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Abstract To obtain high precision at top ranks by a search performed in response to a

query, researchers have proposed a cluster-based re-ranking paradigm: clustering an initial

list of documents that are the most highly ranked by some initial search, and using infor-

mation induced from these (often called) query-specific clusters for re-ranking the list.

However, results concerning the effectiveness of various automatic cluster-based re-ranking

methods have been inconclusive. We show that using query-specific clusters for automatic

re-ranking of top-retrieved documents is effective with several methods in which clusters

play different roles, among which is the smoothing of document language models. We do so

by adapting previously-proposed cluster-based retrieval approaches, which are based on

(static) query-independent clusters for ranking all documents in a corpus, to the re-ranking

setting wherein clusters are query-specific. The best performing method that we develop

outperforms both the initial document-based ranking and some previously proposed cluster-

based re-ranking approaches; furthermore, this algorithm consistently outperforms a state-

of-the-art pseudo-feedback-based approach. In further exploration we study the perfor-

mance of cluster-based smoothing methods for re-ranking with various (soft and hard)

clustering algorithms, and demonstrate the importance of clusters in providing context from

the initial list through a comparison to using single documents to this end.

Keywords Query-specific clusters � Cluster-based language models �
Cluster-based re-ranking � Cluster-based smoothing

1 Introduction

Users of search engines expect to see the documents most pertaining to their queries at the

top ranks of the retrieved results (Croft 1995). A paradigm suggested by several
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researchers for achieving this goal is to perform an initial search over the entire corpus in

response to a query, and then to automatically re-rank the most highly ranked documents,

so as to improve the precision at the very top ranks of the resultant list. (See, for example,

Preece (1973); Willett (1985); Kleinberg (1998); Liu and Croft (2004); Diaz (2005);

Kurland and Lee (2005, 2006); Liu and Croft (2006a).) The motivating idea behind the

re-ranking paradigm is that the ratio of relevant to non-relevant documents in the initial list
to be re-ranked, that is, the most highly ranked documents from the initial search, tends to

be much higher than that in the entire corpus. However, since documents in the list were

retrieved in response to a query, it is a challenging task to differentiate the relevant

documents from the non-relevant ones.

To approach this challenge of (automatic) re-ranking, several researchers (Preece 1973;

Willett 1985; Liu and Croft 2004; Kurland and Lee 2006; Liu and Croft 2006a, b) proposed

to cluster the documents in the initial list and utilize information induced from the clusters;

those are often termed query-specific clusters since the documents upon which clustering is

performed were retrieved in response to a query. A potential advantage in using query-

specific clusters for re-ranking that researchers (Hearst and Pedersen 1996; Tombros et al.

2002; Liu and Croft 2004; Kurland and Lee 2006) have pointed out is that relevant docu-

ments in the initial list might be clustered together—a manifestation of van Rijsbergen’s

cluster hypothesis (van Rijsbergen 1979) in the re-ranking setting. Indeed, there is some

empirical evidence that (under different clustering algorithms) there are often some query-

specific clusters that contain a high percentage of relevant documents (Hearst and Pedersen

1996; Tombros et al. 2002; Kurland 2006). However, automatically finding these clusters is

a very hard challenge (Willett 1985; Liu and Croft 2004). On the other hand, it was shown

that users of interactive search systems can use query-specific clusters for quickly detecting

relevant documents that they contain (Hearst and Pedersen 1996; Leuski 2001).

A different way by which clusters can be utilized has recently been proposed in the

language modeling framework to information retrieval (Ponte and Croft 1998; Croft and

Lafferty 2003). Researchers suggested to use information induced from document clusters to

smooth document language models so as to ‘‘enrich’’ the document representation with

corpus-related information (Azzopardi et al. 2004; Kurland and Lee 2004; Liu and Croft

2004; Tao et al. 2006; Wei and Croft 2006). Indeed, cluster-based smoothing has shown

promise for ranking an entire corpus when static query-independent clusters, which are

created offline, were used (Azzopardi et al. 2004; Kurland and Lee 2004; Liu and Croft 2004;

Tao et al. 2006; Wei and Croft 2006). However, the results regarding the effectiveness of

cluster-based smoothing for the re-ranking setting (using query-specific clusters) have

remained inconclusive (Liu and Croft 2004).

We show that using query-specific clusters for automatic re-ranking is in fact effective

whether clusters are used for selecting documents—specifically, detecting relevant documents

by the patterns of membership of documents in clusters—or for smoothing document language

models. We do so by adapting recently proposed cluster-based retrieval algorithms (Kurland

and Lee 2004), which utilize information induced from static query-independent clusters for

ranking all documents in a corpus, to the re-ranking setting wherein clusters are query-specific.

We empirically show that the most effective (cluster-based smoothing) re-ranking algo-

rithm that we present not only significantly outperforms the initial document-based ranking

over all tested TREC corpora, but also consistently outperforms a state-of-the-art pseudo-

feedback-based approach, namely the relevance model (Lavrenko and Croft 2001). More-

over, the algorithm also outperforms some previously-proposed cluster-based approaches for

re-ranking that utilize information induced from query-specific clusters. In further explo-

ration we study the performance of cluster-based smoothing methods for re-ranking with
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various clustering algorithms, and demonstrate the importance of clusters in providing

context from the initial list through a comparison to using single documents to this end.

The rest of the paper is organized as follows. In Sect. 2 we present the different

re-ranking algorithms that we explore. Section 3 describes the connection of our approach

to previously-suggested models for re-ranking and to previous approaches for utilizing

cluster-based information. We then present an empirical evaluation of the performance of

our algorithms in Sect. 4 and conclude in Sect. 5.

2 Retrieval framework

Since we are focused on the re-ranking setting, the algorithms we present are applied not to

the entire corpus C; but to a subset DN;q
init (henceforth Dinit), defined as the top N documents

retrieved in response to the query q by a given initial retrieval engine. The algorithms also

take into account a set ClðDinitÞ of (query-specific) clusters of the documents in Dinit: We

assume that documents in Dinit and clusters in ClðDinitÞ are assigned with unique IDs.

The algorithms we present utilize statistical language models (Ponte and Croft 1998;

Croft and Lafferty 2003). We use px(y) to denote the language-model-based similarity

between x (a document or a cluster) and y (a document, a cluster, or a query).1 Our

language-model-induction methods are described in Sect. 2.2.

Clustering Previous work on utilizing query-specific clustering has focused on hard-clustering

techniques (e.g., Willett 1985; Hearst and Pedersen 1996; Leuski 2001; Tombros et al. 2002;

Liu and Croft 2004). In contrast, here we focus on using overlapping nearest-neighbor

clusters that were shown to be effective when utilized in a query-independent fashion

(Griffiths et al. 1986; Kurland and Lee 2004; Kurland et al. 2005; Kurland 2006), and which

were recently used in the re-ranking setting (Kurland and Lee 2006; Liu and Croft 2006a, b).

Formally, for each document d 2 Dinit we define a cluster that contains d and the k - 1

documents di (di = d) from Dinit that yield the highest language-model similarity pdi
ðdÞ

(we break ties by document IDs); k is a free parameter. Thus, the set ClðDinitÞ contains N
(overlapping) clusters. We study the relative merits of this nearest-neighbor clustering

approach with respect to hard-clustering techniques in Sect. 4.6.

2.1 Re-ranking algorithms

In what follows we adapt cluster-based retrieval algorithms that were originally designed

by Kurland and Lee (2004) for use with query-independent (static) clusters, and were

shown to be effective for ranking the entire corpus, to the re-ranking setting wherein the

clusters are query-specific.

The original versions of the algorithms that we consider (Kurland and Lee 2004) operate

on clusters that are most similar to the query—i.e., top-retrieved clusters—for anchoring

the query-independent clustering information to the query at retrieval time. The variants

that we present here, on the other hand, consider all clusters in ClðDinitÞ as these are

constructed from Dinit—documents that are the most highly ranked by some initial search.

