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Abstract

This paper, based on three presentations made in 1998 at the RLA2C Workshop in Avignon, discusses the evalu-

ation of speaker recognition systems from several perspectives. A general discussion of the speaker recognition task and

the challenges and issues involved in its evaluation is o�ered. The NIST evaluations in this area and speci®cally the 1998

evaluation, its objectives, protocols and test data, are described. The algorithms used by the systems that were de-

veloped for this evaluation are summarized, compared and contrasted. Overall performance results of this evaluation

are presented by means of detection error trade-o� (DET) curves. These show the performance trade-o� of missed

detections and false alarms for each system and the e�ects on performance of training condition, test segment duration,

the speakers' sex and the match or mismatch of training and test handsets. Several factors that were found to have an

impact on performance, including pitch frequency, handset type and noise, are discussed and DET curves showing their

e�ects are presented. The paper concludes with some perspective on the history of this technology and where it may be

going. Ó 2000 Elsevier Science B.V. All rights reserved.

R�esum�e

Cet article, bas�e sur les trois expos�es e�ectu�es en 1998 lors de la conf�erence RLA2C �a Avignon, pr�esente les m�ethodes

de m�etrologie de la reconnaissance du locuteur. Apres un aperc
ß
u de ce quÕest la reconnaissance du locuteur et des

probl�emes pos�es, nous pr�esenterons les objectifs, les m�ethodes, les donn�ees utilis�ees et les r�esultats de lÕ�evaluation

propos�ee par NIST en 1998. Pour cela nous utiliserons des detection error trade-o� (DET) curves. Ces courbes ont

lÕavantage de montrer le compromis entre erreur et fausse alarme et lÕe�et sur les performances des conditions dÕen-

trainement, de la dur�ee des segments de tests, du sexe du locuteur ou du type de combin�e. Ensuite nous pr�esenterons,

comparerons et ferons la synth�ese des di�erents algorithmes utilis�es par les syst�emes propos�es par les participants. Nous

avons d�ecouvert que plusieurs facteurs in¯uenc
ß
aient fortement les performances des syst�emes, comme par exemple la

tonalit�e de la voix, le type de combin�e utilis�e ou le bruit ambiant. Nous les pr�esenterons et mettrons en �evidence �a lÕaide

de DET curves. Nous concluerons avec un historique des techniques de reconnaissance du locuteur et avec quelques

projections de ce domaine dans lÕavenir Ó 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Language is the engine of civilization and
speech is its most powerful and natural form, de-
spite the misappropriation of the term ``natural
language processing'' to mean the processing of
text. Textual language has certainly become ex-
tremely important in modern life, but speech has
dimensions of richness that text cannot approxi-
mate. For example, the health, the sex and the
attitude of a person are all naturally and sublimi-
nally communicated by that personÕs speech. Such
extra-linguistic information has social value and
serves important communicative functions in our
everyday lives.

Cues to a personÕs identity are also part of the
extra-linguistic information communicated by the
sound of a speakerÕs voice. With the complexities
of modern life, this ability to identify people by the
sound of their voices ®nds value beyond the realm
of personal living. With the advent of the infor-
mation age and the high-powered but low-cost
computers that fuel it, speaker recognition has
become an attractive potential capability ± albeit
one that largely remains to be ful®lled through
research and technology development e�orts.

1.1. NIST evaluations

The National Institute of Standards and Tech-
nology (NIST), located in Gaithersburg, MA,
USA, has played a vital role in working with in-
dustry to develop and apply technology, mea-
surements and standards, for several years. The
Spoken Natural Language Processing group of
NISTÕs Information Technology Laboratory con-
ducts annual benchmark tests to evaluate the state-
of-the-art in the areas surrounding core speech
recognition technologies.

NIST has coordinated an ongoing series of
speaker recognition evaluations (Przybocki and
Martin, 1998b), which have provided an important
contribution to the direction of research e�orts
and the calibration of technical capabilities. They

are intended to be of interest to all researchers
working on the general problem of text-indepen-
dent speaker recognition. To this end, the evalua-
tions are designed to be simple, to focus on core
technology issues, to be fully supported and to be
accessible. A follow-up workshop for the partici-
pants to discuss research ®ndings is held after each
evaluation. Participation in these evaluations is
solicited for all research sites that ®nd the task and
the evaluations of interest.

1.2. Outline

The authors have been involved in the NIST
speaker recognition evaluations as planners, or-
ganizers, scorers, sponsors and participants. Sec-
tion 2 (®rst author Doddington) of this paper
o�ers a somewhat personal overview of evaluation
methodology for speaker recognition based on
long experience in the ®eld. Section 3 (authors
Przybocki and Martin) of this paper discusses the
objectives and protocols of the 1998 evaluation.
Section 4 (author Reynolds) describes the various
systems from laboratories in the United States
and Europe that were included in the evaluation.
Section 5 (authors Przybocki and Martin) pre-
sents a number of charts of the performance re-
sults of the evaluation with some contrast with the
results from the evaluation of the previous year.
We discuss 2 speci®c factors that we found to
signi®cantly a�ect the level of performance,
namely, speakersÕ average pitch and the handset
types of the phones used. Section 6 summarizes
the NIST evaluation process and suggests future
directions for research for where this technology is
headed.

2. Overview of evaluation methodology

The increase in application opportunities has
resulted in a heightened interest in speaker recog-
nition research. A key element in this research is
the identi®cation of key research tasks and the
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establishment of evaluation methodology to sup-
port them. The purpose of this section is to pro-
vide an interpretive overview on speaker
recognition tasks and evaluation methodology as
previously presented at the ``La Reconnaissance
du Locuteur et ses Applications Commerciales
et Criminalistiques'' (RLA2C) Workshop (Dod-
dington, 1998).

2.1. Applications

There are numerous possible ways of catego-
rizing di�erent applications of speaker recognition.
One meaningful way is to divide the applications
into two groups according to the immediate ben-
e®ciary of the process. Speci®cally, the question is
whether it is the speaker who bene®ts or someone
else. This split is particularly useful because it also
has a profound impact on the task de®nition,
the technology, the system design and system
performance.

Examples of speaker recognition applications
that serve the speaker are security systems that
provide control of physical entry and information
access. Such systems are in general more intricate
in design and capable of better performance than
other kinds of systems. For example, because se-
curity system users are cooperative, they can col-
laborate with the system by saying what is asked of
them and by pro�ering their identities to make the
recognition task easier. Also, special care is taken
in the design of these systems to ensure good
speaker recognition performance ± e.g., by using
high quality uniform microphones and by con-
trolling the ambient noise level, where possible.

Examples of speaker recognition applications
that serve someone other than the speaker include
forensic applications. While the use of speaker
recognition in such cases is less encumbered by
design details, performance is usually signi®cantly
worse ± the speaker may be using an unknown
microphone (often a carbon button telephone
handset) or may be particularly emotional and the
recording is typically of low quality for a variety of
reasons. The one advantage that forensic type
applications often do have is in the amount of
speech data. Whereas in security applications,
where time is of the essence and speech segments

are measured in a few seconds, forensic applica-
tions may have minutes of speech to use.

2.2. Task de®nitions

In order to conduct a productive applied re-
search e�ort directed toward speaker recognition
technology, it is helpful to have a clear under-
standing and expression of the research objective.
This research objective is properly expressed in
terms of a formal de®nition of the speaker recog-
nition task.

Ideally, a formal task de®nition of speaker
recognition will serve more than to organize re-
search within a single research e�ort. It can also
serve to share resources and results across a
number of di�erent research sites. This tendency
toward globalization of speech research has ac-
celerated strongly during the past 10 years, due in
part to a gradual realization of the immense
challenge of understanding speech and creating
useful speech technology.

There are logically two parts to de®ning the
speaker recognition task. These are to de®ne the
nature of the speaker recognition decisions and to
de®ne the nature of the speech data on which these
decisions are to be made.

2.2.1. Recognition decisions
Speaker recognition is the general term used to

include all of the many di�erent tasks of discrim-
inating people based on the sound of their voices.
There are many terms used to distinguish di�erent
tasks, including speaker identi®cation, speaker
veri®cation, speaker spotting and speaker detec-
tion. But it will be most useful to focus primary
discussion on just two di�erent kinds of tasks,
identi®cation and veri®cation.

2.2.1.1. Identi®cation. Speaker identi®cation is the
task of deciding, given a sample of speech, who
among many candidate speakers said it. This is an
N-class decision task, where N is the number of
candidate speakers. Of course N has a powerful
in¯uence on the ultimate performance for an
identi®cation task ± performance might be ex-
tremely good for just a few speakers (especially if
they happen to have distinctly di�erent voices), but
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as N becomes arbitrarily large, the probability of
correctly identifying the speaker becomes arbi-
trarily small and approaches zero.

