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Abstract

In the past years, several text-independent speaker recognition evaluation campaigns have taken place.
This paper reports on results of the NIST evaluation of 2004 and the NFI-TNO forensic speaker recogni-
tion evaluation held in 2003, and reflects on the history of the evaluation campaigns. The effects of speech
duration, training handsets, transmission type, and gender mix show expected behaviour on the DET
curves. New results on the influence of language show an interesting dependence of the DET curves on
the accent of speakers. We also report on a number of statistical analysis techniques that have recently been
introduced in the speaker recognition community, as well as a new application of the analysis of deviance
analysis. These techniques are used to determine that the two evaluations held in 2003, by NIST and NFI-
TNO, are of statistically different difficulty to the speaker recognition systems.
© 2005 Published by Elsevier Ltd.

* Corresponding author. Tel.: +31 346 356 235; Fax: +31 346 353 977.
E-mail addresses: david.vanleeuwen@tno.nl (D.A. van Leeuwen), alvin.martin@nist.gov (A.F. Martin), mark.przy-
bocki@nist.gov (M.A. Przybocki), j.bouten@nfi.minjus.nl (J.S. Bouten).

0885-2308/$ - see front matter © 2005 Published by Elsevier Ltd.
doi:10.1016/j.cs1.2005.07.001


mailto:david.vanleeuwen@tno.nl
mailto:alvin.martin@nist.gov 
mailto:mark.przybocki@nist.gov 
mailto:mark.przybocki@nist.gov 
mailto:j.bouten@nfi.minjus.nl 

D.A. van Leeuwen et al. | Computer Speech and Language 20 (2006) 128-158 129
1. Introduction

Evaluations of text independent speaker recognition systems have been held regularly in the
past decade (Przybocki and Martin, 1999; Martin and Przybocki, 2000; Doddington et al.,
2000; Martin and Przybocki, 2001; Przybocki and Martin, 2002; Przybocki and Martin, 2004;
Van Leeuwen and Bouten, 2004). The evaluations provide the developers of systems an opportu-
nity to assess the quality of their system and inspire them to try out new approaches to the prob-
lem of speaker recognition. A leading role in the methodology and focus of the evaluation has
been played by NIST and its sponsors. A co-operation with the Linguistic Data Consortium
(LDC) has guaranteed regular new challenges with regard to the application domain while the
LDC provided a constant quality of the evaluation databases.

Around 2002, two independent efforts resulted in the availability of completely new types of
speech database for speaker recognition. The first database was collected by a co-operation be-
tween two Dutch parties, the Netherlands Forensic Institute (NFI) and TNO. It consisted of
wire-tapped telephone recordings made by the Dutch police forces in police investigations. The
second database is the MIXER corpus, collected by LDC, in which a multi dimensional design
of controlled recordings of telephone conversations is implemented. Parameters that have proven
to be important in earlier speaker recognition evaluations are systematically varied, such that the
database now consists of data recorded with several microphones, in five languages, from different
handsets and over several transmission lines. Both databases have been used in an evaluation, the
former in what has been coined the ‘NFI-TNO forensic speaker recognition evaluation’ and the
latter in the regular NIST evaluation in the year 2004.

The two evaluations differ on many points, such as size, language, design, and collection method.
The most important difference is the type of data: On the one hand the NFI-TNO evaluation consists
of genuine field data, collected in exactly the same way as it would be used in an application for police
investigations, with speech uttered by people suspected of criminal activity, who in no way realized
their speech was used for this kind of technology evaluation. The database is uncontrolled, several
conditions are unbalanced, and the amount of material useful for a proper evaluation is limited. On
the other hand NIST evaluations consist of well-controlled and well-balanced conditions, and vast
amounts of speakers and speech. Every subject collected is keenly aware that their conversation is
being recorded (although they only know it is for speech research purposes) so in a sense they can
be viewed as co-operative subjects. Despite these apparent large differences, it is possible to analyze
and compare both evaluations both qualitatively and quantitatively.

Meaningful evaluations are carefully planned. By providing explicit evaluation specifications,
common test sets, standard measurements of error, and a forum for participants to openly discuss
algorithmic successes and failures, the NIST and NFI-TNO evaluations have provided a means
for recording the progress of text-independent speaker recognition performance.

Several relevant papers were presented at Odyssey 2004 The Speaker and Language Recogni-
tion Workshop in Toledo, Spain, including a paper on past NIST speaker recognition evaluations
(Przybocki and Martin, 2004). The basic results of the NFI-TNO evaluation (Van Leeuwen and
Bouten, 2004) and the design of the NIST 2004 evaluation (Przybocki and Martin, 2004) were also
presented at Odyssey 2004, but in this paper we have the unique opportunity to present the results
of both evaluations together in greater depth where the advance in evaluation methodology and
speaker recognition performance will be made apparent.
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The layout of this paper is as follows. First a recapitulation is made of the evaluation paradigm,
and some notes on statistical analyses are made. Then the results of the NFI-TNO 2003 and NIST
2004 evaluation are presented and various performance factors are analyzed. Finally an attempt is
made to compare the results of the NIST 2003 and NFI-TNO 2003 evaluations.

2. Evaluation paradigm

There are many similarities between the various evaluations held, despite the aforementioned
differences. We will summarize the more important ingredients of the benchmark evaluations in
general, showing the common ground and the specific differences.

Task. The speaker recognition system is evaluated in terms of a detection task. The question
here is whether or not a given speech segment is uttered by a given speaker. There are several
variants of this task defined: the (basic) one-speaker detection task, where the speech segment is
known to contain only speech from a single speaker, and the two-speaker detection task, where
both conversation channels are summed and the task is to detect if one of them has the identity
of the given speaker. The extended data one-speaker detection task is similar to the ‘basic’ one-
speaker detection task except that much larger amounts of data are available to training and
test a model. In addition to the speech data, several bits of side-information that can be gath-
ered automatically are made available to the system under test.

Evaluation set-up. The evaluation is carried out at the participating site’s premises, for various
practical reasons. A site is given a number of speech files containing material for building speaker
models (training files) and speech material for testing (test files). The site is required to complete a
list of trials, each specifying a test segment and a model speaker. A site returns for each trial both
a decision whether or not the system declares the test speech to be uttered by the model speaker,
and a score, a real-valued number that increases with the likelihood that the test speech is uttered
by the model speaker. An evaluation consists of several thousands of trials.

