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Abstract

The use of quality information for multilevel speaker recognition systems is addressed in this contribution. From a def-
inition of what constitutes a quality measure, two applications are proposed at different phases of the recognition process:
scoring and multilevel fusion stages. The traditional likelihood scoring stage is further developed providing guidelines for
the practical application of the proposed ideas. Conventional user-independent multilevel support vector machine (SVM)
score fusion is also adapted for the inclusion of quality information in the fusion process. In particular, quality measures
meeting three different goodness criteria: SNR, F0 deviations and the ITU P.563 objective speech quality assessment are
used in the speaker recognition process. Experiments carried out in the Switchboard-I database assess the benefits of the
proposed quality-guided recognition approach for both the score computation and score fusion stages.
� 2005 Elsevier Ltd. All rights reserved.
1. Introduction

One of the key points addressed nowadays by automatic speaker recognition research is the exploitation of
multilevel information in the speech signal (Reynolds et al., 2003; Campbell et al., 2003; Garcia-Romero et al.,
2003). This idea is based on self-observation and experience, since listeners rely on several types or levels of
information in the speech signal to recognize the speaker�s identity. In the same way, it can be observed that
humans are able to perform a number of sophisticated tasks, related to the quality of the information available
and the sources of that information, when attempting to make a decision. For example, if a person is to make
a decision about the identity of a speaker, based on a noisy and low fidelity speech recording, it is logical to
think that the portions of the recording less corrupted by the noise should have a higher influence in the final
decision. Furthermore, if the person has to make the decision based on the judgement of two experts, it is
highly probable that the person will assign different credibilities to each expert depending on who they are
or their previous experience.
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Based on these intuitive ideas and the functional structure of common speaker recognition systems, there
are four potential stages in the recognition process in which the quality information may be incorporated
(Garcia-Romero et al., 2004): feature extraction, model training, score computation and score fusion. Previous
work in biometrics has shown promising results when incorporating quality measures into the recognition pro-
cess (Bigun et al., 2003; Fierrez-Aguilar et al., 2005). In these studies, the quality information is incorporated
at the score fusion level. The fusion function is adapted to rely more on the biometric traits that are less prone
to error in noisy conditions. Other studies concerned with quality estimations in the field of speaker recogni-
tion include: (Koolwaaij et al., 2000) in which model quality assessment methods are studied to adapt the
model training process and (Reynolds et al., 2003) in which quality-based feature selection is proposed to im-
prove the performance of speaker recognition systems.

In addition to this previous work, new research efforts are also dedicated to the establishment of objective
quality measures of biometric traits such as fingerprint (Simon-Zorita et al., 2003) and speech signals (Kim,
2004; ITU-T Recommendation P.563, 2004).

In this paper, we study the inclusion of quality information into speaker recognition systems by developing
two applications at the scoring and multilevel fusion stages. On the one hand, the traditional likelihood scor-
ing stage is extended to include the quality information in the score computation process. In particular, the
score computation stage of a GMM-based speaker recognition system is adapted and tested. On the other
hand, a conventional multilevel support vector machine (SVM) score fusion approach is adapted for the inclu-
sion of quality information in the fusion process. The SVM quality-based score fusion paradigm described in
Fierrez-Aguilar et al. (2005) is adapted to cope with the specificities of the multilevel speaker recognition pro-
cess and integrated with the proposed automatic quality measures.

The remainder of this paper is structured as follows. In Section 2, we discuss the concept of quality mea-
sures and the inclusion of quality information into the speaker recognition process. In Section 3, we design
three goodness criteria. In Section 4, we propose two novel applications for the quality measures at the score
computation and fusion stages. In Section 5, we detail experimental results. Section 6 provides a summary of
the main results and conclusions.

2. The concept of quality measure

The concept of quality may be defined1 as the degree of goodness of an element given a certain criterion.
This idea is quite similar to the underlying concept of a probability measure. Hence, to construct a mathemat-
ical model that quantifies the above notion, a quality measure function Qn(Æ) may be formulated in probabi-
listic terms as follows:
1 Ca
QnðY Þ ¼ pðY meets nÞ; ð1Þ

where n is a specific goodness criterion for the variable Y. As a result of this formulation, the quality measure
function Qn(Æ) assigns a number between 0 and 1 to every event, i.e., to every possible degree of goodness of Y
given n. Hence, a reliable quality measure function should be able to quantify the quality of Y with a value of 1
when Y totally satisfies n and with a value of 0 when Y does not meet the established goodness criterion at all.