There are variants of the identi®cation task,
including most notably the situation where the
actual speaker may be none of the candidate
speakers. The identi®cation task is called a ``closed
set'' task when the actual speaker is always one of
the candidate speakers. When the actual speaker
may not be one of the candidate speakers, it is
called an ``open set'' task.

In most cases, the speaker identi®cation task
appears to be more of a scienti®c game than an
operationally useful capability. This is especially
true for security system type applications, because
here the speaker has good reason to cooperate
with the system by pro�ering an identity, thus re-
ducing the N-class task down to a 2-class task.
Even for forensic type applications, the problem
most often is one of evaluating each candidate
separately rather than choosing one from among
many candidates. Thus, it seems that, though the
speaker identi®cation task may garner consider-
able scienti®c interest, it is the speaker veri®cation
task that has the greatest application potential.

2.2.1.2. Veri®cation. Speaker veri®cation is the
task of deciding, given a sample of speech, whether
a speci®ed candidate speaker said it. This is a 2-
class task and is sometimes referred to as a speaker
detection task. The two classes for the veri®cation
task are: the speci®ed speaker (known variously as
the ``true speaker'' or the ``target speaker''); and
some speaker other than the speci®ed speaker
(known variously as an ``impostor'' or a ``non-
target speaker'').

One very nice characteristic of the speaker
veri®cation task, deriving from the inherent nature
of a 2-class task, is that the performance is inde-
pendent of the number of potential impostor
speakers. Thus, the measured performance of a
veri®cation system is independent of the number
of impostor speakers in the test set. (This assumes
that the veri®cation system does not ``know'' the
impostor speakers. Improved impostor resistance
can be achieved for small numbers of impostors if
the system has explicit knowledge of the impos-
torsÕ speech.) This does not imply, however, that

performance is independent of the choice of im-
postors ± if impostors similar to the target speaker
are selected, then naturally performance will be
worse.

2.2.2. Operating modes
Generally speaking, there are two di�erent

modes of speech used in speaker recognition,
which correspond to the two di�erent kinds of
applications. When the speaker is cooperative, the
system may know what the speaker is supposed to
say and better performance may be achieved.
When the speaker is uncooperative or unaware,
then the system will be handicapped by lack of this
knowledge.

2.2.2.1. Text-dependent recognition. A speaker
recognition system is called ``text-dependent'' if it
knows what the speaker is supposed to say. In the
typical text-dependent recognition scenario, the
speaker will either say a prede®ned utterance or
will be prompted to say an utterance by the sys-
tem. In either case, the target speaker will have
explicitly spoken these words during an enrollment
session.

This explicit knowledge can be used to good
e�ect in building detailed dynamic models of the
speaker. These models can be word- and phone-
speci®c and thus can calibrate the target speaker
with great accuracy ± sometimes too accurately, if
the speaker does not produce the appropriate ut-
terance properly! But, with nominal speaker co-
operation, text-dependent recognition improves
recognition performance while at the same time
minimizing the amount of speech data required.

2.2.2.2. Text-independent recognition. A speaker
recognition system is called ``text-independent'' if it
does not have foreknowledge of what the speaker
is saying. This forces the technology to deal with
whatever speech data happens to be available,
both for training and for recognition decisions.
Because of this, text-independent systems typically
exhibit worse performance than do text-dependent
systems, at least per unit of speech.

There is a signi®cant research advantage to
working on text-independent recognition, beyond
just the ability to use signi®cantly larger amounts
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of speech data. This is, namely, the general ab-
sence of idiosyncrasies in the de®nition of the task
and the speci®cation of the speech data. This al-
lows simple and general task and data speci®ca-
tion, which in turn supports much broader
collaboration and sharing of results than has been
realized in text-dependent recognition. Partially as
a result of this advantage, interest in text-inde-
pendent recognition has risen signi®cantly.

2.3. The technical challenges

PeopleÕs voices are distinctive. That is, a per-
sonÕs speech exhibits distinctive characteristics
that indicate the identity of the speaker. We are
all familiar with this and we all use it in our
everyday lives to help us interact with others. Of
course, from time to time we might notice that
one person sounds very much like another person
we know. Or we might even momentarily mistake
one person as another because of the sound of
the personÕs voice. But this similarity between
voices of di�erent individuals is not what the
technical challenge in speaker recognition is all
about.

The challenge in speaker recognition is variance,
not similarity. That is, the challenge is to decode a
highly variable speech signal into the characteris-
tics that indicate the speakerÕs identity. These
variations are formidable and myriad. The prin-
cipal source of variance is the speaker.

2.3.1. The speaker
While it is the speakerÕs voice that provides the

recognition capability, it is also the speakerÕs
variability that makes the problem so di�cult. An
explanation for why the speakerÕs variability is
such a vexing problem is that the use of speech,
unlike ®ngerprints or handprints or retinal pat-
terns, is to a very large degree a result of what the
person does, rather than who the person is ± speech
is a performing art and each performance is
unique.

Some of the sources of variability are within the
speakerÕs control. Some are not. Here is a list of
some of the factors that have been o�ered as

explanations for speaker variability leading to less
than perfect speaker recognition performance:
· The session. Early experiments showed good

speaker recognition performance when training
and testing were both conducted in the same ses-
sion. The single session experiment successfully
avoids these problems, but unfortunately does
not contribute to solving them.

· Health. Respiratory infections are a de®nite
problem and of course laryngitis is the ultimate
health problem for speaker recognition. Other
factors that might be considered part of a per-
sonÕs health include emotional state and meta-
bolic rate.

· Educational level and intelligence. Although this
subject is taboo, general intellectual keenness
may play a role, at least in cooperative systems
where speaker control can have a bene®cial ef-
fect on performance.

· Speech e�ort level and speaking rate. These fac-
tors are at least super®cially controllable,
though people are not typically conscious of
them. This is especially true for the Lombard ef-
fect (where people unconsciously talk louder
when exposed to auditory noise). Such changes
in speech production cause complex changes in
the speech signal beyond simple energy and rate
changes.

· Experience. This applies only to cooperative sys-
tems where the speaker has the opportunity to
interact with the speaker recognition system
repeatedly. In these cases, it has been observed
that there is a striking learning e�ect. However,
how this learning e�ect is divided between the
machine learning the speaker and the speaker
learning to talk to the machine is not totally clear.

2.3.2. Other challenges
There are other factors, beyond speaker vari-

ability, that present a challenge to speaker recog-
nition technology. These deal with problems in
getting the acoustical signal intact from the
speaker to the recognition system:
· Acoustical noise. This may be a large or small

problem, depending on the microphone used
to transduce the speech signal and the acoustical
environments within which the system is re-
quired to perform.
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· The microphone. Second only to the speaker, the
microphone and associated sound pick-up issues
probably represent the next biggest challenge to
speaker recognition. This is especially true for
applications that use the telephone, because of
the wide variety of telephone handsets and mi-
crophone elements. People also have a wide
range of ways that they hold telephone handsets
and may continually change positions while
talking, presenting problems to human interloc-
utors as well as speaker recognition systems.

· Electrical transmission. This has been a problem
in the past and current mobile telephone sys-
tems continue to pose a challenge. However,
improvement in line quality and the rapid
deployment of high performance digital commu-
nication systems may largely eliminate transmis-
sion from the palette of problems that face
speaker recognition in the future.

2.4. Performance measures

Performance measures serve a number of pur-
poses. These include, most importantly, a means
for evaluating research ideas and making consis-
tent long-term technical progress. Other reasons
include comparing di�erent systems, evaluating
the e�ectiveness of technology for speci®c appli-
cations, marketing research to sponsors and selling
products to customers.

Performance measures need to be easy to un-
derstand and clear. In deciding how to express
performance ®gures, there is good reason to
choose error over accuracy. The reason is that
error lends itself to better intuition than does ac-
curacy. For example, it is easy to see that reducing
the error rate from 10% to 5% is in a very real
sense a doubling of performance, which is of
course the same as increasing the accuracy from
90% to 95%.

2.4.1. Identi®cation
The speaker identi®cation task is straightfor-

ward and lends itself to a simple bottom-line
identi®cation error rate, EID, as the performance
measure:

EID � nerr=ntot;

where ntot and nerr are the total number of trials
and the number of trials in error, respectively. The
error rate may vary with speaker and other con-
ditions, but the basic performance measure is quite
straightforward.

2.4.2. Veri®cation
Speaker veri®cation is a detection task and

therefore there exists considerable support for it, in
terms of existing conventions and procedures for
measuring the performance of detection systems.

2.4.2.1. Miss/false alarm. Detection system per-
formance is usually characterized in terms of two
error measures, namely, the miss and false alarm
error rates. These correspond respectively to the
probability of not detecting the target speaker
when present, Emiss, and the probability of falsely
detecting the target speaker when not present, Efa.
These measures are calculated as

Emiss � nmiss=ntarget;

where ntarget and nmiss are the number of target
trials and the number of those where the target
speaker was not detected, respectively, and

Efa � nfa=nimpostor;

where nimpostor and nfa are the number of impostor
trials and the number of those where the target
speaker was falsely detected, respectively.

