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Abstract

In this paper we define a measure for tex-
tual entailment recognition based on the
graph matching theoryapplied to syntac-
tic graphs. We describe the experiments
carried out to estimate measure’s param-
eters with SVM and we report the results
obtained on the Textual Entailment Chal-
lenge development and testing set.

1 Introduction

Graph distance/similarity measures are widely rec-
ognized to be powerful tools formatching problems
in computer vision and pattern recognition appli-
cations (Bunke and Shearer, 1998). Objects to be
matched (two images, patterns, etc.) are represented
as graphs, turning the recognition problem into a
graph matching task. As hypothesis (H) and text (T)
may be seen as two syntactic graphs we can reduce
the textual entailment(Dagan and Glickman, 2004)
recognition problem to a graph similarity measure
estimation even if textual entailment has particular
properties:a) unlike the classical graph problems, is
not symmetric;b) node similarity can not be reduced
to thelabel level(e.g. token similarity);c) similarity
should be estimated considering also linguistically
motivatedgraph transformations(e.g., nominaliza-
tion and passivization).

In principle, textual entailment is a transitive ori-
ented relation holding in one of the following cases:

1. T semantically subsumesH (e.g., in H:[The
cat eats the mouse] andT:[the cat devours the
mouse],eatgeneralizesdevour).

2. T syntactically subsumesH (e.g., inH:[The cat
eats the mouse] andT:[the cat eats the mouse in
the garden],T contains a specializing preposi-
tional phrase).

3. T directly impliesH (e.g.,H:[The cat killed the
mouse],T:[the cat devours the mouse]).

Taking this into account we define a measure
E(XDGT ,XDGH) for the entailment relation based
onXDGT andXDGH , i.e., the syntactic represen-
tation of the two sentencesT andH. We work un-
der two simplifying assumptions:H is supposed to
be a sentence describing completely a fact in an as-
sertive or negative way andH should be a simple
S-V-O sentence. Our measure has to satisfy the fol-
lowing properties: (a) having a range between 0 and
1, assigning higher values to couples that are more
likely in entailment relation, and a specific orien-
tation, E(XDGT ,XDGH) 6= E(XDGH ,XDGT );
(b) the overlap betweenXDGT andXDGH has to
describe if a subgraph ofXDGT implies the graph
XDGH . Linguistic transformations (such as nomi-
nalization, passivization, and argument movement),
as well as negation, must be also considered, as they
can play a very important role.

2 Basic Definitions

For the syntactic representation we rely on the ex-
tended dependency graph (XDG) (Basili and Zan-
zotto, 2002). AnXDG = (C,D) is basically a
dependency graph whose nodesC areconstituents
and whose edgesD are thegrammatical relations
among the constituents. Constituents are lexicalised



syntactic trees with explicitsyntactic headsandpo-
tential semantic governors(gov). Dependencies in
D represent typed and ambiguous relations among
a constituent, thehead, and one of itsmodifiers.
Ambiguity is represented usingplausibility (be-
tween 0 and 1).

Having the formalism it is possible to define how
two structurally similar graphs are one subsump-
tion of the other. GivenXDGH = (CH , DH)
andXDGT = (CT , DT ), XDGH is in a isomor-
phic subsumptionrelation withXDGT (XDGH �
XDGT ), if two bijective functionsfC andfD exist
respectively related to the constituentsC and the de-
pendenciesD (fC : CT → CH andfD : DT →
DH ). They describe the oriented relation of sub-
sumption between nodes and edges ofH andT . Iso-
morphic subsumptionwill capture textual entailment
cases 1 and 3, that is, circumstances in which each
node and edge ofH has a correspondent inT , and
vice-versa.

We denote withXDG′
T ⊆ XDGT a subgraph

of XDGT . A subgraph subsumption isomorphism
betweenXDGH andXDGT , written asXDGH v
XDGT , holds if it existsXDG′

T ⊆ XDGT so that
XDGH � XDG′

T . Subgraph subsumption iso-
mophismcorrespond to textual entailment case 2,
i.e, when there are nodes/edges ofT not mapped in
H, but all nodes/edges ofH are mapped inT . In-
deed, as the text entailment definition suggests,T
can contain more information thanH.

To tackle the problem of distortions in the syn-
tactic and semantic interpretation, we can imagine
an entailment measure based on the maximal sub-
graphXDG′

H of XDGH (hereaftermaximal com-
mon subsumer subgraph, mcss) that is in asubgraph
subsumption isomorphismrelation withXDGT , i.e.
XDG′

H v XDGT . The measure should consider
both the distance betweenXDG′

H andXDGH and
the generalisation steps necessary to draw the rela-
tionXDG′

H v XDGT .