The crucial benefits brought into the recognition process by knowing the quality of the elements involved
are significant, since this information allows the system to be dynamically adjusted. Examples include the
importance given to certain portions of the incoming speech signal during the computation of its likelihood
or even how the system relies on each of the scores produced by the different levels of information conveyed
in the speech signal.

To some extent, there might be some confusion between the well-known concept of confidence measure,
widely used in automatic speech recognition (ASR) (Siu et al., 1997), and the discussed idea of quality measure
since both provide information that may be interpreted as how reliable a certain element involved in the rec-
ognition process is. It is important to notice that the essence of these two ideas is substantially different. The
main purpose of a confidence measure is to indicate how correct is the estimated probability of a model match-
ing some speech data (Williams, 1999), whereas the goal of a quality measure is to quantify how well a certain
mbridge Klett Dictionary.
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goodness criterion is satisfied by an element of the system. Thus, the benefit of assigning a confidence estimate
to a decoding is succinctly summarized by the phrase: ‘‘knowing what you don’t know’’ (Williams, 1999),
whereas the benefit of estimating the quality of an element of the recognition process is summarized by the
phrase: ‘‘knowing the quality of what you have’’.

In order to incorporate this general concept of quality measure into the specific framework of speaker rec-
ognition systems, we can think of Y as any element of the system (e.g, speech signal, scores, models, thresh-
olds, etc.) and n as any factor that affects the behavior of Y and hence the system performance (e.g, SNR,
amount of data, course of time, etc.). For example, if we are working with data observed in noisy conditions,
Y may be considered as the speech energy signal and n as a criterion based on SNR. Consequently, a quality
measure may be stated as follows:
2 All
Qn¼SNRðY Þ ¼ pðY > noiseÞ. ð2Þ

If we consider the noise normally distributed with mean lt and variance rt, then the quality of the speech energy
signal, Y = {yt; t = 1, . . . ,T}, could be segmentally computed by means of the resulting expression (Renevey,
2000):  !
qnt ¼ pðyt > noiseÞ ¼
Z yt

�1

1ffiffiffiffiffiffi
2p

p
jrtj

exp �ðh� ltÞ
2

2r2
t

dh. ð3Þ
The resulting quality signal, Qn ¼ fqnt ; t ¼ 1; . . . ; Tg, can be used by the speaker recognition system in several
useful ways such as: eliminating the portions of the signal with low quality during the score computation or
model training, incorporating the quality information in the score computation function, etc.

3. Goodness criteria

One of the key elements in obtaining a successful quality measure is the election of an adequate goodness
criterion. Any factor affecting the behavior of an element of the speaker recognition system is susceptible to
being used for the design of a goodness criterion.

It is useful to classify any goodness criterion based on its dependency or independency of the claimed iden-
tity. The reason for this is that identity-claim dependent goodness criteria need training information, related to
the claimed identity, to be able to generate a quality signal. Moreover, this subset of criteria may have some
speaker discriminative power since speaker information is used to train the criteria. However, on the other
hand, identity-claim independent goodness criteria do not need any training information related to the
claimed identity, and hence do not offer any discriminative power.

In the following,we are going to focus on three goodness criteria. The first one,F0 deviations from themean, is
identity-claim dependent, whereas the remaining two, SNR and ITU P.563, are identity-claim independent.

To perform the quality-based score computation (detailed in Section 4.1), it is necessary to obtain a quality
signal at the frame level, whereas for the quality-based score fusion (described in Section 4.2) it is only nec-
essary to have a quality value for the whole speech utterance. In the following section, we develop the pro-
posed quality measures at the frame level, obtaining the overall quality of the speech utterances as the
average of its corresponding quality signal.