In the algorithms that we present clusters play two different roles, namely selection of

documents and smoothing of documents’ language models (Kurland and Lee 2004).

1 Some other work uses these language-model-based estimates for forming links between textual items and
utilizing them with graph-based methods (Kurland and Lee 2005, 2006). We discuss the relation of our
methods to these approaches in Sects. 3 and 4.
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2.1.1 Cluster-based document selection

Most cluster-based document-selection algorithms aim to identify a subset of clusters that

potentially contain a large number of relevant documents (Croft 1980; Willett 1985;

Kurland and Lee 2004; Liu and Croft 2004). However, finding query-specific clusters that

contain a high percentage of relevant documents is known to be a very hard task (Hearst

and Pedersen 1996; Tombros et al. 2002; Liu and Croft 2004). One of the reasons is that

query-specific clusters contain documents that are similar to the query to begin with.

Therefore, we will focus here on a different cluster-based selection approach, which

exploits the structure induced by overlapping clusters. Specifically, if we think of clusters

as potentially representing aspects manifested in the initial list Dinit; one might opt to rank

high documents that exhibit as many such aspects as possible, specifically, documents that

belong to many clusters. An alternative view for the potential in utilizing the structure

induced by clusters might be based on the fact that documents that belong to many of the

clusters exhibit (high) similarity to many other documents in the initial list Dinit: Thus, such

documents could be considered as central with respect to the initial list—a notion recently

explored via a graph-based framework and which was shown to be connected with rele-

vance (Kurland and Lee 2005, 2006; Kurland 2006).

Utilizing the structure induced by clusters as described above is the idea underlying

Kurland and Lee’s (2004) best-performing cluster-based selection method—the bag-select
algorithm. In its original form, the bag-select algorithm ranks high documents from the

(entire) corpus that exhibit high similarity to the query and that belong to many top-
retrieved query-independent clusters. Dropping the notion of ‘‘top-retrieved clusters’’, as

we deal with query-specific clusters, we focus on the centrality of a document with respect

to the initial list Dinit as measured by its membership in clusters from ClðDinitÞ:
As noted above, the original version of the bag-select algorithm (Kurland and Lee 2004)

also takes into account the document-query similarity information. This is done for coping

with the fact that the clusters in this work (Kurland and Lee 2004) are query-independent.

Case in point, top-retrieved query-independent clusters might contain documents that do

not pertain to the query, but which are similar to documents that are based on information

not related to the query. While it might seem at a first glance that using document-query

similarity information for re-ranking Dinit is redundant, experimental results show that

using this information is actually important. This finding is in line with some recent work

on graph-based re-ranking (Kurland and Lee 2005). Indeed, some of the query-specific

clusters might exhibit ‘‘aspects’’ not pertaining to the query, or more specifically, contain a

high percentage of non-relevant documents. Therefore, using document-query similarity

information, and hence considering document-specific characteristics, might help to

ameliorate the overgeneralization caused by scoring documents based only on cluster-

induced information. Further support to the importance of ‘‘query-anchoring’’ is given in

work on score regularization for re-ranking (Diaz 2005), which shows that documents

from the initial list that are highly similar both to the query and to other documents in the

list that are similar to the query tend to be relevant.

Given the observations made at the above, we set the re-ranking version of the bag-

select algorithm to score document d by

Scorebag�selectðdÞ ¼
def

pdðqÞ �#ðc 2 ClðDinitÞ : d 2 cÞ:

The bag-select algorithm utilizes two sources of information: the number of clusters to

which the document belongs and the document-query similarity. In the next section we
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show how these two sources of information, along with additional ones, can be modeled

and integrated using a probabilistic approach.

2.1.2 Cluster-based smoothing

In work on language models for ad hoc retrieval, several researchers have proposed to

smooth the document language model with that of the cluster(s) with which it is associated

(Azzopardi et al. 2004; Kurland and Lee 2004; Liu and Croft 2004; Wei and Croft 2006).

The idea is to enrich the document representation with corpus-context information. Such an

approach can help, for example, to deal with the synonymy problem, and more generally,

with the sparse data problem. Applying cluster-based smoothing in the re-ranking setting

with query-specific clusters means that the context-information is drawn from the initial

list Dinit rather than from the entire corpus. Hence, such an approach can be thought of as

query-specific (cluster-based) smoothing: the information used for smoothing is drawn

from documents that are (relatively) similar to the document in hand and to the query.

To study whether utilizing context from Dinit to enrich a document representation yields

effective re-ranking performance, we adapt Kurland and Lee’s (2004) aspect-based
algorithms, which are named after the aspect models of Hofmann and Puzicha (1998).

Aspect models are an approach for modeling a corpus based on the assumption that each

document exhibits (or is ‘‘generated’’ by) a mixture of aspects. The algorithm for finding

the aspects, in terms of language models, induces clustering of documents as it estimates

document-aspect association probabilities, and aspects might be thought of as (soft)

clusters.

Kurland and Lee (2004) conceptually adopt the basic formulation underlying the aspect

models and use it with static (query-independent) existing clusters for ranking all docu-

ments in a corpus. Specifically, the aspect-t algorithm (Kurland and Lee 2004) is based on

estimating the conditional probability p(q|d)—often termed query likelihood (Song and

Croft 1999). The idea is to estimate the probability that the query terms are generated by a

(probabilistic) model induced from a document. Using simple probability rules, this

probability can be written as

pðqjdÞ ¼
X

c2ClðDinitÞ
pðqjd; cÞpðcjdÞ: ð1Þ

The basic conceptual assumption underlying aspect models is that a query is independent

of a document given a cluster (Hofmann and Puzicha 1998). That is, the query terms could

be viewed as being generated directly from models of clusters (aspects) that generate the

terms in the document. Using this assumption we get that the above probability is
X

c2ClðDinitÞ
pðqjcÞpðcjdÞ: ð2Þ

Following recent work on cluster-based smoothing (Kurland and Lee 2004; Liu and Croft

2004; Tao et al. 2006), we post the constraint, which we will later relax, that a document

can be ‘‘represented’’ (i.e., smoothed) only by the clusters to which it belongs.2

2 Such a constraint can potentially alleviate the computational cost of estimating the document-cluster
association strength for all available clusters and documents; this cost is significant when using, for example,
static overlapping clusters (Kurland and Lee 2004). An implicit assumption underlying this constraint is that
the best clusters to use for representing a document are those that contain it. We return to this point later on.
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Thus, we truncate the summation from Eq. 2 (hence the suffix ‘‘-t’’ for ‘‘truncated’’)3

and in addition use a language-model-based similarity measure for conditional probabil-

ities to derive the aspect-t algorithm:

Scoreaspect�tðdÞ ¼
def X

c2ClðDinitÞ:d2c

pcðqÞpdðcÞ:

Is is important to note that the original scoring function of the aspect-t algorithm (Kurland

and Lee 2004) is slightly different than the one presented here, and not only due to the shift

from using (top-retrieved) query-independent clusters to using all available query-specific

clusters from ClðDinitÞ: Directly adapting Kurland and Lee’s model to the re-ranking setting,

by using query-specific instead of query-independent clusters, yields the scoring functionP
c:d2c pcðqÞpcðdÞ: This model is a result of using Bayes rule upon Eq. 2 and assuming

uniform prior distributions for documents and clusters. Our formulation here, on the other

hand, is not dependent on these assumptions, and, as it turns out, yields much better re-

ranking performance than that of the originally suggested model (Kurland and Lee 2004).