Performance measure. Performance of a system’s ability to detect a speaker is evaluated in terms
of a cost function, where the costs for the two types of detection errors are given by the eval-
uator, as well as the prior probability of a target speaker occurring. This detection cost Cge
(Doddington et al., 2000; Przybocki and Martin, 2004) can be defined as

Cdet - CmisstissPtarget + CFAPFA(1 - Ptarget)y

where Cpiss and Cga are, respectively, the costs of a miss and a false alarm, and Py,ee the
detection prior probability. The detection error probabilities P,;s and Pgpa are determined
in the evaluation.

The NIST evaluation chose to assume a target poor application scenario (a priori probability
of a match set to 1%) with the greater cost assigned to missing such a target (Cpiss/ Cea = 10).
This might be appropriate to searching for speakers of interest in an audio archive. (Note that
this did not imply that the actual evaluation trials were as target poor as the supposed appli-
cation.) For the NFI-TNO we have chosen a prior probability of 50% and Cp;is/ Cea = 0.1,
suggesting that ‘a false accusation is worse than a missed perpretator.” This is a little bit
misleading, because in a real forensic scenario setting the prior probability is left to the judge,
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and the prior chosen here is just to indicate that the speaker detection system does not use such
prior information.

The detection cost is normalized to be unity for a system trivially making the same decision
irrespective of the test speech segment. The parameters determining the optimal operating point
can be combined into a single parameter, the ‘effective prior odds’ (Bimbot et al., 2000; Briim-
mer, 2004)

Cmiss Ptarget
CFA I - Ptarget

(Qeff =

For NIST evaluations, the choice of cost parameters leads to effective prior odds of 1/9.9, while
for the NFI-TNO evaluation these are almost identical, being 1/10. In Table 1, a summary of
the evaluation parameters is given. For Oy < 1, as in these evaluations, the normalized detec-
tion cost reduces to

Cdet — Pmiss + PFA/@eff-

The primary performance measure of detection is the actual detection cost, which is based on
the actual decisions of the systems rather than the score information.

Qualitative measure. The detection potential of a system is indicated well by plotting a DET-curve
(Martin et al., 1997) showing the Detection Error Trade-off between P,,;ss and Pga. The DET
curve is essentially a Receiver Operating Characteristic (ROC) with the axes warped according
to the quantile function for the normal distribution (Van Leeuwen and Bouten, 2004). Formally,
the DET curve evaluates the quality of the scores given by the system to the trials rather than the
decision. The position of the DET curve is a post-evaluation quality measure because an operating
point given by P;iss Or Pra determines the score threshold that had to be set in order to obtain
these error probabilities. Still, the DET-plots are very useful for investigating differences in sys-
tems or conditions. Other post-evaluation measures include the minimum detection cost and the
equal error rate (EER), which are both single valued summaries of the DET-curve.

Conditions. Throughout the years, there have been several different conditions investigated in
the evaluations. Most notably, these have been the duration of the training and test speech
utterances, the types of handset used, the telephone line type, the coding used, and the language
spoken. The largest differences between the various evaluations have been in the choice of con-
ditions. Thus, each evaluation can be said to have had a particular ‘focus.’

Evaluation database. Closely related to the evaluation condition in focus is the speech database
from which the evaluation is compiled. Almost invariably these databases have been recorded
telephone conversations collected by LDC, starting in 1996 with the Switchboard 1 corpus
and extending to the new MIXER corpus in 2004. Exceptions are the Spanish Ahumada data-
base used in 2000 and 2001, the multi-microphone FBI voice database in 2002 and the Dutch

Table 1

The cost parameters for the NIST and NFI-TNO evaluations

Evaluation Crniss Cra Ptarget 1 - Plarget Octt
NIST 100 10 0.01 0.99 0.101
NFI-TNO 2 20 0.5 0.5 0.100

The normalization factor has been included in the cost parameters C.



Table 2
A comparison of the conditions of the various NIST and the NFI-TNO evaluation
Evaluation NIST NFI-TNO
1996 1997 1998 1999 2000 2001 2002 2003 2004
1 speaker detection e ° ° . . . . . . .
2 speaker detection Test Test Test Test Training  training/
and test  and/or
test
1 sp. extended data Dryrun . . .
ASR WER 20% 50% 50% 25%
Database® swl sw2pl sw2p2 sw2p3  sw2pl +2 sw3pl sw3p2 sw3p2 MIXER  NFI
Extended data swl sw2p2 + 3 sw2p2 +3 MIXER
Alternative Ahumada Ahumada FBI
Language/ English English English English English/  English/  English English English/  Dutch/
region USA Mid-Atlantic Mid-West South  Spanish Spanish multi-lang other
Number of speakers 40 ~400 ~500 233 804 174 330 356 310 50
Line and coding Land Land Land Land Land GSM CDMA CDMA Land GSM
(primarily) cellular
land cordless
Training duration 2m 2m 2m 2m 2m 2m 2m 2m 10, 30's %, 1,2m
conditions®
Conversation sides 1,2,4,8, 16 4,8,16 1, 3,8, 16
Test duration 3,10,30s 3,10, 30s 3,10,30s 560s 560s 5-60s 5-60 s 5-60 s 10, 30 s 7,15,30s
conditions

Conversation sides

1

ASR WER, automatic speech recognition transcripts, word error rate.
& swnpp, switchboard release n phase p, where n = 3 means ‘cellular.’
® m, minutes; s, seconds, a conversation side is about 5 min.
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Forensic wire-tapped speech database in NFI-TNO 2003. The type of speech database used can
be seen as one of the most important differences between the various evaluations.

Rules. Common to all evaluation is a set of rules to which the sites have to adhere. These are
defined in an evaluation protocol (see, e.g., NIST year 2004 Speaker Recognition Evaluation
Plan; Van Leeuwen and Bouten, 2003), prior to the call for participation in the evaluation.
Some of the most important rules are:

e Each trial should be treated independently of all other trials, and only information from the
test and training segments referenced in the trial may be used by the system for producing the
decision and score. (An allowed exception was the optional ‘unsupervised adaptation mode’
in the NIST 2004 evaluation).

e Manual interaction with the evaluation data, and listening to the speech, is not allowed.

e Publication of the evaluation results of other participating sites is not allowed.

The important characteristics of the past NIST and NFI-TNO evaluations are shown in Table
2. Note, that results in this paper concentrate on evaluations described in the last three columns.

3. Statistics

In order to be able to compare the performance of different systems within an evaluation, or
different conditions for one system, or even different evaluations, it is necessary to perform statis-
tical tests that assess the significance of an observed difference. In this section we will discuss the
statistical techniques that are commonly used in the speaker recognition community, some of
which are used in the remainder of the paper.'