2.4.2.2. Equal error rate. Miss and false alarm
rates, while properly characterizing the perfor-
mance, still do not produce a single number per-
formance ®gure. The use of equal error rate
essentially combines miss and false alarm rates
into a single number by ®nding the decision
threshold at which they are equal. This only
works, of course, if the decision threshold is
adjustable.

2.4.2.3. Geometric mean error. While equal error
rate may be a reasonable performance measure for
laboratory systems, this does not extend so easily
to ®elded systems. Operational systems do not
exhibit equal miss and false alarm error rates and
usually these are purposely adjusted to be quite
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di�erent from each other. Nonetheless, it would be
desirable to compare di�erent systems in terms of
a single error ®gure that represents their underly-
ing ability to discriminate among speakers.

The geometric mean error, EGM, is a statistic
that o�ers the desired ability to compare systems
at other than the equal error point. It is de®ned
simply as

EGM �
������������������������������
Emiss � Efalse alarm

p
:

EGM will be fairly constant as miss and false alarm
rates vary, at least over a modest range of values.
While it may be used as a rough comparison of
di�erent systems, probably a better use for EGM is
as a diagnostic measure of performance during
research or system upgrade. By this means, e.g.,
small variations in miss/false alarm trade-o� need
not prevent a meaningful comparison.

However, EGM is not perfectly constant. Typi-
cally, it tends to increase as the miss rate is de-
creased. This e�ect usually becomes more
pronounced when the miss rate gets down to about
1% or 2%. This gives rise to the adage that ``it's
easier to reject impostors than it is to accept true
speakers''. This droll folk wisdom re¯ects the be-
havioral statistics (e.g., state of health and emo-
tions) of the true speakers ± an interesting
statistical commentary on the inherent variability
of the human voice.

2.4.2.4. Detection cost. Another good approach to
representing system performance as a single num-
ber is to formulate a detection cost function. This
is a weighted arithmetic mean of the miss and false
alarm rates. This measure has the advantage that it
models the application and produces a number,
which is directly meaningful to the application.
Detection cost, Cdet, is typically modeled as a
weighted sum of the posterior probabilities of miss
and false alarm:

C det � cmiss � Emiss � Ptarget � cfa � Efa � 1
ÿ ÿ Ptarget

�
;

where cmiss and cfa are the costs of a miss and a
false alarm, respectively, and Ptarget is the a priori
probability of a target.

The detection cost function as de®ned above
seems to be an excellent evaluation measure, be-

cause it quanti®es the value (cost) of the technol-
ogy to the application. For many di�erent
applications, the speaker recognition value/cost is
arguably well represented by this detection cost
function. Yet there appears to be little interest in
the scienti®c community for such abstract mea-
sures. Researchers prefer to understand miss and
false alarm error trade-o�.

2.4.3. The DET plot
The trade-o� between miss and false alarm

error rates have traditionally been shown on so-
called ROC curves, which plot detection proba-
bility as a function of false alarm probability. An
improvement to this visualization aid, called the
detection error trade-o� (DET) plot, has been in-
troduced by NIST recently (Martin et al., 1997).
The DET plot improves the visual presentation of
DET by plotting miss and false alarm probabilities
according to their corresponding Gaussian devi-
ates, rather than the probabilities themselves. This
results in a non-linear probability scale, but the
advantage is that the plots are visually more in-
tuitive. In particular, if the distributions of error
probabilities are Gaussian, then the resulting
trade-o� curves are straight lines. The distance
between curves depicts performance di�erences
more meaningfully. Examples of DET plots may
be seen in Section 5. In particular, Fig. 3 contrasts
a DET plot and a traditional ROC plot for the
same data.

2.4.4. Decision making
Speaker recognition technology deals with

making decisions. The task is quite simple ± to
make a decision about the identity of the speaker,
based on the sound of the personÕs voice. That
seems clear enough. Yet the actual decision mak-
ing process, speci®cally the setting of decision
thresholds, has often been neglected in speaker
recognition research.

Making these decisions has often been dis-
missed as an unchallenging problem to be ad-
dressed during application development. Yet for
those who actually have had to deploy real oper-
ational systems, the problem has been found to be
quite challenging, indeed. For the case of cooper-
ative speaker systems, performance is invariably
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found to vary widely among di�erent speakers.
But homogeneous performance, with nice low miss
rates for everyone, is a system requirement. So
researchers endeavor to calibrate each speaker
separately, only to ®nd that what is observed in
training may be destructively misleading in usage ±
speaker normalization sometimes results in worse
performance!

The important point here is that the actual de-
cision process must be considered to be part of any
comprehensive speaker recognition research pro-
gram and that the ability of a system to make
good decisions should be an integral part of the
evaluation.

2.4.5. Pooling data
The issue of how to pool data is related to the

problem of setting thresholds and making deci-
sions. Pooling data for di�erent target speakers
can be especially painful, because the good per-
formance given by speaker-dependent thresholds
may dissolve into poor performance from a mud-
dled threshold after results have been pooled.

One suggested solution to this problem is to
®nd the equal error rate for each target speaker
and then to average these error rates over all
speakers. While this procedure invariably shows
superior performance, the result is illusory. There
are several reasons why this is a bad practice. The
®rst is that knowledge of the best decision
thresholds is inadmissible information ± decisions
must be made without the arti®cial luxury of
knowing the answers. The second is that inference
of the best decision thresholds from the test data is
false knowledge ± random sampling produces the
illusion of good decision points that do not really
exist. This can have a strong bias on results
whenever there is a relatively small amount of data
for each of the target speakers, which is usually the
case.

2.5. Evaluation

Having a measure of performance is certainly
desirable, even necessary, in order to evaluate a
system. But performance is a function of many
factors. Consideration of these factors and how
they in¯uence performance, is necessary in order

to understand the technology and apply it suc-
cessfully.

2.5.1. Evaluation factors
Evaluation factors are factors that in¯uence the

performance of the system. Ideally we would like
to vary each of these factors and evaluate their
e�ect so as to understand how they relate to per-
formance. Here are some of the most important
evaluation factors:
· Amount of target training data. The more train-

ing data that a system has in order to learn a
speakerÕs voice characteristics, the better will
be the performance of the system. In particular,
data from a number of di�erent sessions is desir-
able, because a speakerÕs voice characteristics
change signi®cantly from session to session.
But for cooperative speaker systems there is usu-
ally an overriding need to minimize the demands
on the speaker and thus the amount of training
data. While multi-session training would be very
helpful, this is de®nitely a disadvantage to the
application.

· Test segment duration. This is probably the most
studied factor in speaker recognition perfor-
mance with longer segment durations providing
signi®cantly better performance. This is dis-
cussed in Section 5.2 for the 1998 NIST evalua-
tion.

· Microphone di�erences. Microphone di�erences
are one of the most serious problems facing
speaker recognition, especially when dealing
with the telephone, where EdisonÕs old non-
linear carbon-button microphone still represents
a signi®cant fraction of all transducers. The im-
portance of microphone di�erences may be illus-
trated by comparing the performance obtained
when training and testing are performed on a
single type of microphone with that obtained
when training and testing are performed on dif-
ferent types of microphones. This may be done
easily enough when using telephone data, be-
cause there are two di�erent types of micro-
phone elements that are commonly used in
telephone handsets. These are, namely, the tra-
ditional carbon-button element and the now
more common electret element, which is rapidly
replacing carbon buttons because of its lower
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cost. This contrast is discussed in Section 5.3 for
the 1998 NIST evaluation.

· Noise. Noise and distortion will obviously cor-
rupt performance, but there has been little sys-
tematic study of this issue. See Section 5.5 for
a discussion of NIST's e�ort to correlate subjec-
tive noise with system performance in the 1998
evaluation.

· Temporal drift. Temporal factors play an impor-
tant role in speaker recognition performance.
Depending on the needs of the intended applica-
tion, evaluation may need to stretch out over
months or even years. For systems that include
adaptation to speaker changes, this may not be
a critical factor. However, it may also be that
di�erent age groups exhibit di�erent perfor-
mance characteristics. For cooperative speaker
systems, special attention needs to be paid to
the period immediately following a speakerÕs en-
rollment. This is an especially di�cult time, be-
cause the system must bridge the gap between an
unadapted and relatively inaccurate model and
well-adapted model of the speaker at the same
time that the speaker is learning how to speak
to the system.

· Sex di�erences. Male and female voices are gen-
erally quite di�erent from each other, both in
physical characteristics (e.g., pitch and vocal
tract length) and in linguistic and stylistic use.
For this reason, it is usually informative to mea-
sure performance separately for men and wom-
en. This is discussed in Section 5.4 for the 1998
NIST evaluation.