The assumption that a query is independent of a document given a cluster can cause

overgeneralization. That is, representing a document only via the clusters to which it

belongs ignores potentially important information with regard to the document-specific

characteristics. Such information can help to estimate the document-query ‘‘match’’. Hence,

we drop this independence assumption, and in addition (i) use the estimate kp(q|d) +

(1 - k) p(q|c) for p(q|d, c) where k is a free parameter, (ii) apply some probability algebra,

and (iii) use a language-model-based similarity measure for conditional probabilities in

Eq. 1, to derive Kurland and Lee’s best-performing model, interpolation-t:4

Scoreinterpolation�tðdÞ ¼
def

kpdðqÞ þ ð1� kÞ
X

c2ClðDinitÞ:d2c

pcðqÞpdðcÞ:

Note that the interpolation-t algorithm anchors the cluster-based ranking of the aspect-t

algorithm to the query by interpolation with the query-similarity score pd(q). This anchoring

makes sense when query-independent clustering is used as in the original proposal of

interpolation-t (Kurland and Lee 2004). However, as is the case for the bag-select algorithm

from the above, and as we will be shown in Sect. 4, this anchoring has the potential to

improve re-ranking effectiveness, even though the clusters are query-specific. This further

demonstrates the importance in utilizing document-specific characteristics for ameliorating

the overgeneralization caused by the use of clusters as proxies for ranking documents.

We also note that the interpolation-t algorithm can be conceptually viewed as a gen-

eralized version of the models of Liu and Croft (2004) and Wei and Croft (2006) that use

cluster-based smoothing of document language models. (The former uses k-means clusters

and the latter uses LDA clusters (Blei et al. 2003);5 note that the interpolation-t algorithm

does not require the clusters to be overlapping.)

Document-cluster relationship Both the aspect-t and interpolation-t algorithms use

clusters as ‘‘representatives’’ (‘‘proxies’’) of their constituent documents. However, if the

different clusters are thought of as potentially representing different aspects manifested in

3 The aspect-based models were originally termed ‘‘aspect-x’’ (Kurland and Lee 2004).
4 The original name of this algorithm was interpolation (Kurland and Lee 2004).
5 We hasten to point out that the models in Liu and Croft (2004) and Wei and Croft (2006) operate at the
term-level, that is, interpolation is performed upon estimates of term probabilities. In contrast, interpolation-
t operates at the score level by fusion of language-model-based similarity scores.
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the initial list Dinit; then a document can be associated (with varying degrees of strength)

with different aspects (clusters) regardless of which clusters it belongs to. Thus, we con-

sider the alternative of smoothing a document language model with the language models of

all clusters in ClðDinitÞ to a degree controlled by the document-cluster language-model-

based similarity. Doing so results in a formulation that is more ‘‘faithful’’ to the original

probabilistic formulation in Eqs. 1 and 2 than those of the aspect-t and interpolation-t

algorithms. (Recall that the latter two use truncation of the summation in Eqs. 1 and 2.) We

thereby define the algorithms aspect-f and interpolation-f using the scoring functions:

(‘‘-f’’ stands for using the full summation in Eqs. 1 and 2)

Scoreaspect�f ðdÞ ¼
X

c2ClðDinitÞ
pcðqÞpdðcÞ;

and

Scoreinterpolation�f ðdÞ ¼ kpdðqÞ þ ð1� kÞ
X

c2ClðDinitÞ
pcðqÞpdðcÞ;

respectively.

2.2 Language-model-based similarity induction

In this section we present our estimate for the language-model similarity px(y). For lan-

guage model induction we treat documents and queries as term sequences.

While there are various approaches for representing clusters (Liu and Croft 2006b,

2008), our focus here is on the merits (or lack thereof) of our re-ranking methods.

Therefore, we take the standard approach, which was shown to be effective in several

applications of cluster-based retrieval (Kurland and Lee 2004, 2006; Liu and Croft 2004),

and represent a cluster by the term sequence that results from concatenating its constituent

documents; the order of concatenation has no effect since we are only going to define

unigram language models that assume term independence.

We use tf(w [ x) to denote the number of times that term w occurs in the text (or text

collection) x. The maximum likelihood estimate (MLE) of w with respect to x is defined as

epMLE
x ðwÞ ¼def tf ðw 2 xÞP

w0 tf ðw0 2 xÞ :

To cope with the zero probability problem, namely, the assignment of zero probability

to unseen terms, we adopt the widely used Dirichlet-smoothed estimate (Zhai and Lafferty

2001; Croft and Lafferty 2003):

ep½l�x ðwÞ ¼
def tf ðw 2 xÞ þ l � epMLE

C ðwÞP
w0 tf ðw0 2 xÞ þ l

;

l is a free parameter that controls the amount of reliance on corpus statistics. We extend

the estimate just described to a term sequence w ¼ w1w2 � � � wn using the term-indepen-

dence assumption:

p½l�x ðwÞ ¼
def Yn

j¼1

ep½l�x ðwjÞ: ð3Þ

Using the estimate from Eq. 3 for estimating the similarity px(y) will result in longer

texts y being assigned lower similarity values than shorter texts are. Also, for very long
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texts (as is the case for clusters, for example), the estimate might cause underflow prob-

lems. Therefore, we use a previously proposed estimate (Lavrenko et al. 2002; Kurland

and Lee 2004, 2005), which is based on the Kullback Leibler divergence Dð�jj�Þ (Cover and

Thomas 1991)

pKL;l
x ðwÞ ¼def

exp �DðepMLE
w ð�Þjj eP½l�x ð�ÞÞ

� �
: ð4Þ

Using some probability algebra (see, for example, Lafferty and Zhai 2001), it can be

shown that the estimate from Eq. 4 is equivalent to

pKL;l
x ðwÞ ¼ HðwÞ � p½l�x ðwÞ

1
jwj; ð5Þ

where H is the entropy function.

Thus, the estimate px
KL,l(w) avoids the length-bias caused by the unigram language

model through length normalization. Furthermore, the entropy of a document (language

model) was shown to be connected with relevance in the re-ranking setting (Kurland and

Lee 2005); hence, our similarity estimate ‘‘favors’’ documents that have a higher ‘‘prior’’

probability of being relevant to the query.

Also, it is important to point out that while the estimates pKL;l
x ðwÞ and p½l�x ðwÞ are

equivalent for the purpose of ranking documents in response to a fixed query (Lafferty and

Zhai 2001), in the re-ranking setting this equivalence does not hold since we estimate

similarities between different pairs of text items.

Finally, we note that while the estimate pKL;l
x ðwÞ does not form a valid probability

distribution, normalizing it for cases wherein one might be needed (e.g., for the distribution

of clusters over a document in the aspect models) results in degraded re-ranking perfor-

mance and therefore we use the estimate as is.

3 Related work

Preece (1973) was perhaps the first to suggest the use of query-specific clusters, although

he did not present specific retrieval models for utilizing them.

Willett (1985) proposed to rank query-specific clusters and then to use the constituent

documents of the highest-ranked ones to create a document-based ranking. He noted that

the limited effectiveness of the approach could be attributed to the correlation-based

ranking that was used to rank the clusters in response to the query. Liu and Croft (2004)

took a similar approach for re-ranking, but used a language-model-based estimate for the

query-cluster similarity; however, the resultant performance did not transcend that of the

initial ranking. We compare the re-ranking performance of this cluster-ranking approach

with that of the methods from Sect. 2 in Sect. 4.1.

