when they have access to all four human references.

One possible explanation for this discrepancy is that the quality of the MT sys-
tems used as pseudo-references is much higher than those of the earlier MT systems
being evaluated, while in the later years, they are more similar to the systems they
are evaluating. Another possible explanation is that some of the MT systems used as
pseudo-references may have been tuned on the earlier NIST data12 so that their trans-
lation outputs would have higher quality than for the later years. Here, we discuss
the results for all years because the machine translations used for pseudo-references
are still far from perfect and therefore they do not present a conflict with the goal
of our experiment, which is to determine whether imperfect references might still be
informative for an evaluation metric.

Moreover, because the regression metric is trained on the NIST 2003 dataset, the
2002 and 2004 datasets provide an evaluation in which the testing condition is more
similar to the training condition. Tracking the correlation over multiple years shows
us how well the metric generalizes to future inputs. Compared to the results of the
earlier experiment in Sect. 5.3, when a metric is trained with pseudo-references, it
seems to have a shorter shelf-life. As we saw in the previous experiment, the correla-
tion is not as reliable when the pseudo-references are much worse than the population
of sentences being evaluated. Thus, a metric that learns to depend on a particular

10 http://www.systransoft.com/.
11 http://www.google.com/language_tools/.
12 From personal communications, we know that the Gimpel and Smith system used NIST 2003 to select
features for their model and a portion of NIST 2004 for parameter tuning for minimum error rate training.
We do not know development details of the two off-the-shelf systems.
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Table 10 A comparison of metrics using different reference types

Test set Ref type Bleu METEOR Regression

2002 Chn 1 Human Ref 0.228 0.264 0.288

3 MT Refs 0.299 0.294 0.322

1 Human Ref + 3 MT Refs 0.314 0.301 0.343

4 Human Refs 0.283 0.298 0.337

2004 Chn 1 Human Ref 0.532 0.519 0.588

3 MT Refs 0.581 0.564 0.616

1 Human Ref + 3 MT Refs 0.600 0.577 0.625

4 Human Refs 0.593 0.568 0.616

2005 Chn 1 Human Ref 0.460 0.457 0.507

3 MT Refs 0.382 0.438 0.476

1 Human Ref + 3 MT Refs 0.431 0.458 0.527

4 Human Refs 0.489 0.509 0.565

2006 Chn 1 Human Ref 0.443 0.459 0.473

3 MT Refs 0.342 0.412 0.434

1 Human Ref + 3 MT Refs 0.381 0.438 0.461

4 Human Refs 0.475 0.525 0.506

The regression metrics are trained on the NIST 2003 Chinese–English dataset. The NIST Chinese–English
datasets from other years are used as test. The highest correlation coefficient for a particular year’s data-
set is displayed in bold font, and those correlation coefficients that are not significantly different from it
(according to the approximate randomized test) are shown in italics

type of MT system to provide the pseudo-references may become less effective as
the quality of the reference MT outputs diminishes relative to the newer systems over
time. Periodic retraining or adaptive learning methods may help the metric to remain
robust.

6 Conclusion

Human judgment of sentence-level translation quality depends on many criteria.
Machine learning affords a unified framework to compose these criteria into a sin-
gle metric. In this paper, we have demonstrated the viability of a regression-based
approach to learning the composite metric. Our experimental results suggest that
machine learning can successfully combine different individual metrics to create a
composite sentence-level evaluation metric that has higher correlations with human
judgments than the individual metrics. Moreover, we find that by optimizing against
human-assessed training examples, regression methods result in metrics that have bet-
ter correlations with human judgments even as the distribution of the tested population
changes over multiple years. While the training process does introduce some uncer-
tainty because the quality of the resulting metric depends somewhat on the distribution
of training examples it saw, we find that it does not have a large impact on the over-
all effectiveness of the learned metric, especially for the evaluation of higher-quality
sentences. Finally, we have presented a method for developing sentence-level MT
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evaluation metrics without using human references. We showed that by learning from
human-assessed training examples, the regression-trained metric can evaluate an input
sentence by comparing it against multiple machine-generated pseudo-references and
other target-language resources. We observe that regression metrics that use multi-
ple pseudo-references often have comparable or higher correlation rates with human
judgments than standard reference-based metrics. Our study suggests that in conjunc-
tion with regression training, multiple imperfect references may be as informative as
gold-standard references.
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