2.5.2. Evaluation methodology
The two di�erent types of speaker recognition

applications, namely, cooperative (text-dependent)
recognition and tacit (text-independent) recogni-
tion, have a profound in¯uence on the design of an
evaluation. For the text-dependent case, the task is
invariably system-speci®c and usually very idio-
syncratic, making system evaluation speci®c to the
system. This in turn inhibits the comparison of
performance among di�erent systems.

2.5.2.1. Statistical signi®cance. The overarching
consideration in designing an evaluation is statis-
tical signi®cance. An evaluation is pointless if it is

not signi®cant. Furthermore, if the evaluation is to
be helpful to research, then statistical signi®cance
must be with respect to multiple and various se-
lected conditions. For example, if only one target
speaker is used, then statistically signi®cant results
may be obtained, but unfortunately they will be
valid only for that particular speaker. Clearly, if
statistical signi®cance across a population in gen-
eral is required, then an adequate number of
speakers must be sampled. Regardless of the
number of speakers sampled, however, care must
be exercised to ensure that the sample population
represents the population of interest. For example,
it might be particularly easy to recruit college
students and so an experiment might be limited to
college students. Are the results of this experiment
valid for populations of di�erent age and educa-
tional demographics? Perhaps. Perhaps not. As-
sertions of statistical signi®cance are dangerous in
such circumstances.

One of the di�culties facing evaluation is the
large number of factors that in¯uence performance
and the complex way that they may interact. Re-
quiring meaningful (i.e., statistically signi®cant)
results for many di�erent combinations of evalu-
ation conditions easily results in an unmanageably
large test.

2.5.2.2. The rule of 30. In determining the required
size of a corpus, a helpful rule is what might be
called ``the rule of 30''. This comes directly from
the binomial distribution, assuming independent
trials. Here is the rule:

To be 90% con®dent that the true error rate is
within �30% of the observed error rate, there
must be at least 30 errors.

This con®dence interval and proportional
bound on error rate are reasonable values that
yield reasonable requirements for the size of an
evaluation corpus. The rule may be applied by
considering the performance goals or expectations
for the evaluation. For example, suppose that the
performance goals are 1% miss and 0.1% false
alarm. Thirty errors at 1% miss implies a total of
3000 true speaker trials and 30 errors at 0.1% false
alarm implies a total of 30,000 impostor trials.
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Note, however, that a key assumption in these
calculations is that the trials are independent. The
implications of this can be daunting ± does this
mean 3000 true speakers and 30,000 impostors?
Strictly speaking, it probably does. The alterna-
tive is to compromise on independence and not
to take assertions of statistical signi®cance too
seriously.

2.5.2.3. Speaker selection. Target speakers should
be chosen so as to best represent the intended
application. This includes selection of sex, age,
dialect and other demographic factors of potential
relevance; and of course, there must be enough of
them. This is especially important because of per-
formance inhomogeneities among speakers. Spe-
ci®cally, there will be di�erences in performance
among speakers for which there are no clear ex-
planations or underlying mechanisms. This has led
to the jocular characterization of the target pop-
ulation as being composed of ``sheep'' and ``goats''.
In this characterization, the sheep are well behaved
and dominate the population, whereas the goats,
though in a minority, tend to determine the per-
formance of the system through their dispropor-
tionate contribution of errors.

The impostor population should model the
target population, which is typically done in
faultless style by having the targets serve also as
impostors. Like targets, impostors also have
barnyard appellations, which follow from inho-
mogeneities in impostor performance across the
speaker population. Speci®cally, there are some
impostors who have unusually good success at
impersonating many di�erent target speakers.
These are called ``wolves''. Also, there are some
target speakers who seem unusually susceptible to
many di�erent impostors. These are called
``lambs''. The purpose of these appellations is to
point to the need to study and understand these
speaker inhomogeneities. For an initial e�ort in
this direction, see (Doddington et al., 1998).

Another pro®table direction for speaker selec-
tion would be so as to focus research on idiosyn-
cratic voice di�erences. Without special selection,
many if not most of the salient di�erences in
voices will be broad di�erences such as age, size
and dialect. In order to focus research e�ort on

®ne idiosyncratic voice di�erences, it would be
helpful to select a population of speakers who all
share the same gross physical and linguistic char-
acteristics.

2.5.2.4. Data collection. For target speakers, test
data should be collected in many di�erent sessions.
Performing multiple tests from data collected in a
single session is of limited value at best, because of
the strong correlation of speech characteristics
within a single session. Test data should also be
processed chronologically, so that test data always
follows training data.

Impostor trials are easier to come by if it is
possible to use a single impostor test segment to
test against multiple target speakers. Because of
this multiplicative e�ect, it may be possible to run
an extremely large number of impostor trials. The
impulse to do this should be resisted, because the
statistical signi®cance of the results is determined
in a fundamental way by the number of target
speakers, not simply by the number of trials per-
formed on them. So running an excessive number
of impostor trials is just wasteful.

By convention and common sense, cross-sex
impostor trials are to be avoided. Although al-
lowing cross-sex trials will improve the apparent
performance of a system somewhat, it confounds
comparison of performance with other systems
and it risks straining the credulity of sponsors,
colleagues and bystanders.

3. The 1998 evaluation: objectives, data, partici-

pants

This section summarizes the protocols for the
1998 NIST evaluation (NIST, 1998) and o�ers
some contrasts with those for the 1997 evaluation
(NIST, 1997). We discuss the overall technical
objective, the evaluation metric and how results
were presented, the evaluation data set, the
training and test conditions evaluated and the
participating sites. The o�cial plans for these
evaluations are posted on the NIST Spoken Nat-
ural Language Processing group's website (NIST,
1997, 1998).
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3.1. Technical objective

The NIST evaluations have focused on the task
of speaker detection (or equivalently, speaker
veri®cation). That is, the task has been to deter-
mine whether a speci®ed target speaker is speaking
during a given speech segment.

This task has been posed in the context of
conversational telephone speech and for limited
training data. The evaluations are designed to
foster research progress with the goals:
· exploring promising new ideas in speaker recog-

nition;
· developing advanced technology incorporating

these ideas;
· measuring the performance of this technology.
Speaker detection performance has been evaluated
by measuring the correctness of detection decisions
for an ensemble of speech segments. These were
segments selected to represent a statistical sam-
pling of the conditions of evaluation interest. For
each of these segments a set of target speaker
identities was assigned as test hypotheses. Every
hypothesis was to be judged as either true or false.
Each decision had to be based only upon the
speci®ed test segment and target speaker. Use of
information about other test segments and/or
other target speakers has not been allowed.

3.2. Evaluation measure

The formal evaluation measure was the detec-
tion cost function (see Section 2.4.2.4), de®ned as a
weighted sum of the miss and false alarm error
probabilities:

C det � cmiss � Emiss � Ptarget � cfa � Efa � 1
ÿ ÿ Ptarget

�
:

The parameters of this cost function are the
relative costs of detection errors, cmiss and cfa, and
the a priori probability of the target, Ptarget. The
evaluations have used the following parameter
values:

cmiss � 10; cfa � 1; Ptarget � 0:01:

In addition to the (binary) detection decision, a
decision score was also required for each test hy-
pothesis. The decision scores were used to produce

DET curves (see Section 2.4.3), showing the trade-
o� of misses and false alarms.

3.3. Evaluation data

The speech data came from phase 1 of the
switchboard-2 corpus in 1997 and from phase 2 in
1998. Switchboard-2 is a corpus of conversational
telephone speech that was created using a collec-
tion paradigm similar to that of the original
switchboard corpus. These corpora are available
from the Linguistic Data Consortium. 1

As with switchboard, switchboard-2 speakers
were assigned topics to discuss with another
speaker, whom they did not know. In contrast to
the earlier corpus, however, they were given per-
mission to ignore the assigned topic and in most
cases they chose to do so. These speakers were
generally college students, considerably younger
on average than the switchboard speakers and
much of the dialogue is dominated by what may be
characterized as ``college chit-chat''. The phase 1
speakers were primarily from the northeastern
United States, while the phase 2 speakers were
primarily from the American midwest.

The evaluation data contained about 400 target
speakers in 1997 and about 500 in 1998. There
were about 5000 test segments per duration both
years. Ten or eleven targets were speci®ed for each
segment to be tested against.

New in 1998 was the creation process of the test
and training segments. An automatic speech de-
tector determined where the speech signal was
present in a conversation. NIST manually audited
these segments in 1997, rejecting ones that did not
meet the acceptance criteria (rules designed to
eliminate non-speech segments). Then the appro-
priate amount of speech was concatenated to-
gether, eliminating silences. It was determined in a
special test after the 1997 evaluation that removing
the auditing for non-speech segments had little ef-
fect on recognition performance. For 1998, there-
fore, the segment selection process was essentially
entirely automatic with human veri®cation only

1 Linguistic Data Consortium (LDC), Philadelphia, PA, USA

(www.ldc.upenn.edu).
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that the speakers were correct. Segments that were
noisy or lacking in speech (see Section 5.5) were
noted for possible later analysis, but were not
removed.