3.1. Basic binomial quantities

The dependent variables that are measured in a speaker recognition evaluation are the propor-
tion of trials in error, P and Pga, for the target and non-target trials, respectively. Under the
assumption that all trials are independent, these error probabilities can be described as a binomial
statistic, and hence the variance of the quantities are dependent only on the error probability,
var(P) = P(1 — P) (Hays, 1963). This means that the standard error of the quantities is given by

Priss(1 — P Ppa(1 =P
Smiss = ss(N ss) and SpA = FA (N FA)’
tar non

where N, and N,,, are the number of target trials and non-target trials in the evaluation. The
standard error gives an impression of how accurate the determination of P, and Pga is.
If N is large, the normal approximation to the binomial distribution can be used, and the 95%

! We have included this section for reference in the speaker recognition community, and to make the paper more self-
contained.
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confidence interval follows from the quantile function of the normal distribution, evaluated at
2.5% and 97.5%, numerically +1.96. Thus, the confidence interval for P is P 4 1.96s. In DET
plots, it is customary to plot a box indicating the 95% confidence intervals around the actual Cgy,
operating point.

For a typical minimum Cg, the value of P =~ 20Pga, While in evaluations, Ny, = 10N ;.
This makes standard error of P, and Pgra of the same order of magnitude.

Several statistical tests exist for a comparison of two binomial values. We will use the ‘two sam-
ple test for equality of proportions.” This test models the difference of the two sample proportions
P, = x;/N; and P, = x,/N, as a normal distribution with zero mean and a binomial variance
based on the common estimate P = (x; 4+ x,)/(N; 4+ N,). This procedure is analogous to the clas-
sic ¢ test for normally distributed statistics.

Note that strictly speaking the assumption that the trials are independent does not hold: often
the same test segment is used in several non-target trials, and the same speaker is usually used for
several different test segments.

3.2. Error propagation

The main performance statistic in speaker detection is Cy, a linear combination of P,,;,, and
Pga. This in itself is not a binomial statistic, but the error in Cye can be determined using error
propagation. If P;, and Pga are independent measures, then the error in Cye is given by
Stzlet = Szmiss + S%A/(ﬂsz'

Here, the relative importance G‘e‘f} of the false alarms to Cg. can be appreciated.

The assumption of independence of P.; and Pra holds, because they are determined from
independent distributions of trials. This may seem counter-intuitive, because a system generally
uses a common threshold that determines both probabilities.

The standard error of Cy; can be used to test for significant difference between two operating
points on different curves, e.g., the minimum Cgy for two different evaluation conditions.

3.3. DET confidence bandwidth

The confidence intervals around P, and Pgra can be drawn continuously around an entire
DET curve by adding the values 41.96(sSga, Smiss) t0 €ach point (Pga, Pmiss) on the DET curve.
Again, this can be used to assess the significance of the difference between two DET curves that
have different underlying trial distributions, for instance curves from two different evaluations or
different training conditions.

3.4. Comparisons between systems

When two or more systems are evaluated with the same set of trials, we can utilize more pow-
erful methods for comparing the performance than the test of proportions. The basic idea is that
individual decisions for each trial can be compared between two systems, rather than the sum of
all trials. The McNemar test tabulates the correlation of correct and incorrect decisions between
two systems. Thus, for P, the target trials can be tabulated as follows:
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Trial counts System B
Correct Incorrect
System A Correct N, N,
Incorrect N, N

The test assesses whether or not the number of trials where systems A and B have a different
decision, N.; and N;., are significantly different. We cannot test performance on P alone,
and so the analysis has to be repeated for Pra and the non-target trials. We can then stipulate
that system A is performing significantly better than system B, if N;. < N, at a p <0.05 signifi-
cance level for both the analysis of target trials and non-target trials. The test can be used for
the actual Cy, but also for other operating points such as minimum Cg.; or EER.

An alternative to the McNemar test is the sign test. Here, in order to partition the evaluation

into several independent measures, Cqye is ‘decomposed’ into ‘speaker-specific’ Cj,:
mod /
Cfiet = aniss + P;KO /@eff,
where P;K"d is the false alarm probability over trials where the speaker s is the model speaker. For
all speakers with a minimum number of test segments, say 10, Cj,, can be used for a comparison
between the systems in a sign test.

3.5. Analysis of variance

An analysis of variance (ANOVA) is capable of testing the effect of several conditions or factors
in a single analysis. A standard ANOVA works with normally distributed dependent variables.
The two basic parameters P,,;; and Pra are binomially distributed, and the variance does not
have to be estimated from measurements but is determined by P. There exists an analysis of devi-
ance which is similar to ANOVA but uses a generalized linear model of the test statistic and ex-
ploits the knowledge about the variance.

In an analysis of deviance, the test statistic is transformed by a link function, in our case the
logistic function

logit(p) = log P

1—-p’

which has the property that a change in odds ratio has an additive effect on the logit scale. This
so-called logistic regression analysis forms a generalized linear model with a binomial response
distribution and the link function. In a way, it can be seen as the generalization of the test for
proportions, just as an ANOVA is a generalization of a ¢ test. The effect of different factors (sys-
tem, condition) can be analyzed and predictions for other conditions can be made. We will use this
in comparing different evaluations.

The logistic regression analysis relies on a binomial statistic. It is therefore not easy to gener-
alize it to Cge, Which is a linear combination of two binomial statistics. A measure that could
be thought of as a binomial statistic is the application-independent metric EER. It is the post-eval-
uation determined operating point where P,;s = Pra, and we argue that the standard error of
EER is determined by the measure with the lesser amount of trials, usually P;gs.
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4. Designs of the NFI-TNO and NIST 2004 evaluations

In the Odyssey articles (Przybocki and Martin, 2004; Van Leeuwen and Bouten, 2004) the de-
sign and data collections paradigm for the two evaluations has been reported on quite elaborately.
For completeness, we reproduce the most important issues here.

4.1. NFI-TNO evaluation

Speech material consisted of real field data, collected from recordings made using wire-taps for
the purpose of police investigation. Because in Dutch forensic cases, the speech material is often of
limited duration, the central durations condition in the evaluation was 60 s for model training and
15 s for test segments. A limitation of working with field data is that only 22 target speakers could
be found for which enough material was available. An additional 30 non-target speakers were
used in the test segments. All speakers were male and the transmission channel for all recordings
was cellular GSM.