3.1. F0 deviations

In order to design a goodness criterion, nF0 based on F0 deviations2 from the mean, lF0, a model of the F0
distribution of the claimed identity is necessary. Due to the fact that the F0 distribution is Gaussian (Sonmez
et al., 1997), the training speech of each user is used for the estimation of a user-dependent unimodal Gaussian
model. For each test file, the quality value of each feature vector (belonging to a voiced region of the speech
signal) is defined at discrete time instant t as
qnF 0t ¼ pðjyF 0t � lF 0j < jF 0� lF 0jÞ; ð4Þ
F0 values are in a logarithmic scale.
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where F0 � N(lF0,rF0) is the pitch model of the claimed user, yF 0t is the estimated pitch of the test segment at
instant t and FF0 is the cumulative distribution function of F0.

For the unvoiced regions of the speech signal a fixed quality value, qtunv , is set a priori. In the following
experiments, this value was heuristically set to 0.5.

3.2. SNR

During the design of a goodness criterion, nSNR, based on SNR, the speech utterances were processed in
segments of length between 5 and 20 s with a minimum voice activity ratio of 10%. These segments were ob-
tained by dividing the speech utterance in the silence parts and merging or splitting them until they met the
constraints mentioned above. The noise embedded in the speech signal was estimated during the silence parts
of each speech segment k, being k the index of each speech segment. The noise was considered normally dis-
tributed with mean lk and variance rk. The quality of the speech energy signal, Y = {yk; k = 1, . . . ,K}, was
computed by means of the Eq. (3). The resulting quality signal, QnSNR ¼ fqnSNR

t ; t ¼ 1; . . . ; Tg, was obtained
by assigning the same quality values to all the frames included in the speech segment being processed.

3.3. ITU P.563 objective speech quality assessment

Due to the fact that new research efforts are dedicated to the establishment of objective quality measures of
speech signals, it is interesting to assess their performance for the specific purpose of aiding speaker recogni-
tion systems. For this reason, we considered the ITU-T P.563 recommendation (ITU-T Recommendation
P.563, 2004), which describes an objective single-ended method for predicting the subjective quality of tele-
phonic speech signals. The P.563 approach is the first recommended method for single-ended non-intrusive
measurement applications that takes into account the full range of distortions occurring in switched telephone
networks and that is able to predict the speech quality on a perception based scale MOS-LQO (ITU-T Rec-
ommendation P.800.1, 2003). Since the output of the P.563 system is a value in the range [1,5] estimating the
perceived quality of the speech utterance, it is very reasonable to consider this system as an ‘‘electronic ear’’
that quantifies the quality of the speech signal regarding factors such as echo, noise, channel errors, etc.

In order to use the information provided by this approach as a goodness criterion nP.563, we made the out-
put of the P.563 system to be compliant with our quality measure definition, by linearly mapping it into a [0,1]
range. Following the P.563 recommendation, the speech utterances were processed in segments of length be-
tween 5 and 20 s with a minimum voice activity ratio of 10%. These segments were obtained by dividing the
speech utterance between the silence parts and merging or splitting them until they were compliant
with the constraints mentioned above. By doing this, we obtained a temporary quality signal QnP.563

temp ¼
fqnP.563k ; k ¼ 1; . . . ;Kg, where k was the segment index. The final quality signal, QnP.563 ¼
fqnP.563t ; t ¼ 1; . . . ; T g, was obtained by assigning the same quality values to all the frames included in the
speech segment being processed. Fig. 1 shows an example of a quality measure, based on P.563, in which it
is easy to notice how all the frames in the same speech segments were assigned the same quality value.

4. Application of quality measures

There are four potential stages for the inclusion of the quality information in the recognition process (Gar-
cia-Romero et al., 2004): feature extraction, model training, score computation and score fusion. In the pres-
ent work, we focus on the score computation and score fusion stages. See Fig. 2 for the general system model.

4.1. Quality-based score computation

The state of the art in speaker recognition systems has been widely dominated during the past decade by the
UBM-MAP adapted GMM approach working at the short-time spectral level (Reynolds et al., 2000). Re-
cently, new approaches based on support vector machines (SVM) (Campbell, 2002) are achieving similar per-
formance, working at the spectral level, and also providing complementary information useful for the fusion
of both approaches (Campbell et al., 2004). Furthermore, higher levels of information conveyed in the speech
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Fig. 1. Example of a normalized P.563 quality signal (bottom) for a SWB-I speech segment (top).