Several researchers showed that if the documents at the top ranks of an initially

retrieved list are clustered, then there is a cluster (a.k.a the optimal cluster) that if retrieved

in its entirety, yields performance that is better than that of the initial ranking (Hearst and

Pedersen 1996; Tombros et al. 2002; Kurland 2006). Moreover, such a cluster exists for

different clustering approaches: partitioning (Hearst and Pedersen 1996), hierarchical

agglomerative clustering (Tombros et al. 2002) and nearest-neighbor (soft) clustering

(Kurland 2006, Chapter 7). While automatically detecting the optimal cluster is a difficult

challenge (Willett 1985; Liu and Croft 2004; Kurland 2006, 2008; Liu and Croft 2006a;

Kurland and Domshlak 2008), this clustering pattern—which gives support to van
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Rijsbergen’s cluster hypothesis (van Rijsbergen 1979) in the re-ranking setting—helps

users to more quickly detect relevant documents if the results are visualized (and navi-

gated) using cluster-based interfaces (Hearst and Pedersen 1996; Leuski 2001).

In work on cluster-based retrieval in the language modeling framework researchers have

proposed to smooth a document language model with those of query-independent clusters

so as to utilize corpus-context in representing documents (Azzopardi et al. 2004; Kurland

and Lee 2004; Liu and Croft 2004; Tao et al. 2006; Wei and Croft 2006). Liu and Croft

(2004) examined this cluster-based smoothing approach for re-ranking, having a document

language model smoothed with that of the single query-specific (hard) cluster to which it

belongs. As stated in Sect. 2, Liu and Croft’s model can be viewed as a specific case of the

interpolation-t algorithm when implemented with a hard clustering approach. Similarly, the

re-ranking model of Lee et al. (2001), who use hierarchical agglomerative clustering, is

also a special case of the interpolation-t algorithm: a document is scored by interpolation of

its query-similarity score with the query-cluster similarity score of the single cluster to

which it belongs; however, the clusters that are used are static query-independent clusters

that are related to the query and not query-specific clusters. In Section 4.6 we present the

relative merits of using nearest-neighbor overlapping clusters with respect to hard clusters

for the interpolation-t and interpolation-f algorithms.

Query-specific clusters reflect inter-document similarities within the initial list. There

has been an increasing use of graph-based techniques for modeling these inter-document

similarities for document (re-) ranking (Daniłowicz and Baliński 2000; Kurland and Lee

2005; Zhang et al. 2005; Kurland and Lee 2006). The general idea is to identify documents

that are central with respect to the initial list—i.e., similar to many (central) documents in

the list—using graph-based methods, and use this centrality as criterion for ranking.

Kurland and Lee (2006) show that it is more effective in general to incorporate both

document-based and cluster-based information in the graphs than to use only the former as

is the case in Daniłowicz and Baliński (2000) and Kurland and Lee (2005). Specifically,

Kurland and Lee (2006) use the HITS (hubs and authorities) algorithm (Kleinberg 1998)

over bipartite graphs of documents on the one side and query-specific clusters on the other

side (with edge weights representing cluster-document similarities) to find central docu-

ments and clusters. They show that document authoritativeness (as induced by HITS) is

connected with relevance and that authoritative query-specific clusters contain a high

percentage of relevant documents. We compare the principles underlying their methods,

and their performance, to those of ours in Sect. 4.5.

In a related vein, Baliński and Daniłowicz (2005) and Diaz (2005) apply score regu-

larization to ensure that similar documents within an initially retrieved list receive similar

scores. Recall that the interpolation-f algorithm assigns high scores to documents that are

similar both to the query and to clusters that are similar to the query. Now, replacing

clusters with documents (i.e., each document serves as a cluster), we get that a score of a

document depends on its similarity to the query and on the similarity to the query of

documents to which it is similar—the underlying principle of score regularization (Diaz

2005). We study this algorithm in Sect. 4.7.

Finally, it is important to note that a disadvantage of using query-specific clustering is

the computational cost involved in creating the clusters. In contrast to offline clustering,

wherein the clusters are created once and then used for all queries, with query-specific

clustering each query requires a new clustering to be performed upon the list of retrieved

documents. Therefore, several researchers proposed fast algorithms for clustering retrieved

results (Cutting et al. 1992; Zamir and Etzioni 1998). The focus of the work in this paper,

on the other hand, is on the potential effectiveness in exploiting clustering and not on the
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efficiency of the clustering method. In fact, as we show in Sect. 4.6, our best performing

algorithm (in terms of effectiveness) yields very good precision-at-top-ranks performance

with several different clustering methods.

4 Evaluation

4.1 Experimental setup

We conducted our experiments on the following three TREC corpora (Voorhees and

Harman 2005):

Corpus # Of docs Queries Disks

AP 242,918 51–64, 66–150 1–3

TREC8 528,155 401–450 4–5 (–CR)

WSJ 173,252 151–200 1–2

These benchmarks were used in previous work on re-ranking (Kurland and Lee 2005,

2006); specifically, the methods in Kurland and Lee (2006) use query-specific-cluster

information and will serve as reference comparison for our best performing re-ranking

method. The TREC8 document collection is highly heterogeneous and is considered a very

challenging benchmark with the 401–450 queries (Hu et al. 2003; Kurland et al. 2005;

Voorhees 2005); AP and WSJ, on the other hand, which are composed of only news

articles, are considered to be more homogeneous (Voorhees and Harman 2005).

We applied basic tokenization and Porter stemming (Porter 1980) via the Lemur toolkit

(www.lemurproject.org), which we also used for language-model induction. Topic titles

served as queries.

Since we are interested in the re-ranking effectiveness of our approaches when applied

to a relatively short initial list Dinit; we focus on evaluation metrics that measure the

precision at top ranks of the resultant document list. Specifically, we use the precision at

the top 5 and 10 documents (henceforth prec@5 and prec@10, respectively) and the mean

reciprocal rank (MRR) of the first relevant document (Shah and Croft 2004). To determine

statistically significant differences in performance, we use the Wilcoxon two-tailed test at a

confidence level of 95%.

To facilitate the comparison with some recent work on cluster-based re-ranking (Kur-

land and Lee 2006), we have taken the exact same experimental design choices, which are

intended for verifying the general validity of the re-ranking principles we explore rather

than for engaging in excessive parameter tuning:

– To create the initial list Dinit upon which re-ranking is performed, we use the estimate

pKL;l
d ðqÞ to rank all documents in the corpus. The value of l is chosen (using

exhaustive search) to optimize the MAP of the top 1,000 retrieved documents with

respect to the given set of queries; the idea is to have an initial list of a reasonable

quality. In fact, such ranking yields precision at top ranks performance that is

statistically indistinguishable from—though lower in absolute terms than—the results

obtained by optimizing l with respect to the evaluation metrics that we focus on. We

further discuss this at the below. In the experiments to follow, we set Dinit to be the 50

446 Inf Retrieval (2009) 12:437–460

123

http://www.lemurproject.org


highest-ranked documents according the above criterion and use the term initial
ranking to refer to the ranking by which Dinit was created.

– The smoothing parameter l, which controls the language-model-based similarity

estimate, is set to 2000 in all (re-ranking) algorithms following the recommendation in

Zhai and Lafferty (2001), except for when estimating pd(q) where we use the value

chosen for creating the initial list so as to maintain consistency.

– We only optimized settings for k (cluster size) and k (the interpolation parameter in the

interpolation-t and interpolation-f algorithms) with respect to precision at the top 5

documents,6 not with respect to all three evaluation metrics employed. While this

approach reflects a more realistic experimental setting than one wherein results are

presented for different optimized settings, our prec@10 and MRR results are therefore

not as high as they could have potentially been. The values of k and k were selected

from {2, 5, 10, 20, 30} and {0, 0.1,…,0.9}, respectively. In Sect. 4.3 we study the

performance sensitivity of our best performing re-ranking method with respect to the

values of k and k.

In Table 1 we summarize the scoring functions of the re-ranking algorithms that we

presented in Sect. 2 for convenience of reference. Whenever a re-ranking method assigns

different documents with the same score, we break the ties by document ID.