The evaluation consisted of several separate experimental conditions, concentrating on different
aspects of speaker recognition. The main condition was a general performance evaluation, while
other conditions investigated the influence of specific factors such as speech duration and spoken
language. All sites participated in all conditions.

The experimental condition in which the effect of speech duration was investigated was set up as
an orthogonal design of the variation of three parameters, each sampled with three levels. Each of
the 27 conditions thus generated were evaluated using target trials from 20 speakers and aug-
mented with approximately 350 non-target trials (see Section 5.2.1).

4.2. NIST 2004 evaluation

All speech material was taken from the MIXER corpus collection. In total, 310 target speakers
occurred in the evaluation, both male and female, and 3426 conversation sides were used for train-
ing and 1176 for testing. The factors for speech duration and the one/two-speaker detection task
were investigated in a 4 x 7 design of conditions, see Table 3. Three test and six training conditions
were ‘one speaker’ conditions, where the speech from one side of the telephone conversation was
extracted from the recording. One condition in test and training was a ‘two speaker’ condition,

Table 3
Design of duration and summed channel condition
Test segment condition Training segment condition
10s 30s 1 side 3 sides 8 sides 16 sides 3 conv. (2sp)
10s 10 7 10 4 4 4 3
30s 6 8 16 4 4 4 3
1 side 7 8 24 7 10 6 5
1 conv. (2sp) 3 3 5 3 3 4 6

Numbers indicate how many sites participated in the condition. The primary condition is indicated in bold type. The
bottom and right margin are 2-speaker detection task conditions.
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where the speech from both conversation sides is summed.? Each condition consisted of a full set
of evaluation trials. Sites were free to run any of the conditions, but it was compulsory to run the
primary condition of one conversation side speech for model training, and one conversation side
for testing.

All trials in the evaluation had training and test speech segments obtained from different tele-
phone numbers, presumably different handsets. Other factors were included in the design of each
experimental condition, such as spoken language and transmission type. It should be noted that
the spoken language for all training segments was given.

5. Results and analysis of the NFI-TNO and NIST evaluations

Although the basic results of the NFI-TNO evaluation have been reported in Van Leeuwen and
Bouten (2004), we will extend the results with additional statistical analyses here. The results of
NIST 2004 have not been published before, and we will integrate the NFI-TNO results and anal-
ysis with the NIST results where applicable.

Twelve partners submitted correct system results to NFI-TNO evaluation, 24 sites participated
in NIST 2004. The systems are identified anonymously here as a number, there is no correlation
between the numbers used in the two evaluations. We will only report on their primary system
submission.

The difference between the number of speakers and trials in both evaluations has led to a
slightly different statistical analysis. While for NFI-TNO we need an overall system analysis in
order to obtain enough statistical power to show effects, the power of the NIST evaluation is gen-
erally high enough that systems can be investigated individually.

5.1. Overall results

In Tables 4 and 5, the actual and minimum detection costs are tabulated for all systems, along
with the equal error rate. We have indicated the standard error of the measures as well. The tables
are ordered according to actual decision point.

In Figs. 1 and 2 the overall results are depicted in a single DET plot. The actual and minimum
decision points of Tables 4 and 5 have been indicated as boxes and circles. The fairly large con-
fidence intervals are the result of the relatively low number of target trials.

For many systems, there is a large difference between actual and minimum detection cost, espe-
cially for the NFI-TNO evaluation. From this we conclude that estimating the threshold for these
evaluations was a difficult task. The reason may be that for both evaluation there was no devel-
opment test speech material available within the same data collection. Due to the large differences
in actual and minimum cost, the asymmetric cost balance between false alarms and misses, and
the generally difficult task, many of the actual detection operating points lie outside the graph
area.

2 “One speaker’ is sometimes also referred to as ‘one side’ or ‘four wire’ — a term from the analogue recording days —
and ‘two speaker’ is also referred to as ‘one conversation’ or ‘two wire.’
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Table 4
Actual and minimum detection costs for the NFI-TNO evaluation, as well as the equal error rate (EER)
System Actual Minimum EER (%)

Clet SE Clet SE SE
T1 0.582 0.023 0.551 0.024 15.5 0.8
T2 0.661 0.027 0.613 0.025 18.1 0.9
T3 0.739 0.029 0.489 0.024 12.1 0.7
T4 0.742 0.023 0.687 0.025 20.5 0.9
TS 0.754 0.025 0.744 0.025 222 0.9
T6 0.772 0.020 0.705 0.023 19.8 0.9
T7 0.959 0.009 0.819 0.022 26.3 1.0
T8 0.977 0.016 0.969 0.015 20.6 0.9
T9 0.996 0.033 0.519 0.024 14.4 0.8
T10 1.669 0.040 0.679 0.026 16.9 0.8
T11 2.280 0.043 1.004 0.003 35.0 1.1
T12 7.176 0.047 0.995 0.003 29.5 1.0

Standard errors (SE) are indicated. The number of trials in this condition were Ny, = 521 and N,,, = 9676. Here,
Ot =10.

Table 5
Actual and minimum detection costs for the 24 systems in the NIST 2004 evaluation, as well as the EER
System Actual Cye Minimum Cge EER (%)

SE
S1 0.423 0.325 7.9 0.6
S2 0.423 0.421 12.1 0.7
S3 0.504 0.478 12.7 0.7
S4 0.524 0.518 11.5 0.7
S5 0.548 0.532 14.6 0.8
S6 0.557 0.512 13.6 0.8
S7 0.564 0.537 15.8 0.8
S8 0.578 0.386 11.1 0.7
S9 0.587 0.553 14.1 0.8
S10 0.604 0.575 13.9 0.8
S11 0.609 0.308 8.3 0.6
S12 0.625 0.544 14.1 0.8
S13 0.630 0.579 17.1 0.8
S14 0.636 0.537 14.9 0.8
S15 0.817 0.627 17.4 0.8
S16 0.932 0.885 25.2 1.0
S17 0.947 0.940 28.0 1.0
S18 1.135 0.910 31.0 1.0
S19 1.215 0.579 15.0 0.8
S20 1.341 0.962 28.0 1.0
S21 2.348 1.000 41.5 1.1
S22 4.645 0.988 39.6 1.1
S23 5.280 0.997 37.3 1.1
S24 9.900 0.643 16.4 0.8

Standard errors (SE) are indicated for the EER. The number of trials in this condition were N, = 568 and
Nyon = 4634. Here, O} = 9.9.
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NFI-TNO DET plot, all systems
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Fig. 1. DET plots for all primary systems, for the NFI-TNO evaluation. Experimental conditions were Dutch
language, 60-s model training segments obtained from one session, 15-s test segments. The boxes and circles indicate the
actual and minimum detection cost operating points, where the boxes represent the 95% confidence intervals.
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Fig. 2. DET plots for all primary systems, for the NIST 2004 evaluation. Experimental conditions were English
language, 1 conversation side model training duration, and an equal test segment duration. The boxes and circles

indicate the actual and minimum detection cost operating points, where the boxes represent the 95% confidence
intervals.
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5.2. Effect of training and test duration

The amount of speech data available, for training or in a test segment, is a key performance
factor that has been considered in all of the NIST evaluations. Recent NIST evaluations
(2000-2003) have had a separate ‘extended data’ test involving multiple conversation sides for
training and single whole conversations sides as test, while the main evaluation test involved dif-
ferent and smaller amounts of training and test data.