Fig. 2. General system model for speaker recognition using quality measures.
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signal have shown promising discriminative capabilities among speakers and are a major goal of present
Speaker Recognition research efforts (Reynolds et al., 2003).

A common practice shared among all the above-mentioned Speaker Recognition techniques is the use of a
pre-processing stage in which two major tasks are accomplished: (i) the signal is enhanced according to certain
criteria (e.g., channel effects removal, noise reduction, etc.); (ii) hard decisions about the correctness of the
basic constituting elements of the data are made (e.g., silence removal, non-speech sound rejection, etc.), pre-
serving those pieces of information that satisfy certain criteria and dismissing the remaining ones.
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This pre-processing approach, combined with a conventional scoring mechanism, has the drawback of
regarding all the preserved information as equal in terms of importance once the signal has been pre-
processed. Therefore it omits, during the score computation process, the fact that both the information
concerning speaker identity and the perturbing artifacts are not distributed uniformly along the pre-processed
signal (Malayath et al., 2000).

Previous work in speech recognition has shown that some speech features are more important than others
depending on the phonetic context (Rogina and Waibel, 1994). To take this fact into account, individual
stream weights were learned for each HMM state and included in the class-dependent probability estimation
process. In a similar way, the underlying idea in the quality-based score computation (QBSC) approach sug-
gests the incorporation of estimated quality measures (carried out during pre-processing) as weighting factors
in the score computation process.

The QBSC concept is applicable to any of the aforementioned techniques used in Speaker Recognition sys-
tems. In the following, we are going to particularize for the case of GMM�s working at the short-term spectral
level, since it is the most widely used paradigm for speaker recognition (Reynolds, 2002).

4.1.1. Quality-based GMM score computation

For a D-dimensional feature vector, o, and a weighted linear combination of M unimodal Gaussian den-
sities, p(o|k), with the parameters of the density model denoted as
k ¼ fwi;li;Rig; i ¼ 1; . . . ;M ð5Þ

the likelihood function is defined as
pðojkÞ ¼
XM
i¼1

wipðojli;RiÞ. ð6Þ
Given a sequence of feature vectors, O = {o1,o2, . . . ,oT}, usually assumed independent, and a quality signal
Qn ¼ fqn1; qn2; . . . ; qnTg ð7Þ

computed through the speech signal Y with a specific goodness criterion n, the likelihood of the model k incor-
porating the quality measure as a weighting factor is denoted
pðOjQ; kÞ ¼
YT
t¼1

pðotjkÞq
n
t . ð8Þ
The log-likelihood is computed as
log pðOjQ; kÞ ¼
XT
t¼1

qnt log pðotjkÞ ð9Þ
Often, the average log-likelihood is used to normalize out duration effects from the likelihood value. This can
be accomplished by dividing Eq. (9) by

PT
t¼1q

n
t . Since the assumption of independence between the feature vec-

tors is not precise, this scaling factor can be consider as a rough duration compensation (Reynolds et al.,
2000).

If a quality measure that works in spectro-temporal regions (i.e., assigns quality values to each feature vec-
tor coefficient) is used instead of one that works in temporal regions (same quality assigned to the entire fea-
ture vector), conventional missing data approaches, such as bounded marginalization (BMG) or bounded data
imputation (BDI), can be used for the likelihood computation (Barker et al., 2000).

4.2. Quality-based score fusion

In order to exploit the different levels of information conveyed in the speech signal (e.g., lexical, phonetic,
spectral, etc.) (Campbell et al., 2003; Garcia-Romero et al. , 2003) efficient score combination methodologies
are necessary (Reynolds et al., 2003). This problem can be formulated as the fusion of different machine
experts.
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Two theoretical frameworks for combining classifier outputs with application to biometric authentication
are described in Bigun et al. (1997) and Kittler et al. (1998). The former is derived from a risk analysis per-
spective (Bigun, 1995) and the later is based on statistical pattern recognition theory (Duda et al., 2001). Both
of them concluded (under some mild conditions which deserve further attention (Kittler and Alkoot, 2003)
that the weighted average is a good way of conciliating the confidences (similarity scores) provided by the dif-
ferent recognition systems involved.