4.2 From query-independent to query-specific clusters

We first present the re-ranking performance numbers of the bag-select, aspect-t and

interpolation-t algorithms in Table 2. Recall that these algorithms are adaptations of

methods originally proposed for use with static query-independent clusters.

The first three rows in Table 2 specify reference-comparison data. The empirical upper
bound on re-ranking, which applies to any algorithm that re-ranks Dinit; indicates the

performance attained by placing all relevant documents from Dinit at the top of the resultant

list. The initial ranking, as mentioned above, was produced using pKL;l
d ðqÞ with l chosen to

optimize MAP at 1,000. We also present for comparison the performance results of the

CQL algorithm (Liu and Croft 2004), which is a cluster-based selection method. The CQL

algorithm first ranks the clusters in ClðDinitÞ by their similarity to the query pc(q) (ties are

broken by cluster ID), and then replaces each cluster with its constituent documents,

omitting repeats; documents within a cluster are ordered by their similarity to the query

pd(q). Thus, CQL echoes some previous work on cluster-based re-ranking (Willett 1985) as

mentioned in Sect. 3.

Our first observation from Table 2 is that the standard cluster-selection approach that is

represented by the CQL method does not yield effective re-ranking performance. (Compare

Table 1 Summary of re-ranking
algorithms

bag-select pdðqÞ �#ðc 2 ClðDinitÞ : d 2 cÞ
aspect-t

P
c2ClðDinitÞ:d2c pcðqÞ � pdðcÞ

aspect-f
P

c2ClðDinitÞ pcðqÞ � pdðcÞ
interpolation-t k � pdðqÞ þ ð1� kÞ

P
c2ClðDinitÞ:d2c pcðqÞ � pdðcÞ

interpolation-f k � pdðqÞ þ ð1� kÞ
P

c2ClðDinitÞ pcðqÞ � pdðcÞ

6 If two different parameter settings yield the same prec@5, we choose the one minimizing prec@10 so as to
provide conservative estimates of expected performance. Similarly, in case of ties for both prec@5 and
prec@10, we choose the setting minimizing MRR.

Inf Retrieval (2009) 12:437–460 447

123



CQL’s performance with that of the initial ranking.7) These results are in line with previous

findings (Willett 1985; Liu and Croft 2004). In contrast, the bag-select algorithm, which is a

cluster-based selection method that utilizes the structure induced by overlapping clusters,

outperforms the initial ranking in most relevant comparisons (corpus 9 evaluation measure).

We can also see in Table 2 that both cluster-based smoothing methods, aspect-t and

interpolation-t, outperform the initial ranking in most of the relevant comparisons. Fur-

thermore, both algorithms are in general more effective than the CQL and bag-select

algorithms, which implies that cluster-based smoothing is more effective for re-ranking

than cluster-based selection. This finding is in accordance with reports on utilizing static

query-independent clusters for ranking all documents in a corpus (Kurland and Lee 2004).

The interpolation-t algorithm is the best performing re-ranking method among those

presented in Table 2. Its performance is on many occasions substantially better than that of

the initial ranking (sometimes to a statistically significant degree). Recalling that inter-

polation-t interpolates the score of the aspect-t algorithm with a query-similarity score, and

observing that the former is more effective than the latter in most relevant comparisons,

attests that using document-query similarity information in the re-ranking setting can help

to improve effectiveness. (Refer back to the discussion in Sect. 2; we hasten to point out,

however, that interpolation-t incorporates an additional free parameter (k) on those used by

the aspect-t algorithm.)

4.3 Document-cluster relationship

Recall from Sect. 2 that in both the aspect-t and interpolation-t algorithms clusters can

represent (or smooth the language models of) only documents that they contain. We now

study the alternative of smoothing a document language model with those of all available

clusters (to an extent controlled by the document-cluster similarity) as is the case in the

aspect-f and interpolation-f algorithms.

The results in Table 3 clearly indicate that using all the clusters for smoothing is

superior to using only the clusters to which a document belongs. (Note that most of the

underlined numbers that indicate which of the ‘‘-f’’ and ‘‘-t’’ versions is superior appear in

‘‘-f’’ rows.) Thus, we see that even though the aspect-t and interpolation-t algorithms

Table 2 Performance numbers of re-ranking algorithms

AP TREC8 WSJ

prec@5 prec@10 MRR prec@5 prec@10 MRR prec@5 prec@10 MRR

upper bound .876 .788 .930 .944 .850 .980 .896 .800 1.000

init. ranking .457 .432 .596 .500 .456 .691 .536 .484 .748

CQL .448 .418 .549* .500 .432 .723 .504 .454* .680

bag-select .507 .494* .630 .532 .514* .660 .548 .488 .719

aspect-t .517* .496* .654 .548 .484 .688 .528 .496 .689

interpolation-t .527* .499* .651 .564* .494 .707 .568 .490 .725

For each evaluation setting, improvements over the initial ranking are given in italics; statistically signif-
icant differences with the initial ranking are indicated by *; bold highlights the best results per column

7 The performance of CQL can be improved if different cluster representations are used (Liu and Croft
2006b, 2008), as is the case for some other cluster-based retrieval algorithms (Kurland and Domshlak 2008).
However, experimenting with different cluster representations is out of the scope of this paper.
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smooth a document language model with those of (a few overlapping) clusters to which it

belongs, it is better to use all clusters for smoothing; this finding further supports the

importance of the context drawn from Dinit for representing documents.

We can also see in Table 3 that interpolation-f outperforms aspect-f in most relevant

comparisons—as was the case when comparing interpolation-t and aspect-t—showing

again the importance of using document-query similarity information for re-ranking.

Furthermore, interpolation-f is the best performing re-ranking algorithm among all those

considered. Specifically, in terms of prec@5—the metric for which performance was

optimized—interpolation-f always improves on the initial ranking by a wide margin that is

also statistically significant; in fact, interpolation-f is the only algorithm that achieves

statistically significant prec@5 improvement over the initial ranking for all corpora. In

addition, the prec@5 performance of interpolation-f is also substantially better than that of

document retrieval performed over the entire corpus using pKL;l
d ðqÞ with l chosen to

optimize prec@5; the prec@5 performance numbers of this optimized baseline are .465,

.512, .560, for AP, TREC8, and WSJ, respectively.

Further support to the effectiveness of the interpolation-f algorithm is given in Table 4,

wherein we present its MAP performance in comparison to that of the initial ranking.

(MAP was calculated at cutoff 50; therefore, the recall of interpolation-f and the initial

ranking is equivalent at this cutoff, and consequently, the relative ordering of relevant

documents is the only factor affecting MAP performance. In addition, recall that the values

of the free parameters of interpolation-f were chosen to optimize prec@5 and not MAP,

although the former has impact on the latter.) As we can see in Table 4, the MAP per-

formance of interpolation-f is better than that of the initial ranking to a statistically

significant degree on AP and WSJ; for TREC8, the MAP performance difference between

interpolation-f and that of the initial ranking is not statistically distinguishable.

Table 3 Comparison between the ‘‘truncated’’ (-t) and ‘‘full’’ (-f) versions of the aspect and interpolation
algorithms

AP TREC8 WSJ

prec@5 prec@10 MRR prec@5 prec@10 MRR prec@5 prec@10 MRR

init. ranking .457 .432 .596 .500 .456 .691 .536 .484 .748

aspect-t .517* .496* :654 .548 .484 .688 .528 .496 .689

aspect-f :537* :498* .628 :560* :504* :714 :576 :504 :759

interpolation-t .527* :499* :651 .564* .494 :707 .568 .490 .725

interpolation-f :537* .498* .628 :576* :496 .687 :592* :508 :767

Underline: best result in a ‘‘block’’ (corpus 9 algorithm 9 evaluation measure). Boldface: best result per
column. Statistically significant differences with the initial ranking are marked with ‘*’

Table 4 Comparison of the MAP performance (at cutoff 50) of interpolation-f with that of the initial
ranking

AP TREC8 WSJ

init. ranking .093 .175 .222

interpolation-f .100* .174 .238*

* Marks statistically significant differences with the initial ranking
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We further study the interpolation-f algorithm by examining its performance sensitivity

to the choice of cluster size (k) and the interpolation parameter (k). In Fig. 1 we present the

algorithm’s prec@5 performance (the metric for which we optimized performance) when

either fixing k (and optimizing with respect to k) or fixing k (and optimizing with respect to

k). We can clearly see that in both cases, and for every considered value of each of the

parameters, the performance of interpolation-f is well beyond that of the initial ranking

(depicted with horizontal line in all cases). In general, clusters of size 10 and k [ {0.6, 0.7}

guarantee (near) optimal prec@5 performance over all tested corpora.