3 A Rule-based Similarity Measure

To settle the measure the first problem is to extract
XDG′

T , i.e., the maximal subgraph ofXDGT that
is in a subgraph isomorphism relation withXDGH ,
through the definition of the functionsfC (Sec.3.1)
andfD (Sec.3.2).

3.1 Node subsumption

To find the mcss graph, we need to check that
XDG′

H ⊆ XDGH andXDG′
T ⊆ XDGT are in

the isomorphic relationXDG′
H � XDG′

T . This
is possible if the selection process of the subsets of
the graphs nodes guarantees the possibility of defin-
ing the functionfC . This procedure should try to
map each constituent ofXDGH to its most similar
constituent inXDGT . If this is done, the bijective
functionfC is derived by construction. The mapping
process is based on the notion ofanchors, defined as
a = (ch, ct, sm), holding an hypothesis and a text
constituent (ch andct), and the degree ofsemantic
similarity sm ∈ [0, 1] between the two. The set of
anchorsA for an entailment pair contains an anchor
for each one of the hypothesis constituents having a
correspondences in the textT . For example in the
entailment pair of Fig. 1,fC produces the mapping
pairs [The red cat - The carmine cat], [killed - de-
vours], [the mouse - the mouse].

To determine the best setA, it is necessary to de-
fine the semantic similaritysm. If ch is a noun or a
prepositional phrase, similarity is evaluated as:

sm(ch, ct) = α ∗ sim(govch, govct) + (1 − α) ∗ simsub(ch, ct)

where gov is the constituent governor,α is an
empirically evaluated parameter used to weight
the importance of the governor, andsimsub takes
into account similarity among the all the other
subcostituents ofch andct. This latter is defined as:

simsub(ch, ct) =

∑
sh∈Sch

max
st∈Sct

sim(sh, st)

|Sch|

where Sch and Sct are the set of remaining sim-
ple constituents respectively ofch andct. Finally,
sim expresses the similarity among two simple con-
stituents (set to 1 if simple constituents have the
same surface or stem); otherwise, a semantic sim-
ilarity weight β ∈(0,1) is assigned looking at pos-
sible WordNet relations (synonymy, entailment and
generalization).

Whench is a verb phrase a different analysis oc-
curs. In fact, a verb anchor can assume differentlev-
elsof similarity, according to the semantic value of
its modal. For examplemust go-could goshould get
a lower similarity thanmust go-should go. A verb
phrase is thus composed by its governorgov and its



Figure 1: An example of entailment couple in the XDG formalism. Solid lines express grammatical relations
D (with typeandplausibility); dotted lines express anchorsai betweenH andT constituents.

modal constituentsmod. The overall similarity is
thus:

sm(ch, ct) = γ ∗ sim(govch, govct)+ (1− γ) ∗ dist(modch, modct)

wheredist∈[0, 1] is empirically derived as the se-
mantic distance between two modals (e.g.,must is
nearer toshould than tocould) (classified as generic
auxiliaries, auxiliaries of possibility and auxiliaries
of obligation). Specific cases of syntactic variations,
such as active/passive alternation and nominaliza-
tion are properly treated.

3.2 Edge subsumption

The anchor setA represents the nodes of themcss.
We will use fD to derive the edges of themcss.
As XDG edges represent syntactic dependencies
among constituents, for each anchora ∈ A the
syntactic structure ofch and ct is checked, and a
related syntactic similarityss(ch, ct) ∈ [0, 1] is
evaluated. In order to obtainss, it must be firstly
defined the set of edgesEch coming out fromch
(in Figure 1 example,Ekilled = {V sog, V obj})
and the corresponding set of connected nodeslch
(e.g. lkilled = {[the red cat], [the mouse]}).
In the same way,Ect and lct are defined (e.g.
Edevour = {V sog, V obj, V PP} and lct =
{[the carmine cat], [the mouse], [in the garden]}).
AL is defined as the set of anchors that contain
overlapping linked constituents, that is, con-
stituents linked with the same syntactic dependency
to ch and ct respectively (for example,a =
([the red cat], [the carmine cat], 0.95) ∈ AL, as
the two constituents are both linked tokilled and
devourvia aV sog edge).ss is defined as:

ss(ch, ct) =

∑
a∈AL

sma

|lch|
Syntactic similarity, defined byfD, will cap-

ture how much similar the syntactic structure ac-
companied to two constituents (i.e., the edges of

the graphs) are, by considering both their syntactic
properties (i.e., the common dependencies) and the
semantic properties of the constituents to which they
are linked (i.e., the similaritysma of the anchor of
the linked constituents).