Interestingly enough, the approach in Bigun et al. (1997) was further developed in Bigun et al. (2003) pro-
viding guidelines for the use of quality measures in combining classifiers. In particular, a quality-based score
fusion scheme was derived in which the output of the classifiers was adapted based on the estimated quality of
the input traits. The fusion function was adapted to rely more on the traits that were less prone to error in
noisy conditions. This basic idea has also been recently exploited using discriminative learning approaches
(Toh et al., 2004; Fierrez-Aguilar et al., 2005). In Toh et al. (2004), polynomial decision functions were used
for combining classifiers and some quality measures were included as regularization terms in the discriminative
training process. In Fierrez-Aguilar et al. (2005), SVM decision functions were used for combining classifiers
and quality measures were used as trade-off coefficients between different decision functions.

In the following, we address the specificities of the quality-based score fusion (QBSF) applied to multilevel
speaker recognition. We also propose an operational QBSF scheme using SVMs (Fierrez-Aguilar et al., 2005)
that is adapted for multilevel speaker recognition systems.

4.2.1. Quality-based score fusion for multilevel speaker recognition
In order to present a clear study of the inclusion of quality information in the score fusion stage, we are

going to focus on the combination of low-level speaker information (i.e., spectral information) with two
high-level sources of speaker information (i.e., phonetic and lexical). Furthermore, we are only going to study
the particular case of combining spectral information with each of the mentioned high-level information
sources, hence yielding a two-level combination.

Fig. 3 shows the proposed QBSF model for this particular case of study. The design of this model relies on
the following premises: (i) up to date, Speaker Recognition systems based on low-level information (i.e., spec-
tral information) achieve better performance than individual high-level information systems (Reynolds et al.,
2003; Campbell, 2003), and (ii) artifacts degrading the performance of low-level recognition systems are better
identified and studied than those affecting high-level recognition systems, hence making the design of quality
measures for low-level systems easier than those for the high-level ones.

Based on the scenario described above, we propose a QBSF approach in which the quality information is
incorporated as a trade-off between (a) only using the recognition system with the best performance (i.e., low-
level system) and (b) the combination of both systems (i.e., low-level and high-level).
Fig. 3. General system model for multilevel speaker recognition using quality measures.
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The proposed multilevel speaker recognition QBSF approach has been adapted from the previously devel-
oped multimodal QBSF scheme described in Fierrez-Aguilar et al. (2005). The difference lies in the terms in-
volved in the quality-based trade-off. Whereas in the previous multimodal case, any trait with low quality
values could be completely discarded; in the multilevel speaker recognition case the low-level information sys-
tem is never completely discarded. This is due to the fact that low-level speaker information yields much better
results than any current high-level information system. In this way, the quality value of the speech segment
determines if the final score is computed based only on the low-level information or on both low- and
high-level information. This change in the system model ensures that the fused score is at least as good as
the score of the best performing system (i.e., low-level system) if not better. If in the future, the systems using
high-level information achieve similar performances to those using low-level information, the previous
multimodal QBSF scheme (Fierrez-Aguilar et al., 2005) will also be applicable to the speaker recognition
case.
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4.2.2. Quality-based SVM score fusion

Given R speaker recognition systems working with different information levels, each one computes a sim-
ilarity score xr, r = 1, . . . ,R, between the test speech signal S and the speaker model. Let the individual sim-
ilarity scores be combined into a multilevel score x = [x1, . . . ,xR]

T. In our particular case of study, the
multilevel score is the combination of two individual scores x = [xL,xH]

T, where xL and xH are the scores
of the low- and high-level systems, respectively. Let qL denote the quality signal obtained from a quality mea-
sure (i.e., SNR) of the test speech signal S affecting the low-level recognition system. The proposed operational
QBSF scheme (from now on also referred to as SVMQ) is as follows:

(1) SVMQ training: Given a labeled training set of NTR multilevel scores, (xi, yi), with
yi 2 {�1,1} = {Impostor, Client}, and i = 1, . . . ,NTR indexing the training sample. A linear SVM-based
fusion scheme of the low- and high-level systems (SVMLH) is trained using standard procedures (Fierrez-
Aguilar et al., 2004), but computing the costs coefficients, Ci, of each training sample of the SVM reg-
ularized cost function as follows:
Ci ¼ C � qi;L. ð10Þ
In this way, Ci is the product between the quality information, qi,L, associated with the training score xi
and a positive constant C. As a result, the higher the quality of the speech used for generating the train-
ing score, the higher its contribution in training the fusion function. Additionally, another SVM of
dimension one (SVML) is trained by using the training data from the low-level (spectral) system and
the coefficients in Eq. (10).