4.4 Comparison with pseudo-feedback-based retrieval

The cluster-based methods that we presented exploit information from Dinit for re-ranking

it. Pseudo-feedback-based query-expansion methods (Buckley et al. 1994; Ruthven and

Lalmas 2003), on the other hand, exploit information from Dinit for defining a query model

and use it for ranking the entire corpus. We contrast the two paradigms by comparing the

performance of our best-performing method, interpolation-f, to that of using a relevance
model (Lavrenko and Croft 2001), which is considered to be a state-of-the-art pseudo-

feedback-based approach.

We use Lemur’s (www.lemurproject.org) implementation of relevance model number 1

(RM1), which follows the details in Lavrenko and Croft (2003), and which is based on the

I.I.D sampling method.

Specifically, following Lavrenko and Croft (2003) we use a Jelinek–Mercer-smoothed

document language model to estimate the probability assigned to term w by document

d 2 Dinit:

epJM;½a�
d ðwÞ ¼def

aepMLE
d ðwÞ þ ð1� aÞepMLE

C ðwÞ;

a is a free parameter. We then define the probability assigned to w by the relevance model

R as:

epRðw; aÞ ¼def X

d2Dinit

epJM;½a�
d ðwÞpðdjqÞ;

for query q = q1,…,ql of length l, p(d|q) is the normalized query likelihoodQl
i ep

JM;½a�
d ðqiÞ=

P
d02Dinit

Ql
i ep

JM;½a�
d0 ðqiÞ; which is based on a uniform-distribution assumption

for documents in Dinit:
An additional step often employed for improving the relevance model’s performance

(Connell et al. 2004; Cronen-Townsend et al. 2004; Metzler et al. 2005; Diaz and Metzler

2006). is term clipping: we define the probability epRðw; a; bÞ to be zero, except for the b
terms with the highest epRðw; aÞ; for which we define epRðw; a; bÞ as the normalized

epRðw; aÞ so as to have a valid probability distribution over these b terms; b is a free

parameter.

Also, as in prior work on relevance models (Abdul-Jaleel et al., 2004; Diaz and Metzler

2006), we examine a variant that interpolates the relevance model with the query-likeli-

hood for avoiding query drift; this results in the so-called ‘‘relevance model number 3’’

(RM3), which we will denote IR (for interpolated relevance-model):

epIRðw; a; b; cÞ ¼def
cepMLE

q ðwÞ þ ð1� cÞepRðw; a; bÞ;

(c is a free parameter; c = 0 amounts to using only R:Þ
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Then, to score documents using the interpolated relevance model (henceforth referred

to as simply ‘‘relevance model’’), we use the Kullback Leibler divergence

DðepIRð�; a; b; cÞjjep
½l�
d ð�ÞÞ; with l = 2,000 as for all our re-ranking algorithms. (Refer back

to Sect. 2.2 for details on the Dirichlet-smoothed estimate ep½l�d ð�Þ:Þ
The values of the free parameters that the relevance model is based on, namely a, b and

c, were chosen from {0.1, 0.3, 0.5, 0.7, 0.9, 1}, {25, 50, 75, 100, 500, 1000, 5000, ALL}

where ‘‘ALL’’ stands for all terms in the corpus (i.e., no clipping), and {0, 0.1, 0.2,…,0.9},

respectively. The chosen parameter values are those that result in an optimized prec@5

performance, following the optimization procedure that was described in Sect. 4.1.

In addition to using the relevance model to rank all documents in the corpus—a version

which we will refer to as Rel Model—as is standard practice, we examine a version that

uses the relevance model to only re-rank documents in Dinit—as is the case for our re-

ranking algorithms—which we refer to as Rel Model (re-rank). (Performance optimiza-

tion for each of the two relevance models was carried out independently.) The performance

results of the relevance model are presented in Table 5.

As we can see in Table 5, the interpolation-f algorithm outperforms the relevance model

in almost all relevant comparisons (corpora 9 evaluation metric), whether the relevance

model is used to rank all documents in the corpus, or is used to re-rank Dinit: (However, the

performance differences are not statistically significant.) In addition, recall that the per-

formance of interpolation-f was optimized with respect to two free parameters, while that

of the relevance models was optimized with respect to three. Furthermore, while the

performance of interpolation-f is better over all corpora to a statistically significant degree

than that of the initial ranking with respect to prec@5—the metric for which we optimized

performance—this is not the case for both versions of the relevance model; specifically, for

TREC8, both versions of the relevance model do not post a statistically significant prec@5

improvement over the initial ranking, and are substantially inferior to interpolation-f,

although not to a statistically significant degree.

4.5 Comparison to graph-based approaches for re-ranking

Recently, Kurland and Lee (2006) proposed a graph-based approach to re-ranking, which

utilizes query-specific clusters. They define a bipartite graph wherein vertices are docu-

ments from Dinit and clusters from ClðDinitÞ; and edges are drawn from a cluster to the a

Table 5 Performance comparison of the interpolation-f algorithm with a relevance model (RM3), which is
used either to rank all documents in the corpus (Rel Model), or to re-rank documents in Dinit (Rel Model
(re-rank))

AP TREC8 WSJ

prec@5 prec@10 MRR prec@5 prec@10 MRR prec@5 prec@10 MRR

init. ranking .457 .432 .596 .500 .456 .691 .536 .484 .748

Rel Model .503* .486* .585 .536 .462 .653 .588* .510 .739

Rel Model (re-rank) .511* .482* .598 .536 .470 .649 .588* .506 .741

interpolation-f .537* .498* .628 .576* .496 .687 .592* .508 .767

Boldface marks the best performance in a column; statistically significant difference with the initial ranking
is marked with a ‘*’
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documents it most resembles to (a is a free parameter), in a language model sense—i.e.,

pd(c); pd(c) also serves as a weight function for edges. Then, Kleinberg’s HITS algorithm

(hubs and authorities) (Kleinberg 1998) is used to assign documents with authority scores

and clusters with hub scores; the idea is to simultaneously identify the documents and

clusters that are most central with respect to the initial list Dinit—i.e., most reflecting the

context of Dinit and thereby potentially most relevant to the query—and to score documents

by their centrality (i.e., authority scores).

To re-anchor centrality information to the query, Kurland and Lee (2006) also suggest

to score a document by scaling its authority score with its query-similarity score pKL;l
d ðqÞ:

Thus, this approach ranks high documents that are both similar to the query and similar to

(many) clusters that are similar to (many) documents. Note that this is reminiscent of the

ranking method of the interpolation-f algorithm, which assigns high scores to documents

that are both similar to the query and similar to many clusters that are similar to the query.