The development data set for the 1997 evalua-
tion was the data used in the 1996 evaluation,
while for the 1998 evaluation the 1997 data served
this role. These three data sets, which may be used
as kits for research e�orts, are now available from
the LDC.

3.4. Evaluation conditions

The 1998 evaluation o�cially consisted of nine
di�erent tests. Participating sites could choose to
do some or all of these, but were required to
process all segments and targets speci®ed in each
test. The nine tests were de®ned by three di�erent
training conditions and by test segments of three
di�erent durations. Each test included separately
male speakers and test segments and female
speakers and test segments. There were no cross-
gender tests.

3.4.1. Training
There were three training conditions for each

target speaker in the 1998 evaluation. The three
conditions were:
· ``One-session'' training. The training data con-

sists of 2 minutes of speech data taken from only
one conversation.

· ``Two-session'' training. The training data con-
sists of 1 minute of speech data taken from each
of two di�erent conversations collected using
the same telephone number (and presumably
the same telephone handset).

· ``Two-session-full'' training. The training data
consists of all speech data available in the two
conversations used for two-session training.

The 1997 evaluation, it may be noted, used the ®rst
two of these training conditions. It did not use the
two-session-full training condition, but it also in-
cluded the following condition:
· ``Two-handset'' training. The training data con-

sists of 1 minute of speech data taken from each
of two di�erent conversations collected using
di�erent telephone numbers (and thus presum-
ably di�erent telephone handsets).

Table 1 includes a summary of the training con-
ditions.

3.4.2. Test
Performance was computed and evaluated sep-

arately for female and male target speakers and for
the three training conditions. The test segments
included in the evaluation were organized by sex
and by duration. The evaluation plan speci®ed 3
factors of interest with respect to which perfor-
mance would be examined. They were:
· Test segment duration. Performance was com-

puted separately for the 3, 10 and 30-s test
segments.

Table 1

Training and test conditions in NIST 1997 and 1998 speaker recognition evaluations

Condition Description Notes

Traininga

One-session 2 minutes of speech from one conversation 1997 and 1998

Two-session 1 minute of speech from each of two same-number

conversations

1997 and 1998

Two-session full All speech data from above two conversations 1998 only

Two-handset 1 minute of speech from each of two di�erent number

conversations

1997 only

Testa

Sex Male and female No cross-sex tests

Duration (approximate) 3, 10 and 30-s segments 3-s is subsegment of 10-s which

is subsegment of 30-s

Same/di�erent phone number True speaker training versus test segment Phone number serves as proxy

for handset

Same/di�erent handset type Model speaker training versus test segment Based on MIT handset labeler

a Data consists of concatenated speech segments derived from energy-based speech detector.
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· Same/di�erent number. Performance was com-
puted separately for test segments that used
the same phone number as was used for training
the true speaker versus those segments which
used a di�erent phone number.

· Same/di�erent handset type. Performance was
computed separately for di�erent number test
segments with the same handset microphone
type label (either electret or carbon-button, as
discussed below) as the true speaker training da-
ta versus those segments with a di�erent handset
microphone type label.

The test segments came from di�erent conversa-
tion sides from the training data. Only one seg-
ment of each duration was selected from a
conversation side. The 10-s segment was a sub-
segment of the 30, and the 3-s segment was a
subsegment of the 10. For convenience, however,
they were provided as separate ®les in the test data.

The 1997 evaluation had focused on di�erent
number tests and the same/di�erent type of each
test segment was kept unknown to the system. The
1998 evaluation sought to de-emphasize handset
di�erences and thus focused on same number tests.
The system was informed of whether each test
segment involved a same or di�erent number test
with respect to the true speaker. Note that all tests
involving a speaker other than the true speaker of
a test segment (non-target tests) necessarily in-
volved di�erent handsets in training and test.

Also in 1998 and in contrast to 1997, systems
were told the classi®cation of all training and test
handsets as being of either carbon button or
electret microphone type as determined by the
MIT Lincoln Lab handset classi®er. The impor-
tance of handset type to recognition performance
had been observed in the previous evaluation
(Section 5.3).

Table 1 includes a summary of the test condi-
tions.

3.5. Participants

Twelve research sites participated in the 1998
evaluation. Five of the European sites, while sub-
mitting results for separate systems, worked co-
operatively in what was called the ELISA
Consortium. The types of systems developed by

many of these sites are discussed in Section 4. The
performance results presented in Section 5 do not,
however, identify the individual sites. The sites and
their designations (* indicates ELISA Consortium
participant) were:
· A2RT: Department of Language and Speech,

Nijmegen University, Netherlands.
· BBN: BBN Technologies, GTE, Cambridge,

MA, USA.
· CIRC*: Circuits and Systems Group, Ecole

Polytechnique Federale de Lausanne (EPFL),
Switzerland.

· Dragon: Dragon Systems, Newton, MA, USA.
· ENST*: Ecole Nationale Superieure des Tele-

communications, Paris, France.
· IDIAP*: Institut Dalle Molle d'Intelligence Ar-

ti®cielle Perceptive, Martigny, Switzerland.
· IRISA*: Institut de Recherche en Informatique

et Systemes Aleatoires, Rennes, France.
· LIA*: Laboratoire Informatique, Universite

d'Avignon et des Pays de Vaucluse, France.
· LIP6: Laboratoire d'Informatique de Paris 6,

Universite Pierre et Marie Curie, France.
· MIT-LL: MIT Lincoln Laboratory, Lexington,

MA, USA.
· OGI: Oregon Graduate Institute of Science and

Technology, Portland, OR, USA.
· SRI: Speech Technology and Research Labora-

tory, SRI International, Menlo Park, CA, USA.
While not a participant in the 1998 evaluation,
Ensigma, located in Chepstow, UK, was repre-
sented at the review workshop following the
evaluation since it had participated in previous
evaluations and presented some performance re-
sults on its then current speaker recognition sys-
tem. Its system is discussed along with those of the
evaluation participants in Section 4.

4. The 1998 evaluation: technology overview

In this section we provide a high-level overview
of the recognition technology employed by par-
ticipants in the 1998 NIST evaluation. The aim is
to outline the general technology trends of state-
of-the-art, text-independent, speaker recognition
systems in the areas of features, speaker models
and score normalization. We also discuss the use
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of fusion systems and potential future research
directions. It is outside the scope of this article to
describe the di�erent approaches in detail for
which the reader is directed to the referenced pa-
pers or cited evaluation participant. In addition,
association of a site with a particular technique
does not imply that they invented the approach,
merely that this is what they used in their eval98
system.

Based on a presentation at the RLA2C Work-
shop, the material in this section has not been
published previously.

4.1. Canonical recognizer structure

From a general perspective, the approach used
by all systems in the NIST speaker recognition
evaluation is that of a likelihood ratio detector.
The canonical structure of this general system is
shown in Fig. 1 and consists of three main com-
ponents. The ®rst is the front-end processing
which represents the signal processing to extract
features used for model training and recognition
and any signal related channel compensation to
minimize the e�ects of di�erent channels on the
features. The second component is the target
speaker and background models used in forming
the likelihood ratio statistic for a test utterance.
The ®nal component is a post-processing step of
score normalization usually applied to stabilize
detection scores so that speaker-independent
thresholds are more e�ective. Although described
as distinct components, in some systems these
components can be integrated thus blurring the
category to which they belong. For example,
channel compensation techniques can and do oc-
cur in front-end processing, in model training and

in score normalization. We describe the trends in
these di�erent areas.

4.2. Speech features

Of the major system components presented in
Fig. 1, the greatest commonality of approach
among the participating sites was seen in the front-
end processing. A majority of systems employed
the following standard set of front-end processing
steps:
· Signal bandlimiting. Systems used only spectral

information from the frequency range 300±
3400 Hz, the voice band of the telephone signal.

· Cepstral feature extraction. Most systems used
®lterbank magnitude spectral representations
followed by transformation to the cepstral do-
main using the discrete cosine transform
(DCT). A few used linear predictive coe�cients
(LPC) spectral representations followed by re-
cursive equation expansion of cepstral coe�-
cients.

· Cepstral derivatives. Generally, ®rst order delta
cepstral features were appended to the static
cepstral feature vector. One system used delta
cepstra as an independent feature stream. Sec-
ond order derivatives were not found to provide
measurable improvements.

· Cepstral mean subtraction. Primarily non-causal
cepstral mean subtraction was performed over
the entire train or test ®le. A few systems used
causal ceptral mean subtraction (e.g., in the
form of RASTA ®ltering).

A few di�erent and new approaches related to
front-end processing were used in eval98 systems.
These included (with the site using them in square
brackets):

Fig. 1. Canonical structure of a speaker recognition system. The general approach used by all systems in the NIST eval98 was that of a

likelihood ratio comparison detector consisting of three main components: front-end processing, target and background modeling, and

score normalization.
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· Nonlinear discriminant analysis (NLDA) features
[SRI] (Konig et al., 1998). Here features are de-
rived from using the hidden node outputs of a
neural network trained to separate target and
non-target cepstral features.