(2) SVMQ authentication phase: At this step, the two classifiers mentioned above, SVMLH and SVML, are
already trained. When an input speech segment S, with its quality measure qL is available, along with
a claimed identity, the system generates a multilevel similarity score x = [xL,xH]

T. Finally, the combined
quality-based similarity score is computed as follows:
fSVMQ
ðxÞ ¼ qLfSVML

ðxLÞ þ ð1� qLÞfSVMLH
ðxÞ; ð11Þ
where fSVML
ð�Þ and fSVMLH

ð�Þ are signed distances to the linear decision hyperplanes provided by SVML

and SVMLH, respectively (Fierrez-Aguilar et al., 2004).

Fig. 4 shows an example of a SVMQ linear decision hyperplane computed as a trade-off between SVML and
SVMLH for two multilevel scores with different quality values. As indicated in Eq. (11), the higher the quality
value, the higher the contribution of the low-level system to the final fusion function.
5. Experiments

5.1. Switchboard I database

Partitions 1, 2 and 3 of the Switchboard I database (SWB-I), as defined in Reynolds et al. (2003), have been
used for the performance assessment of the proposed quality-based approaches on landline telephone data.
The number of speaker models involved is 486 (260 male + 226 female). Each target model has been trained
with a speech segment of approximately 2.5 min comprising one side of a 5-min telephonic conversation. Two
different test sets have been used for the system assessment: (i) one side of the conversation test segments (ap-
prox. 2.5 min. of speech); (ii) two sides of the conversation test segments (approx. 5 min. of speech). The total
number of trials obtained with each test set is 8248 (2416 target, 5832 non-target). For the QBSC experiments,
both test sets were used, whereas for the QBSF experiments only the one side test segment subset was used.

5.2. Baseline systems description

Three different speaker information levels have been selected for the experiments in this paper: spectral,
phonetic and lexical. The spectral level is used in all the experiments, whereas the phonetic and lexical levels
are only used for the QBSF experiments.
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The spectral level has been selected since it is the speaker information level that, up to date, has the best
performance for speaker recognition (Campbell, 2003). The phonetic level was selected because it is the
high-level speaker information source in which the closest performance to the spectral level has been reported
for the Switchboard I database (Reynolds et al., 2003). Finally, the lexical level was selected to assess the per-
formance of the proposed QBSF between two systems, spectral and lexical, with very different performances.

Now we are going to give a brief description of the three baseline systems and provide references for further
details.

5.2.1. Spectral system

A UBM-MAP adapted GMM system (Garcia-Romero et al., 2004) with 256 mixtures and diagonal covari-
ance matrix was used to model the feature vectors (19 MFFC + 19 DMFCC) obtained every 10 ms with a 20-
ms Hamming window. The score computation was performed as a likelihood ratio (LR) between the target
model and the UBM likelihoods.

The resulting scores provide a baseline result for comparison with the proposed QBSC-GMM system.
Fig. 5 shows the performance of the spectral system for the Switchboard I database, obtaining a 6.13% of
Equal Error Rate (EER).

5.2.2. Phonetic system

Capturing speaker-dependent pronunciation by means of modelling phone sequences has shown to be a
viable and effective approach to speaker recognition (Andrews et al., 2002). The phonetic system providing
the scores for the present work was developed at the SuperSID project (Reynolds et al., 2003) and uses a bin-
ary-tree-structured statistical model for extending the phonetic context beyond of standard n-grams without
exponentially increasing the model complexity (Klusacek et al., 2003). Fig. 5 shows the performance of the
phonetic system for the Switchboard I database, obtaining a 11.60% EER.
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Fig. 5. DET curves of the baseline systems for the Switchboard I database.
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5.2.3. Lexical system

The n-gram (bigram) idiolect system providing the scores for the present work was developed in the Super-
SID project (Reynolds et al., 2003) and is based on an LR computation between the target and background
model likelihoods. The LR computation was performed following the procedures developed in (Doddington,
2001). The word transcripts used for the score computation were provided by the ASR Dragon system with an
11% of Word Error Rate (WER). Fig. 5 shows the performance of the lexical system for the Switchboard I
database, obtaining a 31.60% EER.