The main difference between the approaches is the way by which clusters are relatively

weighted. In the case of the interpolation-f algorithm, cluster’s ‘‘importance’’ is determined

based on its similarity to the query. In the graph-based approach, on the other hand,

cluster’s importance is determined based on its similarity to central documents in Dinit:
We use the exact same implementation and optimization details as those described in

Kurland and Lee (2006) to score documents by either their authority scores (auth(d)) or by

scaling the authority scores with the query-similarity score ðauthðdÞ � pKL;l
d ðqÞÞ: Specifi-

cally, the cluster size k was set to {2, 5, 10, 20, 30} as for our re-ranking algorithms, and

the graph-out-degree a (i.e., the number of edges with a non-zero weight that connect a

cluster to documents) was set to {2, 4, 9, 19, 29, 39, 49}; the free parameters (k and a)

values were determined using the optimization procedure described in Sect. 4.1, which is

exactly the same as that in Kurland and Lee (2006).

We present in Table 6 the performance numbers of scoring a document by either of the

two mentioned authority-based approaches, along with the performance numbers of the

interpolation-f algorithm.

In comparing the interpolation-f algorithm with using only authority scores, we see in

Table 6 that interpolation-f is noticeably better in terms of prec@5—the metric for which

performance is optimized—for both TREC8 and WSJ. (For AP, using only authority scores

results in somewhat better performance than that of interpolation-f.) In comparison to

scaling the authority scores with query-similarity scores, interpolation-f posts prec@5

performance that is at least as good as that of the former for all corpora, with favorable

noticeable difference on WSJ. It is also important to note that in contrast to the graph-based

Table 6 Performance comparison of the interpolation-f algorithm with re-ranking by authority scores (as
induced over cluster-document graphs) and by scaling the authority scores by the document-query similarity
score

AP TREC8 WSJ

prec@5 prec@10 MRR prec@5 prec@10 MRR prec@5 prec@10 MRR

init. ranking .457 .432 .596 .500 .456 .691 .536 .484 .748

auth(d) .541* .501* .669 .544 .452 .674 .564 .514 .746

authðdÞ�pKL;l
d ðqÞ .537* .493* .630 .572* .490 .702 .572 .510 .771

interpolation-f .537* .498* .628 .576* .496 .687 .592* .508 .767

Boldface: best result per column; ‘*’ indicates a statistically significant difference with the initial ranking
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methods, interpolation-f attains statistically significant improvements over the initial

ranking with respect to prec@5 for all corpora.

4.6 Alternative clustering schemes

Heretofore, we have focused on nearest-neighbor overlapping clusters. However, as

mentioned in Sect. 2, the aspect and interpolation algorithms are not committed to a

specific clustering approach. Indeed, using the interpolation-t algorithm with hard clusters,

for example, amounts (modulo smoothing details) to the CBDM model8 of Liu and Croft

(2004), which scores document d by kpd(q) + (1 - k)pc(q), where c is the single hard

cluster to which d belongs; Liu and Croft use CBDM for the re-ranking task with hier-

archical agglomerative clustering algorithms. Using the interpolation-f algorithm with hard

clusters, on the other hand, results in smoothing a document language model with those of

hard clusters to which it does not belong, to an extent controlled by the document-cluster

similarity. If we think of clusters as exhibiting different (query-related) aspects manifested

in the initial list, then such a smoothing approach lets a document be represented by several

of these ‘‘aspects’’ rather than by (potentially) a single one. Hence, this approach could be

considered as ameliorating the overgeneralization caused by associating a document with a

single cluster (van Rijsbergen 1979).

We now study the effect of the clustering approach on the performance of the inter-

polation algorithm for both its variants, namely, interpolation-t and interpolation-f.

The first hard clustering approach that we consider is hierarchical agglomerative

clustering, which was the main focus of previous work on re-ranking (Willett 1985; Leuski

2001; Tombros et al. 2002; Liu and Croft 2004). We use a bottom-up approach and the

following criteria for merging clusters: single link, complete link, average distance, dis-

tance between centroids and the Ward criterion (El-Hamdouchi and Willett 1986); we refer

to these criteria using the abbreviations agg-single, agg-comp, agg-avg, agg-centroid and

agg-ward, respectively. To produce a list of non-overlapping clusters, we stop the merging

process when the number of clusters is a value in {2, 5, 10, 25} so as to roughly result in

an average cluster size equivalent to that used in the nearest-neighbor clustering method

that we have utilized so far.

We also use the k-means clustering algorithm in deference to some previous work on

visualization of retrieved results, which utilizes partitioning algorithms (Cutting et al.

1992; Hearst and Pedersen 1996). We set k to a value in {2, 5, 10, 25} to comply with the

choice made for the agglomerative clustering methods from above.

The clustering algorithms from above require a symmetric similarity measure, and are

usually implemented using a vector space representation. We therefore use a standard

tf.idf representation and the cosine similarity function that was used in previous work on

re-ranking with hard clusters (Willett 1985; Leuski 2001; Tombros et al. 2002; Liu and

Croft 2004). For completeness of comparison, we also implement a nearest-neighbor

clustering method using the same vector space representation and the cosine measure,

and set the number of clusters k to {2, 5, 10, 20, 30}, as was the case with the original

language model implementation; we use nn-VS to denote the vector-space-based nearest-

neighbor clustering and nn-LM to denote the original language-model-based nearest-

neighbor clustering.

8 In its original form, the CBDM method works at the term level, in contrast to the interpolation-t algorithm
that fuses language-model-based similarity scores.
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In Table 7 we present the performance numbers of the interpolation-t and interpolation-

f algorithms when utilizing the different clustering methods.9 Table 8 then summarizes the

relative performance patterns of interpolation-t and interpolation-f: each entry depicts in

non ascending order of performance the algorithms that improve on the initial ranking with

a relative difference of 2.5% or more; a hat ð̂Þ indicates that the difference is statistically

significant.

Our first observation with respect to Table 7 is that for all clustering methods in most of

the relevant comparisons (evaluation measure 9 corpora) both versions of the interpolation

algorithm (interpolation-t and interpolation-f) improve on the initial ranking, thereby

demonstrating its effectiveness as a general cluster-based re-ranking approach.

We can also see in Table 7b that for the interpolation-f algorithm, overlapping nearest-

neighbbor clusters are more effective than hard clusters. Specifically, both nearest-

Table 7 Performance numbers of the interpolation-t and interpolation-f algorithms with different clustering
methods

AP TREC8 WSJ

prec@5 prec@10 MRR prec@5 prec@10 MRR prec@5 prec@10 MRR

(a) Performance numebrs of the interpolation-t algorithm

init. ranking .457 .432 .596 .500 .456 .691 .536 .484 .748

nn-LM .527* .499* .651 .564* .494 .707 .568 .490 .725

nn-VS .519* .474 .644 .524 .446 .748 .584 .492 .761

agg-single .521* .488* .620 .528 .490* .662 .580 .530 .783

agg-comp .493 .467 .600 .524 .468 .674 .544 .488 .740

agg-avg .525* .490* .619 .540 .504* .675 .572 .532* .765

agg-centroid .523* .487* .592 .528 .492* .662 .592 .530 .773

agg-ward .491 .465 .587 .504 .446 .694 .584 .508 .715

k-means .475 .459 .579 .532 .486* .720 .568 .502 .743

(b) Performance numbers of the interpolation-f algorithm

init. ranking .457 .432 .596 .500 .456 .691 .536 .484 .748

nn-LM .537* .498* .628 .576* .496 .687 .592* .508 .767

nn-VS .523* .490* .642 .572* .476 .760 .608* .544* .758

agg-single .493 .482* .582 .516 .468 .704 .552 .476 .747

agg-comp .513* .480* .613 .564* .508* .750 .584 .534 .771

agg-avg .503 .482* .599 .524 .468 .738 .568 .506 .767

agg-centroid .493 .482* .584 .508 .466 .673 .556 .494 .748

agg-ward .525* .491* .612 .536 .484 .685 .592 .530 .762

k-means .509 .465 .584 .556* .482 .701 .580 .520 .753

Boldface: best result per column; ‘*’: significant difference with the initial ranking

9 The presented results for all clustering approaches are based on the optimization criterion that was
described in Sect. 4.1.
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neighbor-based implementations of interpolation-f (nn-VS and nn-LM) are the only

methods among those in Table 7 that yield prec@5—the metric for which performance

was optimized—performance that is better to a statistically significant degree than that of

the initial ranking for all corpora. For the interpolation-t algorithm (refer to Table 7a), the

best performance numbers are often obtained by a nearest-neighbor clustering approach

(refer to the boldfaced numbers), although the nn-VS version is not the top-performing

clustering method among those that are based on a vector-space representation.