· Pitch prosodics [SRI]. In addition to using the
pitch frequency derived from each short-time
window as an additional feature for the speaker
model, the approach was aimed at modeling
both the static and dynamic pitch contour infor-
mation.

· Modulation spectral ®ltering [OGI] (van Vuuren
and Hermansky, 1998). This approach looked
at ®ltering the time sequence output from each
spectral ®lterbank output to suppress the speak-
er-independent information in the spectral fea-
tures.

· Speaker-independent features and speaker map-
ping [OGI] (Hermansky and Malayath, 1998).
This approach is a tight integration between
the feature extraction and the speaker modeling
components. In general, a form of principal
component analysis was used to derive features
conveying speaker-independent, linguistic infor-
mation from cepstral features and both were
used to train a speaker-speci®c mapping func-
tion to characterize the speaker-dependent por-
tion of the feature space.

Overall, little new work on features was deployed
in eval98 systems. The NLDA features did provide
a small but consistent gain over baseline cepstral
features and pitch prosodics. While not powerful
by themselves, NLDA features did boost perfor-
mance when combined with cepstral feature
scores. The other new features showed no im-
provement over standard cepstra.

4.3. Speaker models

The approaches to speaker modeling used by
various eval98 systems can be broadly categorized
into two approaches based on the representation
detail employed. The ®rst category is termed un-
supervised acoustic representation in which a
speakerÕs acoustic characteristics (as re¯ected in
the sequence of feature vectors extracted from his/
her speech signal) are modeled by a single model
with only implicit representation of underlying

acoustic classes (such as broad-category sounds
like vowels or fricatives). This is the case, e.g.,
when a speaker representation is a model of the
probability distribution of his/her features; the
model represents the agglomeration of all speaker-
speci®c sounds with no explicit modeling of indi-
vidual sounds or sound classes.

The second category is termed supervised
acoustic representation in which explicit segmen-
tation, labeling and representation of underlying
acoustic classes are used to model a speakerÕs
acoustic characteristics. A system of this type
would use an external labeler, such as a phone
recognizer, to segment and label a speakerÕs
training speech so that speaker-speci®c models of
each acoustic class (phoneme) could be trained.
During recognition, the same external labeler
would segment and label test speech so labeled test
speech segments could be compared to speaker-
speci®c label models.

In addition to the speaker model representa-
tion, how the background model is constructed
and how the target speaker model and background
model scores are combined to produce the likeli-
hood ratio statistic are key to system performance.
In Sections 4.3.1 and 4.3.2 we outline the speci®c
modeling approaches for both types of represen-
tations, detailing the construction of the back-
ground model and the likelihood ratio statistic. As
above we note the speci®c site using the approach
in square brackets.

4.3.1. Unsupervised acoustic representations
As expected for a text-independent task, unsu-

pervised acoustic models were the predominant
models used in systems. Of these, Gaussian mix-
ture models (GMMs), especially adapted GMMs,
were the models most often used primarily due to
their modest computational requirements and
consistently high performance.
· Adapted GMMs [MITLL, Dragon, OGI, SRI]

(Reynolds, 1997b). For this approach, the back-
ground model is a single, speaker-independent
GMM with 1024±2048 mixtures and a target
speaker model is derived from the background
model using Bayesian adaptation. The likeli-
hood ratio statistic is then simply the ratio of
the target to background models likelihood
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scores for a test utterance. This model has been
the most widely used by sites over the past few
NIST evaluations.

· Unadapted Gaussian mixture models [BBN,
CIRC, ENST, IRISA] (Reynolds, 1995). In this
approach, each speaker is represented by inde-
pendent GMMs, typically 32±128 mixtures, de-
rived via maximum likelihood estimation from
their training data. The background model is ei-
ther a single, speaker-independent GMM or a
collection of speaker-dependent GMMs termed
cohorts, likelihood-ratio sets, or background
sets. When using background sets, the back-
ground score for a test utterance is typically
the arithmetic or geometric average of each set
memberÕs likelihood score. The likelihood ratio
statistic is the ratio of the target to background
likelihood scores for a test utterance.

· Ergodic hidden Markov models [A2RT] (Jaboulet
et al., 1998). For this approach, the background
model is a single, speaker-independent 4 state,
32 mixture/state, ergodic HMM and a target
speaker model is derived from the background
model using adaptation. The main di�erence of
this model and the adapted GMM is the ergodic
HMM explicitly models transition probabilities
between hidden states. The likelihood ratio sta-
tistic is then simply the ratio of the target to
background models likelihood scores for a test
utterance.

· Unimodal Gaussian models [LIA] (Besacier and
Bonastre, 1998). In this approach, each speaker
is represented by an independent, unimodal, full
covariance Gaussian model with the back-
ground model being a speaker-independent uni-
modal, full-covariance Gaussian as well. For the
implementation used in the eval98 system this
simple model was augmented by more compli-
cated processing such as using a sequence of
®xed-length segments from each test utterance
and a parallel bank of multi-band recognizers.
The segment, band likelihood ratio was simply
the ratio of target to background likelihood
scores; the ®nal test utterance score was a more
complicated merging of individual likelihood ra-
tio scores.

· Auto regressive vector models [LIP6] (Montacie
and Le Floch, 1992). In this approach, each

speaker is represented by an independent
ARVM, which is a predictive model of the se-
quence of spectral feature vectors. A collection
of ARVMs from non-target speakers is used as
the background model. The likelihood ratio
score is the di�erence between the target and
best scoring background ARVM score on a test
utterance.

4.3.2. Supervised acoustic representations
The use of supervised acoustic models have

made a strong showing in this and previous eval-
uations. The major limitation for text-independent
applications is in the accuracy and consistency of
the labeler. Under more controlled conditions of
text-dependent or vocabulary constrained appli-
cations, such systems are indeed the approach of
choice. With the addition of better labelers and
new scoring techniques, these approaches may
outperform the unsupervised approaches for text-
independent tasks.
· Large vocabulary continuous speech recognizer

[Dragon] (Gillick et al., 1993). In this approach,
the labeler used is a speaker-independent
LVCSR system segmenting and labeling pho-
neme units. For each label, a speaker-indepen-
dent, monophone unit (3 state/128 mixtures) is
used as a background model and target label
models are derived from these background label
models using Bayesian adaptation. Likelihood
ratios for each label are computed as the ratio
of target to background label model likelihood
scores and the sequence of label likelihood ratios
is integrated over the entire test utterance. In ad-
dition to using standard HMM-based tech-
niques to compare train and test label
segments, Dragon also examined a model free,
sequential, non-parametric (SNP) technique to
compare label segments from training and test-
ing speech. When combined with their adapted
GMM system scores, the SNP approach showed
a signi®cant improvement in performance.

· Broad phonetic class recognizer [BBN, Ensigma]
(Carey and Parris, 1998). In the Ensigma sys-
tem, a speaker-independent, ergodic, broad-
class phonetic recognizer with 28 phonetic
classes is used for segmentation and labeling.
Background label models are 3 state/3 mixtures
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HMMs and target label models are derived from
the background label model via adaptation. The
likelihood ratio score is computed not from the
acoustic likelihood scores, but from the ratio of
number of target label matches to number of
background label matches from a Viterbi decod-
ing of the test utterance. In addition to the stan-
dard technique of only scoring test speech
against models derived from training speech,
Ensigma examined a symmetric scoring tech-
nique that also scored training speech against
models derived from test speech with some sig-
ni®cant improvement. In the BBN system, a full
speech recognition system was used to tran-
scribe the speech into words and then the words
were expanded into 53 phonemes using a dictio-
nary expansion. The output phone sequence was
then used as the input to a secondary discrete
HMM to model the speaker dependent charac-
teristics of the phoneme sequence. By itself this
approach was not very e�ective and even when
combined with GMM acoustic scores it showed
no improvement in performance.

· Temporal-decomposition with neural nets [CIRC]
(Hennebert and Petrovska-Delacretaz, 1998). In
this approach, the labeler is a blind, temporal-
decomposition segmentation followed by a
vector quantization labeling of segments into
8 label classes. Unlike the LVCSR or phonetic
class approaches, the labels in this approach
are acoustically rather than linguistically de®ned
units. Label models are 3 layer multi-layer-per-
ceptrons (5 frame input, 20 hidden nodes and
2 output nodes) trained to discriminate between
label-class features from target and non-target
speakers. This system represents the only pure
discriminant classi®er used in the evaluation
(SRI ®elded an adapted GMM system that used
secondary discriminant training). The test utter-
ance score is the average of the MLP out-
puts over all observed label segments in the
utterance.