The NFI-TNO evaluation studied the effect of training and test speech duration as a separate
part in the evaluation. Here model train speech duration was factored as z,, € {305s,60 s, 120 s},
and test segment duration was factored as #, € {7.5s,15 5,30 s}. This was carried out in an orthog-
onal design, together with another 3-level factor ‘number of sessions,” meaning conversations from
which training data was taken, see Section 5.3.

The NIST 2004 evaluation sought to unify the evaluation with 28 conditions involving seven
training conditions and four test conditions in all combinations (see Table 3). One training and
one test condition involved summed channel data (see Section 5.6 below). Otherwise there were
six training durations and four segment durations. The shorter durations segments were chosen
as subsets of those of longer duration, except that fewer speaker models were available for the
eight and especially the sixteen conversation sides training condition.

Some differences in approach between the two evaluations are:

e Maximum amount of speech data available is larger for NIST (up to 5 min vs. 30 s for test seg-
ments, up to 80 min vs. 2 min for training data).

e The factor ‘more conversations’ is orthogonal with train duration in the NFI-TNO design, for
NIST the two are confounded because, naturally, the very long training duration conditions
can only reasonably be formed from multiple conversations.

5.2.1. NFI-TNO effect of duration

Because the design had three orthogonal factors (training duration, test duration and number
of training sessions), each with three levels, in total 27 separate conditions were formed. If each of
these were to be analyzed separately the number of trials would have become very small for each
condition. We have therefore analyzed the effect of each of the three factors separately, where data
over the other two factors were pooled. Thus, e.g., for the analysis of the level ‘120 s’ for the factor
training duration, trials with 1, 2 and 4 sessions training were all used.

In Fig. 3 the effect of model training duration on score performance is shown for one system.
The trend for better performance with longer training durations is seen in most systems. Note
that, despite the pooling of other factors, the number of trials per analysis was N, = 180 and
Npon = 3100. This number is still low compared to NIST evaluations, and hence the standard
error is high, so we utilize the power of a joint analysis for all systems here. Using logistic
regression we can model the EER by the factor system and the linear term log(z,,), the total
model training duration. The choice for a dependence on the logarithm of training duration
rather than assuming a linear dependence is motivated by the fact that a linear dependence
would be too optimistic: by adding more training material the EER would vanish to zero
too quickly.
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Fig. 3. Effect of training duration (30, 60, 120 s) on EER, for system T3 in NFI-TNO.

Apart from the obviously very significant effect of system, the logarithmic dependence on model
training duration has p = 0.019. The reduction of logit(EER) with a doubling of 7., is 0.11.

For the factor test segment duration, we see a similar but less pronounced effect to training dura-
tion. In a logistic regression analysis using factors system and log(z,), the test utterance duration,
the analysis of deviance tables shows p = 0.09 for the regression coefficient for log(¢,), which is
—0.075 per doubling of #. Apparently, our analysis method is not powerful enough to show an
effect at the p = 0.05 significance level. Clearly, the low value of N,,, = 120 limits the power of this
test. With twice as many target trials, the effect would have had p =0.011, assuming the same
DET curves.

5.2.2. NIST 2004 effect of duration

Fig. 4 shows the variation in the performance DET curve for one system with four training and
three test durations. The sixteen sides condition is omitted as the number of trials was limited, and
the three sides conditions is omitted to enhance the readability of the chart. The variation is as
expected in the sense that longer durations always result in better performance (Doddington
et al., 2000).

The training durations for the NIST trials were denominated in conversation sides (16, 8, 3, or
1) or in seconds (30 or 10). Previous NIST evaluation results had suggested that performance re-
sults were not very sensitive to small differences in speech durations that were in excess of 15 s or
so, and whole conversation sides seemed the most natural units to use for long training durations.
Five minutes were used from each conversation, so each side had an average duration of two and
a half minutes. The conversations involved two willing adults who did not know each other talk-
ing on an assigned topic. Participants were generally polite and desirous of hearing what each to
say, so conversations where one speaker strongly dominated the exchange were rare. (Calls were
screened to weed out any instances that were not really conversations.) So while there were
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Fig. 4. DET curves for all conditions, formed from the test duration levels 10s, 30s, and 1 side, and the training
duration levels 10s, 30 s, 1 side and 8 sides. These are the results for system S9 in the NIST 2004 evaluation.

variations in actual speech duration among the training classes, there was essentially no overlap in
total duration among them.

What is most notable, however, is that the training durations have a much greater effect on per-
formance than the test durations. The DET curves shown in the chart separate into groups cor-
responding to the four training durations. Longer training is always superior, even when 10-s test
segments are compared with whole conversation side test segments.

In principle, the speaker detection task is symmetric between the training and test segments.
Training speech and test segment speech are both provided, and the system must determine
whether the same or different speakers are involved. But comparing, for example, the one side
training, 10-s test curve with the 10-s training, one side test curve in Fig. 4 shows very different
outcomes. Performance results are quite non-symmetric, with more model training speech giving
superior performance results. Note, that this asymmetry is observed for ‘traditional’ Universal
Background Gaussian Mixture Model (UBM/GMM) systems (Reynolds et al., 2000). For one
contrastive submission consisting of the recently developed Support Vector Machines (SVM)
technique (Campbell, 2002), this asymmetry was not observed.

Looking only at test segment durations, it may be seen that 30-s durations give improved per-
formance over 10-s durations, but that the differences between one conversation side and 30 dura-
tions are rather limited. Earlier evaluations had suggested minimal performance advantages to
durations in excess of 15 s and up to about a minute. Here we see that even rather long durations
(typically a conversation side is about two and a half minutes) result in fairly minimal perfor-
mance improvement.