The comparison of the interpolation-t and interpolation-f algorithms in Table 8 shows

that except for the cases of agg-single, agg-avg, and agg-centroid, interpolation-f is

superior to interpolation-t (‘‘F’’ is positioned to the left of ‘‘T’’). This finding gives further

support to the argument from above regarding the potential in using interpolation-f to

ameliorate the overgeneralization caused by associating a document with, and representing

it by, the single cluster to which it belongs. Additional exploration reveals that for the agg-

single, agg-avg and agg-centroid cases, the clustering usually results in one large cluster

along with very few small ones, each of which often contains a single document. Thus, it

seems that in these cases the interpolation-t algorithm ‘‘benefits’’ from separating what

could be considered as ‘‘outliers’’ from the rest of the documents, while the interpolation-f

algorithm does not, since for each document all clusters are considered.

All in all, we believe that the most important message arising from the above analysis is

that the interpolation algorithm is a highly effective paradigm for re-ranking that can

utilize different clustering methods, whether they result in (soft) overlapping clusters or

hard clusters; nearest-neighbor (overlapping) clusters, however, do seem to be a better

choice in general than hard clusters for cluster-based smoothing in the interpolation

algorithm.

4.7 Clusters-mediated similarity versus distinct document similarity

The aspect-f algorithm assigns document d
P

c2ClðDinitÞ pcðqÞpdðcÞ: the interpolation-f

algorithm assigns d the score kpdðqÞ þ ð1� kÞ
P

c2ClðDinitÞ pcðqÞpdðcÞ: In these two scoring

functions, clusters only play the role of smoothing: their language models are used to

smooth d’s language model so as to provide ‘‘context’’ from the list Dinit:

Table 8 Comparison of the interpolation-t (T) and interpolation-f (F) algorithms when utilizing different
clustering methods

nn-LM nn-VS agg-single agg-comp agg-avg agg-centroid agg-ward k-means

AP prec@5 F̂T̂ F̂T̂ T̂F F̂T T̂F T̂F F̂T̂ FT

prec@10 T̂F̂ F̂T T̂F̂ F̂T T̂F̂ T̂F F̂T̂ FT

MRR TF TF T F T FT

TREC8 prec@5 F̂T̂ F̂T TF F̂T TF T FT F̂T

prec@10 FT F T̂F F̂T T̂F T̂ FT T̂F

MRR FT F F T

WSJ prec@5 F̂T F̂T TF F TF TF FT FT

prec@10 F F̂ T F T̂F T FT FT

MRR F T F F T

Each entry of the table depicts in non-ascending order of performance the algorithm(s) among the two (if
any) that post a 2.5% (or more) relative performance improvement over the initial ranking (a hat (‘‘̂ ’’)
indicates that the improvement is significant). Bold highlights the best performing algorithm per entry
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We therefore ask now the following question: if clusters are indeed required only for

providing context within the list Dinit; can single documents play the same role? We study

this question by simply defining singleton clusters, i.e., each document in Dinit serves as a

cluster. Then, the scoring functions of the aspect-f and interpolation-f algorithms becomeP
di2Dinit

pdi
ðqÞpdðdiÞ and kpdðqÞ þ ð1� kÞ

P
di2Dinit

pdi
ðqÞpdðdiÞ; respectively.

Note that in this version the aspect-f algorithm assigns relatively high scores to docu-

ments that are similar (to a large extent) to many other documents in Dinit that are similar to

the query, and interpolation-f integrates this information with direct similarity to the query.

Table 9 presents the performance results of using documents as singleton clusters in

both the aspect-f and interpolation-f algorithms. Our first observation is that while the

aspect-f algorithm (with singleton clusters) only sometimes outperforms the initial ranking,

the interpolation-f (with singleton clusters) does so in almost all of the relevant

comparisons.

When comparing the performance of the aspect-f and interpolation-f algorithms when

language-model-based nearest-neighbor clusters (nn-LM) are used, as in our original

implementation, to that obtained by using singleton clusters (i.e., documents), we clearly

see in Table 9 that the former is a much better approach for both algorithms (aspect-f and

interpolation-f) than the latter. (Refer to the underlined numbers.) This finding gives fur-

ther support to the importance of clusters in providing context from the initial list Dinit:
10

Finally, the fact that the interpolation-f algorithm almost always outperforms the aspect-

f algorithm when singleton clusters are used (as is the case for using nearest-neighbor

clusters) shows again the importance of using document-query similarity information in the

re-ranking setting.

5 Conclusions

We showed that algorithms that were originally designed for using static query-indepen-

dent clusters for ranking an entire corpus in response to a query can be adapted to utilize

query-specific clusters for effectively re-ranking documents in an initially retrieved list so

10 A similar conclusion with respect to the superiority of clusters to documents for providing (query-
independent) corpus context was made in Kurland et al. (2005).

Table 9 Performance comparison of the aspect-f and interpolation-f algorithms with nearest-neighbors (in
LM space) clusters (‘‘nn-LM’’) versus singleton (‘‘single.’’) clusters, wherein each document serves as a
cluster

AP TREC8 WSJ

prec@5 prec@10 MRR prec@5 prec@10 MRR prec@5 prec@10 MRR

init. ranking .457 .432 .596 .500 .456 .691 .536 .484 .748

aspect-f (single.) .499 .477 .622 .508 .448 .653 .520 .484 .687

aspect-f (nn-LM) :537* :498* :628 :560* :504* :714 :576 :504 :759

interpolation-f (single.) .515 .497* .615 .536 .482 :698 .564 :510 .696

interpolation-f (nn-LM) :537* :498* :628 :576* :496 .687 .592* .508 :767

Underline: best performance within a block (algorithm 9 cor-pus 9 evaluation metric). Boldface: best
performance per column; *: statistically significant difference with the initial ranking
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as to improve precision at the top ranks. The best-performing algorithm that we developed

consistently outperforms both the initial document ranking and a state-of-the-art pseudo

feedback method. In further exploration we studied the effect of various—both hard and

soft—clustering algorithms on the effectiveness of cluster-based smoothing for the re-

ranking task, and showed the importance of clusters in providing context from the initial

list by comparison to using single documents to this end.

Acknowledgments The author thanks Lillian Lee for many valuable discussions and comments. Part of
the work that is described in this paper was done while the author was at Cornell University. The paper is
based upon work supported in part by the National Science Foundation under grant no. IIS-0329064 and by
a research award from Google. Any opinions, findings, and conclusions or recommendations expressed are
those of the author and do not necessarily reflect the views of any sponsoring institutions or the U.S.
government.

References

Abdul-Jaleel, N., Allan, J., Croft, W. B., Diaz, F., Larkey, L., Li, X., Smucker, M. D., & Wade, C. (2004).
UMASS at TREC 2004—novelty and hard. In Proceedings of the Thirteenth Text Retrieval Conference
(TREC-13) (pp. 715–725).

Azzopardi, L., Girolami, M., & van Rijsbergen, K. (2004). Topic based language models for ad hoc
information retrieval. In Proceedings of International Conference on Neural Networks and IEEE
International Conference on Fuzzy Systems (pp. 3281–3286).
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