5.3. Quality-based score computation experiments

In Fig. 6, the performance assessment of both the baseline GMM Speaker Verification system and the
QBSC adaptation, with three different quality measures, are depicted in the form of DET plots for the above
described corpora.

In relation to the one-side test set of the SWB-I database, see Fig. 6, a slight improvement is obtained by
means of using the QBSC adaptation of the baseline system for all the quality-measures. This result is more
noticeable in the low false alarm and low miss probability regions of the DET curve. Table 1 shows the base-
line and QBSC adaptation performance for the EER operational point with the three quality measures. The
analysis of the EER values for the male and female partitions show that the three quality measures have a
similar behavior across genders.

A bigger improvement is obtained for the test set comprising both sides of the telephonic conversation, see
Fig. 6 and Table 2. The fact that 2 speakers are involved in the test segments makes this set more suitable for
the achievement of better results since a larger portion of the speech signal is considered corrupted. In the spe-
cial case of a quality measure capable of quantifying the speech segments not belonging to the target speaker
with a low quality value, the QBSC adapted system may perform some kind of ‘‘speaker spotting’’. This may
be the case for the selected F0-based quality criterion since it is possible to discriminate among speakers based
on F0 information (Sonmez et al., 1997). Therefore, the ‘‘speaker spotting’’ effect of the selected F0 quality
measure provides a justification for the better performance on the test set comprising both sides of the tele-
phonic conversation. The performance improvement for the SNR and P.563 goodness criteria is lower than
the obtained by F0-based quality criterion since these criteria are not able to perform the ‘‘speaker spotting’’
effect mentioned above. It should be clear that any speaker discriminant quality measures (not just F0) will
also lead to a performance improvement for the specific case of test segments with more than one speaker.

5.4. Quality-based score fusion experiments

5.4.1. Experimental protocol

In order to perform a fair assessment of the fusion approaches, it is necessary to split the available scores
into training and testing sets. The reason for that is to avoid assessing the fusion system with scores used dur-
ing the training phase of the fusion function. A threefold cross-validation approach, using partitions 1, 2 and 3
of the SWB-I database, was designed for that purpose. All the scores within a partition were obtained using
speaker models and test segments from within that partition only. In this way, when the scores of one partition
are used for testing the fusion rule, the scores of the remaining two partitions are used for training the fusion
function. As mentioned in Section 4.2.1, we are going to focus on two-level system fusion: spectral-phonetic
and spectral-lexical.

5.4.2. Results

To obtain a better understanding of the fundamental principles supporting the use of quality measures in
the fusion process, Fig. 7 shows a scatter plot of the scores of the baseline systems and their corresponding F0
and P.563 quality values. The SNR quality measure is not depicted since its behavior is very similar to the
P.563 scatters. Linear regression fits were computed separately for target and non-target scores in each of
the scatter plots.

It is desirable that a quality measure meets the following properties: (i) non-target scores and their corre-
sponding quality values should have a negative correlation so the bigger the quality value the smaller the
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Fig. 6. System performance on Switchboard I database with: (a) F0, (b) P.563 and (c) SNR quality measures.
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Table 1
Results on the Switchboard I one-side test set

Partition EER (%)

Baseline Q-based(F0) Q-based(P.563) Q-based(SNR)

Female 5.64 5.31 5.53 5.38
Male 6.31 6.09 6.03 6.03
Pooled 6.13 5.88 6.05 5.88

Table 2
Results on the Switchboard I test set comprising both sides of the conversation

Partition EER (%)

Baseline Q-based(F0) Q-based(P.563) Q-based(SNR)

Female 15.52 14.52 15.56 15.41
Male 14.72 13.34 14.49 14.36
Pooled 15.09 14.01 14.95 14.73
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score; (ii) target scores and their corresponding quality values should have a positive correlation so the bigger
the quality value the bigger the score.