It should be noted, however, that most of the participating systems in the evaluations did not
run most of the training and test duration conditions. Few systems attempted test conditions
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Fig. 5. DET performance as a function of duration condition for system S2.

where the test durations were longer than the training durations (see Table 3). Performance results
for another system that attempted some of these conditions are shown in Fig. 5. Here the differ-
ence between one side and 30-s test segment durations (with one side training) is greater, but still
small. The performance difference between 30-s test and 10-s test is rather larger, however. Com-
paring the DET curves involving one side and 10-s durations still shows the training duration to
have greater effect than the test duration, but the difference between the two is much smaller than
for the system in Fig. 4. The reason for this is probably that this GMM-based system S2 used a
method choosing the longest duration of the test and training segments for training, and the short-
est for testing, for every individual trial.

5.3. Effect of number of training handsets

As seen above, more training data gives better performance. But more variability within the
amount of training provided may also be beneficial. Previous NIST evaluations have shown
the importance of robustness to handset variability (Doddington et al., 2000). In the 2004 evalu-
ation all target trials involved the use of a different test segment handset from the handset(s) used
in training. (The phone number used was taken as indicative of handset distinctness, though dif-
ferent handsets were probably sometimes used with the same number, and the reverse situation is
also conceivable.) For NFI-TNO the handset type was unknown. The influence of variability was
studied by varying the number of different telephone sessions from which the training material
was obtained, either 1, 2, or 4 sessions. We use the word ‘session’ rather than ‘conversation,’ in
order not to be confused with the meaning of a NIST conversation, where more conversations
imply more training data. For a varying number of sessions the total training time stays the same.
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5.3.1. NFI-TNO effect of number of sessions

We observed the DET curves for all systems separated for the factor number of sessions. Most
systems benefited from having training material from more than one session, but only incidentally
did we observe a system that showed better performance for 4 session training than for 2. In order
to summarize the effect for all systems, we have plotted in Fig. 6 the EER for all systems as a func-
tion of the number of training sessions, at a constant training length.

A logistic regression analysis of the EER on the factors system and number of sessions shows
that the factor system is very significant, obviously, but the factor number of sessions is only sig-
nificant with p = 0.038. A pairwise test of proportions shows that systems only benefit from more
than one training session, but that there is no difference going from two to four sessions.

5.3.2. NIST effect of number of training handsets

The 2005 NIST evaluation utilized training data from a single handset for most models, but for
the eight conversation side training condition some of the defined models involved two or more
different handsets. Most systems showed the expected outcome that having multiple training
handsets (all different from the handset used in each trial’s test data) produced somewhat im-
proved results, though the degree of improvement was fairly modest. Fig. 7 shows a typical result,
comparing the DET curve for single handset training trials with that for multiple handset training
trials. Fig. 8 has a similar plot for one system where there is no apparent difference in perfor-
mance. Why this is so is not clear; the system used an overall approach (GMM-UBM) combining
several levels of speech signal information that was not dissimilar to that used by other evaluation
participants.

NFI-TNO Effect of number of training sessions
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Fig. 6. The effect of number of sessions in model training on the EER for all systems. Data points within a system are
connected for visibility, using the same line type scheme as in Fig. 1.
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Fig. 7. The effect of handset variation for a system in NIST 2004, which shows typical behaviour.

5.4. Language effects

The NFI-TNO forensic database contained a number of speakers speaking in two different lan-
guages. We will call these ‘dual language’ speakers, rather than ‘bilingual,” because these speakers
were generally not fluent in both languages. A limited study could be made of the influence of spo-
ken language. The Mixer data provided the first opportunity to look at the effects of language on
speaker detection performance in the NIST evaluations. The presence of a good number of dual
language speakers allows trials to be segmented in several ways. Several DET plots in this section
illustrate different aspects of this for a particular system.

5.4.1. NFI-TNO language effects
In the NFI-TNO design there were the following contrastive language experimental conditions:

English. All training and test segments were spoken in English. Some of the speakers were
native speakers, others were not. There were 21 target speakers and only 2 additional speakers
that could be used as non-target test speakers.

Cross language, Dutch test segments (xl-dt). In total 9 speakers spoke in Dutch and another
language (English, Sranan Tongo or Papiamentu). This test involved trials using Dutch test
segments and target models built from non-Dutch speech.

Cross language, Dutch models (xI-dm). For only 5 of the dual language speakers enough model
training material in Dutch could be found. This test involved the opposite of the previous test,
namely trials combining target models built from Dutch speech with non-Dutch test segments.
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Fig. 8. The effect of handset variation for another system, which shows more robustness to handset variation.

All other parameters were fixed at 1 session training of 60 s, 15-s test segments. Despite the lim-
ited number of speakers available, we found some effects of language.

The language conditions can best be summarized in an ‘interaction plot’ as shown in Fig. 9.
Here, the EER for all systems is shown for the two main language conditions Dutch (the overall
condition ‘Dutch’ and the varying duration condition ‘Dutch2’ from Section 5.2.1), English, and
the two cross language conditions: models trained in Dutch tested with another language (x1-dm)
and models tested in Dutch trained in another language (xI-dt). The conditions are ordered from
left to right in generally increasing EER.

Both the factors system and language are highly significant in an analysis of deviance on
the data shown in Fig. 9. It may be instructive to show the power of the analysis of deviance. In
Table 6 the analysis of deviance is reproduced. The table should be interpreted as follows: from
all the deviance that the generalized linear model can have (534.76) a large part (405.37) is mod-
eled by 11 parameters for the factor system. Of the remaining deviance, 91.39 is modeled by 4
parameters for the factor language. The remaining deviance of 38.00 is not modeled. Not shown
in the table is that, if we would add the interaction effect of the factors system and language, it
would take 44 more parameters to reduce the deviance to 0. This interaction is highly non-signif-
icant, p = 0.73.

The question of which language conditions are significantly different in terms of the systems’
performance is answered by carrying out a pairwise test of proportions between the language con-
ditions. In Table 7, the corresponding p-values are tabulated. Here, a ‘Holm adjustment’ to the
p-values has been applied to compensate for the many comparisons performed. From the table
it follows that only the ‘neighbouring conditions’ in Fig. 9 are not significantly different, except
the ‘neighbours’ Dutch2-English, which is significant.
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Fig. 9. EER in the several conditions for all systems in NFI-TNO. From left to right are two conditions of Dutch,
English, and two cross language conditions. The condition ‘xI-dt’ are trials with Dutch test segments and models trained
on other languages, the condition ‘xI-dm’ has Dutch models and test segments in other languages. Data points within a
system are connected for visibility, using the same line type scheme as in Fig. 1.