4.4. Score normalization/microphone compensation

One of the major challenges for the NIST
speaker recognition evaluations is dealing with the
channel variability found in telephone speech,

primarily variability and distortions imposed by
di�erent microphones. While standard channel
compensation techniques applied to spectral fea-
tures, such as cepstral mean subtraction, do help,
there is still a signi®cant gap between performance
under matched and mismatched microphone con-
ditions. Three general approaches have emerged
from the NIST evaluations to address this
problem.

4.4.1. Znorm/hnorm
For the NIST evaluation, systems were required

to produce scores for which speaker-independent
thresholds could be applied. Although likelihood
ratio scoring does provide relatively stable speaker
independent scores, there still exist biases from the
data and models that imparts speaker-dependency
on model scores. In the znorm compensation ap-
proach, these speaker-dependent score biases and
spreads are estimated by observing the distribution
of scores produced from speaker models scoring
non-target development speech. During testing a
model score is adjusted using its estimated bias
and spread parameters. It has been further ob-
served that the microphone type (carbon-button or
electret) used during training a model can also
induce strong biases on scores. For example, a
model trained using speech from an electret mi-
crophone will tend to produce higher likelihood
ratio scores for speech from electret microphones
regardless of the speaker. In an extension to
znorm, a technique called hnorm was developed
which estimated speaker and handset-dependent
bias and spread parameters for compensation. The
application of hnorm requires that putative
handset labels be available for development,
training and testing data. For eval98, NIST sup-
plied handset labels to participants for all data. A
majority of eval98 systems used either znorm or
hnorm score normalization (Reynolds, 1997a,b).

4.4.2. Handset type mapping
To compensate for handset di�erences in the

speech signal domain, MITLL (Quatieri et al.,
1998) developed and applied a non-linear mapper
for mapping electret speech into carbon-button
speech and vise versa. The mapper was ap-
plied during training to synthetically augment
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single-handset training data and during testing to
map test speech from one microphone into speech
from the training microphone. While showing
improvement over a baseline system, this approach
did not work as well as hnorm on the eval98 test
set.

4.4.3. Handset type consideration in background
models

Several sites used the provided handset labels to
select the data for background model training or
the members of cohort sets (Heck and Weintraub,
1997). For a single speaker-independent back-
ground model a balance of electret and car-
bon-button speech was used to derive a
microphone-independent model or separate mi-
crophone-dependent models were trained and
associated with target models of the same micro-
phone type. For cohort sets, microphone balanced
speakers were selected and microphone dependent
sets used for target speakers.

4.5. Fusion systems

In this evaluation, several sites showed some
improvement over a baseline system by simple
linear combination of scores from di�erent sys-
tems. For example, Dragon showed substantial
performance improvement by combining scores
from their adapted GMM system and their SNP
system; SRI found additional gain in baseline
performance by combining scores from their sys-
tems using cepstral, NLDA and prosodic features;
Ensigma showed performance improvement by
combining forward and backward scores in their
symmetric scoring system.

Both the ELISA consortium and NIST per-
formed true cross-site system fusion. IDIAP and
ENST collaborated in using a Dempster±Shafer-
based fusion system to combine scores from
consortium systems. The combined system, un-
fortunately, showed no improvement over the best
consortium system. NIST examined two fusion
systems combining scores from all eval98 partici-
pants. The ®rst NIST fusion system was a simple
voting system which looked at the hard decision
outputs from each system an produced a score
which was the average number of ``true'' decisions.

This fused system did show improved performance
over the best individual system in the low false-
alarm region of the DET curve. The second NIST
fusion system utilized an MLP (multi-layer per-
ceptron). Since no development data was available
to ®nd optimal MLP parameter settings, a jack-
knife experiment was conducted for robust pa-
rameter selection while testing on the entire test
set. This fused system too had mixed results
compared to the best individual system, doing
better in some operating regions and worse in
others (Section 5.1 and also (Fiscus, 1997)).

5. The 1998 evaluation: results

The 12 research sites participating in the 1998
evaluation submitted results for a total of 27 sys-
tems. NIST produced scoring results consisting of
DET curves for the speci®ed training and test
conditions and for portions of the test data cor-
responding to various factors of interest. Some of
these are described below. These and some addi-
tional results were presented at the RLA2C
Workshop (Przybocki and Martin, 1998a) and are
available on the NIST website (NIST, 1998).

NIST analyzed various conditions that could be
a�ecting recognition performance, including sex,
age, pitch, handset type, noise, numbers of calls
made, dialect region and channel. For each of
these conditions, we partitioned the training, tar-
get test and/or non-target test data based on con-
dition-relevant values and analyzed the results.

It has been NIST policy in the speaker recog-
nition evaluations not to publicly rank the per-
formance results of the di�erent participating sites.
It is for this reason that the DET curves presented
in this section do not identify the systems being
considered. Speci®c information about the per-
formance of individual systems may be available
from researchers at the participating sites.

5.1. Overall performance

Fig. 2 shows the DET curve for one of the test
conditions, namely, that of two-session training,
30-s durations, with same number tests. (In gen-
eral, we concentrate on the two-session training,
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30-s duration results in what follows.) In addition
to results for 12 primary systems (system identities
have been suppressed), it also includes two NIST
created fusion systems.

The NIST12 system is a simple voting system.
We combine the hard decisions of 12 primary
systems, assigning the segment score as the num-
ber of TRUES minus the number of FALSES. The
hard decision is true if the segment score is greater
than zero. This approach produces a modest
bene®t compared to the other best systems, as may
be seen in Fig. 2. The NIST12 system is plotted as
a set of discrete points, since it has only a limited
number of operating points.

The NISTmlp system is an attempt to extend
the ideas used in NISTÕs system (Fiscus, 1997)
for combining results from multiple speech rec-
ognition systems. It uses the MIT Lincoln Lab-
oratory LINKnet software to create a multi-layer
perceptron that combines the likelihood scores

from the 12 primary systems. As may be seen in
both the bar chart and DET curve of Fig. 2, the
NISTmlp system outperforms the other systems
represented.

5.2. Training conditions and duration

Figs. 3±12 show DET plots of performance re-
stricted to certain conditions for one of the systems
in the 1998 evaluation. For all of these plots the
one system was chosen to be broadly representa-
tive of the results for all systems included in the
evaluation. It should be understood, however, that
in each case there is considerable variation in
performance results across systems. The general
trends that are noted are stronger for some systems
than for others, but are not strongly reversed in
the performance of any of the systems.

Fig. 3 shows the variation in performance
by training condition for one system. The

Fig. 2. DET curves for the primary systems of the 12 participants and two NIST fusion systems, processing the 1998 NIST speaker

recognition evaluation data. Results shown are from same number, 30-s test segments using the two-session training condition.
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Fig. 4. System performance is shown as a function of test segment duration under the same training condition (two-session). It is seen

that the longer the test segment, the better the performance, however, with diminishing returns.

Fig. 3. System performance is shown for each training condition processing the same test data (same number tests of 30-s durations).

The DET plot is on the left. On the right for contrast is a traditional ROC plot of the same data. It is seen that multiple training

sessions using the same amount of data improves performance. Additional training data improves performance slightly.
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performance di�erences are in the expected direc-
tion. Using training data from two di�erent con-
versations improves performance over using the
same amount of data from only one conversation.
With these same two conversations, but using all
available data, thus increasing the total amount of
training data by an average factor of 2.7, there is a
rather smaller improvement. There is some varia-
tion across systems with at least one showing no
gain from the increased amount of training data.
Thus, multiple session training, if the human fac-
tors of the application permit it, may signi®cantly
bene®t performance.

Fig. 4 shows the variation in performance by
duration for one system, with longer durations
producing better performance, as expected. This
e�ect was more pronounced in some systems and
less in others, but was always present. There is
more gain going from 3 to 10 s than from 10 to

30 s, suggesting that the bene®ts from increased
duration are limited beyond a certain point.

5.3. Handset e�ects

Fig. 5 shows the performance variation for one
system on same number and di�erent number
tests. Since speci®c handset information was not
available, same or di�erent number is assumed to
correspond to same or di�erent handset, though
there are undoubtedly exceptions. Note the very
large performance di�erence for same and di�erent
numbers. A large di�erence occurs for all systems.

Analysis following the 1997 evaluation showed
that one key source of di�culty for systems is the
use of telephone handsets of di�erent type (car-
bon-button or electret microphone). This was
made possible by one participant, MIT-Lincoln
Laboratory, making available to NIST its software

Fig. 5. System performance is shown for same and di�erent phone number test segments for the two-session training condition, 30-s

test segments. It is seen that phone number (and presumably handset) matching between training and test greatly improves perfor-

mance.
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that attempts to classify speech segments as com-
ing from either carbon or electret handsets. In
1998 systems were given this handset classi®cation
information along with the test data. They could
use this information as they wished, aware that it
could be less than totally accurate. The results
presented here, however, assume the correctness of
this MIT classi®er.