Keeping these properties in mind and observing the slopes of the linear regressions, two major ideas are
worth noting: (i) the behavior of the three quality measures tend to be better for the low-level (spectral) sys-
tem; (ii) the higher the information level (lexical > phonetic > spectral) the less affected it is by the disturbing
artifacts considered by the three quality measures. This asseveration is in accordance with previous research
results (Campbell, 2003), and it is one of the main motivations for using high-level speaker information sys-
tems. Finally, recalling the classification of the goodness criteria established in Section 3, the first row in Fig. 7
shows how identity-claim dependent goodness criteria (such as nF0 ) may have some speaker discriminative
power in themselves.

In order to compare the SVM-QBSF approach with the standard SVM fusion approach (Fierrez-Aguilar
et al., 2004), we carried out a series of experiments comparing the system performances, in terms of EER, as a
function of the number of models used for training. Each experiment was conducted following the procedures
described in the experimental protocol and sampling the corresponding training sets using 4 bootstrap itera-
tions in which the scores of M models, with M 2 {10,20,40,80,120,162}, were randomly chosen without
replacement. Fig. 8 shows the results for the spectral-phonetic and the spectral-lexical fusion systems. It is
worth pointing out that the SVM-QBSF approach is less sensitive to the number of models (amount of data)
in the training set than the standard SVM approach. In this sense, the quality information may be helping the
quality-based fusion system to generalize better than the standard SVM approach. Moreover, the performance
of the SVM-QBSF approach is better than the performance of the standard SVM approach for a number of
models, M < 120, in both the spectral-phonetic and the spectral-lexical fusion systems.

Fig. 9 shows the performance of spectral-phonetic and the spectral-lexical fusion systems with F0 quality
measures for the particular case ofM = 20. The performance for the SNR and P.563 quality measures are very
similar to the F0 results. For both systems, the SVM-QBSF approach outperforms the standard SVM ap-
proach in all the operating points for each of the quality measures. It is interesting to realize that for the spec-
tral-lexical fusion systems the standard SVM approach obtains a performance worse than the individual
spectral system. This result may be caused by a poor generalization of the fusion approach based on a small
training set. Hence, the SVM-QBSF approach may be a good alternative for applications in which large train-
ing data sets are not available or there is a severe mismatch between development and testing data.

In general, the three quality measures reveal similar trends in terms of performance improvement of the
fusion system. Table 3 shows that the correlation coefficients between each pair of quality measure are
considerably small. The correlation coefficient between the SNR and the P.563 criteria is the highest. This
may be due to the fact that both quality measures are computed following the same segmentation strategy



Fig. 7. Scatter plot of the F0 (a–c) and P.563 (d–f) quality measure values vs. the GMM-UBM, Phone-Binary Tree and n-gram word
scores.
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(see Section 3 for more details). The fact that the correlation coefficients are small and the improvement
yielded by each quality measure is similar, suggest that the combination of the three quality measures may
be a good practice.



Fig. 9. SVM fusion results of: (a) spectral-phonetic and (b) spectral-lexical systems for the F0 quality measure.

Table 3
Correlation coefficients for each pair of quality measures

Quality measures F0–SNR F0–P.563 SNR–P.563

Correlation coefficient 0.18 0.35 0.46
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6. Conclusions

An overview of the use of quality information for automatic speaker recognition systems has been reported.
Two quality-based applications, at different phases of the recognition process, have also been proposed: Qual-
ity-based Score Computation and Quality-based Score Fusion. In the former, traditional likelihood scoring of
a GMM has been further developed providing guidelines for the practical application of the proposed ideas. In
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the latter, standard SVM fusion approach has been adapted to take into account the quality information of
the input speech. Experiments carried out on QBSC corroborate the benefits of the proposed quality-guided
recognition approach on landline data for different quality measures. In particular, three frame-level quality
measures meeting goodness criteria based on: F0 deviations, SNR and ITU P.563 recommendation have been
used. Up to 7.15% of relative improvement at the EER operational point has been obtained on the Switch-
board-I database. Experiments performed on SVM-QBSF have proved this approach to be less sensitive to
the amount of training data than the standard SVM approach, hence demonstrating SVM-QBSF to be a ro-
bust fusion scheme for applications in which large data sets are not available for training or there is a severe
mismatch between development and testing data.
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