3.3 Graph Similarity Measure

Both semantic (sm) and syntactic (ss) similarity
(derived respectively fromfC andfD) must be taken
into consideration to evaluate the overall graph sim-
ilarity measure, as the former captures the notion of
node subsumption, and the latter the notion of edge
subsumption. For each pair(ch, ct) belonging to the
set of anchorsA a global similarity is evaluated as:

S(ch, ct) = δ ∗ sm(ch, ct) + (1− δ) ∗ ss(ch, ct)
whereδ is a manually tuned parameter. The over-
all graph similarity is thus estimated as the average
similarity of the anchorsa ∈ A over total number of
anchors:

E(XDGT ,XDGH) =

∑
A

S(ch, ct)

|A|
It is possible to predict if an entailment rela-
tion holds betweenH and T couple, verifyng
E(XDGT ,XDGH) against a manually tuned thresh-
old t.

4 Applying SVM to Evaluate Parameters

As clear from the previous sections, our measure de-
pends on many parameters (α, β, γ, andδ). These
parameters may be evaluated by a machine learning
algorithm such as SVM. Due to the basic assumption
thatH should be aS-V -O sentence, feature spaces
can be easily set. In order to comparatively evalu-
ate the importance of different features we defined
these feature sets: the featuresG related to the graph
equivalence measure, i.e.G = { Ssim, Ssimsub, Sss,
Vsm, Vss, Osim, Osimsub, Oss }; the featuresA re-
lated to the number of commonly anchored depen-
dencies within constituents to the graph equivalence



D1 D3 D4 D5 D6
L 51.16(±3.98) - - - -
L,T ,G β = 0.5 - 55.28(±2.44) 56.14(±2.51) 56.40(±2.71) 56.72(±2.92)
L,T ,G β = 1 - 56.37(±2.45) 57.14(±2.94) 57.37(±3.45) 57.12(±3.56)
L,T ,G,A β = 1 - - 57.20(±3.01) 57.42(±3.36) 57.12(±3.38)

Table 1:Preliminary analysis on the develpment set using SVM

measure, i.e.A = { |lch|, |lct|}; T that are the fea-
tures related to the textual entailment subtasks (CD,
MT, etc.) Feature values are defined in Sec. 3. A
final and less complex feature set isL that repre-
sents the percentage ofH tokens and ofH lemmas
in common withT .

5 Results and preliminary evaluation

Before submitting the two runs of the two systems
we estimated the parameters over the development
set. For the first system referred asrule-basedwe
set the parameters at the best value, i.e.α = 0.85,
γ = 0.85, andδ = 0.5. Moreover, thethresholdfor
predicting a true entailment relation has been set to
t = 0.65. For the second system referred asSVM-
basedthe experiments reported in Tab. 1 have been
carried out. The table reports the accuracy of the
classifier over the different parameterizations. Rows
represent different feature spaces and when neces-
sary the value of the parameterβ. Columns rep-
resent different degree of the SVM type 1 polyno-
mial kernel. For these preliminary experimentsα
andγ have been set respectively to1 and0.85. This
preliminary setting ofα, β, andγ seems to be in
contrast with the aim of using SVM to estimate the
measure parameters, but it is necessary to establish
the initial setA of anchors over with values of the
features may be computed. These experiments have
been made in 3-fold cross validation repeated 10
times. The development set has been randomly di-
vided 10 times (with a pseudo-random function and
with 10 fix seeds). The results are reported as mean
and standard deviation over 30 runs. All the feature
spaces are better than the baseline feature spaceL.
We submitted the system that had the best result in
this investigation.

Results over the competition test set are reported
in Table 5. As expected by the preliminary anal-
ysis over the two development set results are not
extremely high. Some trend has been somehow re-

measure rule-based SVM-based
cws 0.5574 0.5591

accuracy 0.5245 0.5182
precision 0.5265 0.5532

recall 0.4975 0.1950
f 0.5116 0.2884

rule-based SVM-based
TASK cws accuracy cws accuracy

CD 0.8381 0.7651 0.7174 0.6443
IE 0.4559 0.4667 0.4632 0.4917

MT 0.5914 0.5210 0.4961 0.4790
QA 0.4408 0.3953 0.4571 0.4574
RC 0.5167 0.4857 0.5898 0.5214
PP 0.5583 0.5400 0.5768 0.5000
IR 0.4405 0.4444 0.4882 0.4889

Table 2:Competition results

spected. The precision of theSVM-basedis higher
than the precision of therule-basedapproach. How-
ever, it loses many points with respect to the prelim-
inary evaluations, more than the expected standard
deviation. The recall of the method is instead in line
with the preliminary experiments. On this final set
the accuracy of therule-basedapproach has been
higher of theSVM-basedapproach as happened on
the development set. Further analysis are needed to
better explain these results.
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