Table 6

Analysis of deviance for the effects of system and language

Analysis of deviance Df Deviance Residual Df Residual deviance P(>lyl)
NULL 59 534.76

System 11 405.37 48 129.39 44%x107%
Language 4 91.39 44 38.00 6.7x107"

The numbers are taken from the analysis program, not all decimal places are relevant. ‘Df means ‘degrees of freedom’.

Table 7
Pairwise comparison of the language effect on EER

Dutch2 English xl-dm x1-dt
Dutch 0.57 0.0029 <107? <107?
Dutch2 0.0089 <107? <107?
English 0.37 0.012
xl-dm 0.22

5.4.2. NIST language effect

Fig. 10 examines the effect of classifying trials by the language mix of the training and test data.
It should be noted in this context that the ASR (automatic speech recognition) transcripts that
were made available to all evaluation sites were produced by an English word recognizer, what-
ever the actual language of the input speech. Restricting to same language trials generally pro-
duced slightly better performance than including all trials, as is the case for both systems
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Fig. 10. The effect of language mix in NIST 2004 for system S8. Restricting to same language trials generally aids
performance, while restricting to English-only trials is advantageous to systems utilizing lexical information and the
English ASR transcripts such as this system.

shown in Figs. 10 and 11. But restricting to all-English trials to benefits slightly systems, like that
in Fig. 10 that seek to utilize lexical information provided by the transcripts, while making little
difference for systems, like that in Fig. 11 which utilize acoustic information only.

Figs. 12 and 13 consider separately the segmentation of target (same speaker) and non-target
(different speaker) trials by language mix. The non-English data has been pooled, as only small
differences were found by looking separately at data in the individual languages. In Fig. 12 each
curve includes all non-target trials, while in Fig. 13 all target trials are included in each curve.
Thus, the actual decision false alarm rates are the same for Fig. 12 curves, and the actual decision
miss rates are the same for Fig. 13 curves.

Most notable in Fig. 12 are the superior results when the target trial training and test data are in
the same language, especially in a language other than English. Conversely, Fig. 13 shows that the
poorest results are obtained for non-target trials where the training and test data are in the same
non-English language. This suggests that the system was, to a significant extent, performing lan-
guage recognition for the non-English data. The numbers of speakers included in the DET curves
of Fig. 12 of each “accent” are as follows: Arabic 63, Mandarin 58, Russian 68, and Spanish 134.

The use of dual-language speakers also supports another type of analysis illustrated in Fig. 14.
In the DET curves, all non-target trials are included, while the target trials all involve only English
language data, but are segmented according to the other language, if any, spoken by the target
speakers involved. Thus the curves are labeled by the Arabic, Mandarin, Russian, or Spanish
‘accent’ of their speakers, while an English ‘accent’ refers to single language speakers. The term
‘accent’ here suggests that, although the speakers spoke English, their native language is the other
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Fig. 11. Restricting trials to English-only is not advantageous to systems relying only on acoustic information, such as

here in system S2.

Miss probability (in %)

0.2H

0.1

— Other language training and same other language test
= = English language training Other language test

—— Other language training and English language test

— - English language training and test

i i i i i i

i i i
01 02 05 1 2 5 10 20 40
False Alarm probability (in %)

Fig. 12. Separation of target trials by English/other language, for a contrastive submission of site S11.

language that they used in other conversations. What stands out is the superior performance of
the system with target trials involving Arabic speakers who are speaking in English. These speak-
ers are apparently well distinguished by the system involved. Other evaluation systems were
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Fig. 13. Separation of non-target trials by English/other language, for the system shown in Fig. 12.
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Fig. 14. Separation of target trials by other spoken language (“‘accent’), for system S1. All trials contained only English
speech.

similar in this respect. It would be of interest to examine performance on non-target trials where

the training and test speaker both had similar accents, but insufficient trial data was available in
the 2004 evaluation for this purpose.
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It is to be hoped that these language and accent issues may be further studied in future
evaluations.

5.5. Effect of transmission type for NIST 2004

For each call in the Mixer collection each conversant was asked to indicate whether the trans-
mission type of the handset was cordless, cellular, or regular. The last term, intended for ordinary
land-line phones, may have been confusing for some users, so the sharpest contrasts appear in
comparisons involving either cordless or cellular transmission. The effect of the training and test
segment transmission types on performance is likely to be different for target (same-speaker) and
non-target (different speaker) trials. Figs. 15 and 16 illustrate the effects of transmission type on
performance for one system in target and non-target trials, respectively. It should be noted that all
systems implement in their processing various types of normalization to the different channel con-
ditions that are expected to be encountered. The system in question here used RASTA cepstral
filtering and a speaker-specific T-norm score normalization based on models which scored most
similarly to the given model on a set of impostor utterances. Indeed, most of the evaluation sys-
tems used some type of T-norm normalization.

In Fig. 15 the target trials are varied, while all non-target trials are included in each DET curve.
Thus the actual decision false alarm rate is fixed across curves. It may be seen that target trials
where the training and test transmission types are the same give better performance than those
where they are different, with cordless transmission outperforming cellular, as might plausibly
be expected. Note again that all trials involve different phone numbers and presumably different
handsets. For the mixed trials, better performance is obtained when the training is cordless and
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Fig. 15. Separation of target trials by transmission type, for the system shown in Fig. 12.
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Fig. 16. Separation of non-target trials by transmission type, for the same system as in Fig. 15.

the test is not than when training is cellular and test non-cellular. This is in accord with the notion
(see Section 5.2.2) that performance is more sensitive to the training than to the test data.

When the non-target trials are varied using all target trials as in Fig. 16, it is seen, for the given
system, that better performance occurs with mixed training and test transmission types. This re-
verse of the situation for target trials suggests that systems are, to a limited degree, recognizing
transmission types in place of voices. Note also that in Fig. 16 performance is better for the
matched cordless condition than the matched cellular condition, but there is no difference for
the mixed conditions.

5.6. Summed channel data for NIST 2004

Here we examine performance involving the test conditions where either the training or the test
data was two-speaker summed channel data. Fig. 17 plots six DET curves involving the three con-
versation (summed channel), the three side, and the one side training conditions and the one con-
versation (summed channel) and one side test conditions. All of the trials included involve only
English speech and only a single training handset (phone number). In addition, there is a one-
to-one correspondence of trials for the six curves, with the speech in one side training or test seg-
ments being a subset of that in a corresponding one conversation segment.

It may be observed from the curves in Fig. 17 that for both training and test data, performance
is better with single channel data than with an equal amount of summed channel data. Moreover,
the performance difference is almost as great when one side training is compared with three con-
versation training. Having single channel uncontaminated data is the most important factor
affecting performance. More surprisingly, perhaps, it may be observed that the three curves
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Fig. 17. NIST 2004 DET performance for various summed channel conditions, for system S9.

involving single channel test data all outperform the three involving summed channel test data. In
this regard, unlike the situations considered in preceding sections, the nature of the test data has
greater effect on performance than that of the training data.

Another issue related to summed channel training and test data is explored by Fig. 18. The
summed channel training data for a speaker always involves three conversations with three differ-
ent other talkers. A non-target (impostor) trial could involve test segment speech by one of these
three other speakers in the training. Fig. 18 involves the three conversation training, one conver-
sation test condition with the non-target trials separated into those where one of the test segment
speakers is one of these three and those where this is not the case. Fig. 18 shows that for one typ-
ical system, performance indeed degrades for the first case.

5.6.1. Gender mix

Performance involving summed channel data in either training or test is also influenced by the
gender mix of the summed channel data. Mixed gender speech segments are generally more read-
ily segmented by speaker, avoiding contamination effects. The figures in this section examine this.

Fig. 19 examines the gender mix of test segments for the three conversation training, one con-
versation test condition. For the system shown, which is typical of most, it is seen that there is a
small performance advantage on mixed gender test segments.

For summed channel training, there are three training conversations, so zero, one, two, or all
three of these may involve mixed genders. It may be seen in Fig. 20 that there is a considerable
performance advantage for the system considered when all training data is mixed gender, helping
to avoid contamination of the data actually used for model building. It is also interesting to
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Fig. 18. DET performance for summed channel conditions for system S11, separated for impostor trial speakers as to
whether they occurred as conversation partner in one of the three training conversations.
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Fig. 19. DET performance of summed channel data for different gender mixes, for system S11. The curves separate the
gender mix in test segments.
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Fig. 20. DET performance of summed channel data for different gender mixes, for system S11. The curves separate the
gender mix in training segments.

observe that having two of the training conversations be mixed produces approximately equally
good results for low false alarm rate operating points.

The joint influence of training and test gender mix is considered in Fig. 21. In the curves shown
here, the training mixed and same gender conditions mean that either all three or none of the three
training conversations contain mixed gender speech. It may be seen that, as observed similarly in
the preceding section, the test segment condition has considerably greater effect on performance
outcomes than the training segment condition.

5.7. Comparison of evaluations

We have seen the effects of several factors on the DET performance, and indicated several sta-
tistical techniques for analyzing the significance of effects. We now attempt to address the ques-
tion: can we measure the difference between evaluations themselves? Can we observe that one
particular data collection is ‘easier’ than another? One reason to perform this effort is the obser-
vation that from year to year in the NIST evaluations the general performance changes, and it is
interesting to separate effects from the change of a system from the effects of the evaluation data
set. The method layed out in this section might help in such an analysis.

For this purpose we will try to analyze the difference in performance between both evaluations
held in 2003, NIST and NFI-TNO. Four sites participated in both evaluations, which were held
within about half a year from each other. We have asked the sites whether their systems changed
much between the two evaluations. All reactions were that the changes were minimal, and where
there were explicit changes, the expected effect on EER would be very small. For this analysis we
take the influence of the individual system’s change negligible.
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Fig. 21. DET performance of summed channel data for different gender mixes, for system S11. The curves separate the
gender mix in both training and test segments.

First, we try to correct for the difference in duration conditions between the two evaluations.
We take the representative test duration of NIST 2003 at 30 s, twice that of NFI-TNO. Similarly,
the training duration is twice as large. We then correct the EER in NFI-TNO for duration by
mapping the EER to the logit domain, and subtracting 0.11 for the doubling in training durations
(see Section 5.2.1), and 0.075 for the doubling in test duration. The latter effect could not be pro-
ven to be significant at the p = 0.05 level, but we correct for the log-linear regression anyway be-
cause of the expected effect (see Section 5.2.2 and Doddington et al., 2000). Then the NFI-TNO
values can be mapped to the EER domain by the inverse logit function. The comparison of eval-
uations for the four systems is shown in Fig. 22.

A logistic regression analysis of deviance of the factors system and evaluation shows that both
factors are significant with p < 107>, The largest uncertainty in EER is due to Ny, in NFI-TNO,
and we have not included the possible error introduced by the duration corrections, but we don’t
think that this will change the significance of the difference in evaluations. We can therefore con-
clude, that the NFI-TNO task was harder than the NIST task held in the same year. Possible
explanations are the choice of speakers, the different language used, the speaking style, the signal
to noise ratio, or other factors which were not investigated. In summary, we may call the combi-
nation of all these unknown factors the effect of the evaluation.

We were fortunate that the four systems in this analysis did not change much. In general, how-
ever, the comparison of evaluations is confounded with the development of systems. It is hard to
attribute the change in performance of a system from one evaluation to the next to either actual
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Fig. 22. Comparison of the EER for the four systems that participated in both NIST 2003 and NFI-TNO evaluations.
The NFI-TNO EERs have been corrected for the difference in speech duration from NIST.

changes in the system or to a difference in the evaluation. One way to make the different contri-
butions explicit, is to ask sites to not only run their new system on the new evaluation data, but
also run the system they have used for the previous evaluation (Doddington, 2004) on the new
data. NIST encourages sites to do this in future evaluations.

6. Summary and conclusions

We have given an overview of the evaluation paradigm of the yearly text independent speaker
recognition evaluations held by NIST and that of NFI-TNO in 2003. We have presented and ana-
lyzed the result of two recent evaluations. We have introduced an analysis of deviance for study-
ing various factors affecting the equal error rate in the NFI-TNO evaluation, and studied various
performance factors affecting the DET curve in the NIST 2004 evaluation. Important factors are
training segment duration and, to a lesser extent, test segment duration. Longer speech durations
make the detection potential of a system better. Being subjected to several handsets in the training
material generally makes a system more robust, but some of the better performing systems show
no improvement, which suggests that these systems have a proper compensation for handset
variability. Language dependence experiments show interesting effects of accents, most clearly
indicated by categorizing trials by which other language a speaker is able to speak. For the
two-speaker detection tasks, the negative effect on the DET performance of the contamination
by the other speaker is much larger for test segments than for training segments, which is an inter-
esting contrast to speech segment duration. Finally, we have made an attempt to compare evalu-
ations as a whole to each other.
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