Fig. 6 shows the 1998 DET curves for the sys-
tem used in Fig. 5 with the di�erent number tests
broken down according to whether the training
handset microphone type (electret or carbon-but-
ton) of the speaker (true or otherwise) being tested
matches that of the test segment. Note the large
gap in performance between the matched and
mismatched cases. Again, this is a performance
variation found in all systems in the evaluation.

Fig. 7 breaks apart the two curves of Fig. 6
according to the speci®c handset types involved.

Thus, for the matched case it shows results for
electret training and test and for carbon training
and test. For the mismatched case, it shows results
for carbon training and electret test and for
electret training and carbon test. The numbers of
tests included, both target (true speaker) and non-
target (non-true speaker), are indicated. The major
point to note here is that performance is better
when the test segments are electret than when they
are carbon. This held true for all systems.

5.4. Sex and pitch

It has been NIST policy in recent evaluations,
as discussed in Section 2, not to include any cross-
sex tests, i.e., male hypothesized speakers when a
female is actually talking or vice versa. Thus, each
test is really two separate tests, one on male
speakers and one on female speakers. It is natural

Fig. 6. System performance is shown for the two-session training condition, 30-s test segments when the test segment comes from a

phone number that was not used for training. It is seen that handset type matching between training and test greatly improves per-

formance.

246 G.R. Doddington et al. / Speech Communication 31 (2000) 225±254



to ask if there is a performance di�erence between
the two.

The ``all'' lines in Figs. 9 (for 1998) and 10 (for
1997) suggest that the performance di�erence be-
tween the sexes is fairly small but with a trend
toward better results for males. These ®gures show
results for one particular site in each of these
evaluations, but the same trend was observed for
almost all systems.

We also examined in several ways the e�ect of
speaker average pitch on performance. Since there
were some di�erences, we here look at both 1997
and 1998 results. We obtained average pitch esti-
mates using the Entropics 2 software ``get_f0'' and
``pplain'' functions.

The switchboard-2 corpus contains a larger
percentage of high-pitched (and young) speakers,
especially among females in the phase 1 (1997
data). Fig. 8 shows the distributions of average
pitch frequencies of the training data among the
chosen female and male target speakers in 1997
(�400 total speakers) and 1998 (�500 total
speakers).

We chose to look at speci®c high- and low-pit-
ched subsets of the speakers for both males and
females. We examined performance on same
number tests when both targets and non-targets
were restricted to the high or low of 25% average
training pitch frequencies for each sex, as well as
overall performance for each sex. (The vertical lines
in Fig. 8 show these 25th and 75th percentile pitch
values for the distributions.) Fig. 9 shows these
results for 1998 and Fig. 10 gives similar results for
1997 for the systems of one particular site.

2 Entropic Research Laboratories, 600 Pennsylvania Ave. SE

Suite 202, Washington DC 20003, USA.

Fig. 7. System performance is shown as a function of handset type for both matched and mismatched tests. The test was from the 1998

NIST speaker recognition evaluation using the two-session training condition with di�erent number 30-s test segments. The general

trend is that performance is best with electret test segments.
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It may ®rst be noted that performance over all
female or male speakers is not consistently better
or worse than over the restricted pitch subsets.
One might have imagined that restricting the pitch
range would make the recognition problem more
di�cult, but this does not appear to be the case.
Average pitch di�erences thus do not appear to be
a major cue for distinguishing speakers.

There are performance di�erences, however,
between high- and low-pitched speakers. In both
years performance was better for low-pitched than
high-pitched males. For females, however, the low-
pitched speakers did better in 1997 while the high-
pitched ones were better in 1998. Performance in
these matters tended to be consistent for di�erent
systems while being inconsistent between years.
Perhaps this has something to do with the large
number of high-pitched females in the 1997 test set
or perhaps these are just random e�ects. More
investigation would be of interest.

We also examined partitioning the targets or
the non-targets by ``closeness'' in pitch between the
training data and the test segment. The more in-
teresting results came from partitioning the targets
in this way. Fig. 11 shows these results for same
number tests for one system in 1998.

The plot shows performance for all tests and for
when target tests (true speaker tests) are restricted
to the high or low 10% or 25% of all such tests
based on pitch closeness. The results are all in the
expected direction, but the big di�erence of note is
the considerable degradation in performance when
tests are restricted to when the model and test
pitch values are far apart. For example, for a ®xed
miss rate in the 2±20% range, the false alarm rate
generally doubles between the ``all'' case and the
``25% far'' case for the system used in Fig. 11. This
presumably corresponds to situations when, be-
cause of a cold or stress or other factors, a speaker
does not talk quite as he or she normally does.

Fig. 8. Distributions of average pitch over training data for female and male target speakers in 1997 (switchboard-2, phase 1) and 1998

(switchboard-2 phase 2) evaluations. The 25th and 75th percentile pitch values of each distribution are shown by the vertical lines. The

test set for 1997 contained an unusually large number of high pitch females. There is not much disparity in the male pitch distribution

from year to year.
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While varying in magnitude, such a degradation
occurs for all systems.

5.5. Other factors

Noise was, not too surprisingly, found to also
be a factor that moderately a�ected speaker rec-
ognition performance. Speakers were encouraged
to initiate calls from di�erent phones, resulting in a
fair number from pay phones in outdoor or other
noisy locations. The 10-s segments were manually
labeled as ``good'', ``bad'' or ``really bad'' and true
speaker test scores were conditioned on this label.
(Impostor scores were held the same for all of the
conditions.) The results, shown in Fig. 12, dem-
onstrate a modest correlation, with about a factor
of 2 increase in error rate for ``really bad'' data
over ``good'' data. Further study is needed to
categorize which types of noise may most impact
performance

Corpus speakers provided their age as part of
the enrollment process. Most were of college age
(late teens or early twenties), but there were some
older speakers. As might be expected, false alarm
rates were lower when the target and model
speakers were further apart in age, but this e�ect
was quite modest. Factors not found to have a
signi®cant e�ect on performance included how
many calls a speaker made, place of birth (perhaps
re¯ecting dialect) and conversation side, i.e.,
whether the speaker initiated or received the call.

6. Summary and perspective

NIST has supported regular speaker recogni-
tion evaluations, open to all, with announced
schedules, written evaluation plans and follow-up
workshops. These can be an e�ective means to
encourage research and develop state-of-the-art

Fig. 9. System performance is shown as a function of sex and for high and low pitched speakers. The upper and lower 25% distri-

butions (shown in Fig. 7) are plotted for the two-session training condition and the same number 30-s test segments.
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systems in core technology areas such as speaker
recognition. Furthermore, appropriate evaluation
methodologies and analysis of results can help il-
luminate the progress that has been made and
identify the factors limiting further advance. NIST
intends to use the results of such analysis in de-
signing future evaluations, where these and other
factors will be studied further.

Any site or research group desiring to partici-
pate in future evaluations should contact Alvin
Martin at NIST (alvin.martin@nist.gov) and
should obtain data from previous evaluations
from the LDC to develop and test their systems for
evaluation tasks.

6.1. Future research directions

From an examination in Section 4 of the tech-
nologies used in the NIST (1998) evaluation, there

are some observations we can make about the
current status of speaker recognition research and
possible future research directions.

In general, new features have provided small,
but consistent gains in performance. The main
goal is to ®nd features that are more immune to
the variability and degradations we know a�ect
speaker recognition, such as channel, microphones
and acoustic environment. It is highly unlikely that
these new features will be derived from the spec-
trum since the spectrum is obviously highly af-
fected by the above factors. Non-spectral features,
such as pitch, have shown some promise of vari-
ability immunity, but are not very robust to other
factors like emotions and in general are much less
e�ective in speaker separation.

To date, supervised acoustic representations
have not outperformed unsupervised acoustic
representations for text-independent applications.

Fig. 10. System performance is shown as a function of sex and for high and low pitched speakers. The upper and lower 25% of

distributions (shown in Fig. 7) are plotted for the two-session training condition and the same number 30-s test segments.
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These techniques generally require complicated
labelers with large computational demands with
limited returns in performance. Gains are likely to
remain limited as long as the labeler is only used as
an elaborate means to compute the acoustic like-
lihood of the data. The real pay-o� in these ap-
proaches is likely to be in using the label sequence
output to learn about higher levels of information
not currently found in and complimentary to the
acoustic score. Exploitation of such high-level in-
formation may require some form of event-based
scoring techniques, since higher levels of infor-
mation, such as indicative word usage, will not
likely occur regularly as acoustic information
does.

One of the largest robustness challenges for a
speaker recognition system is dealing with mis-
matched conditions, especially microphone mis-

matches. Since most systems rely primarily on
acoustic features, such as spectra, they are too
dependent on channel information. While this can
be a plus for applications where speaker and mi-
crophone are very likely to be linked (e.g., facility
access control), it is a large impediment to more
general application deployment and a fundamen-
tal research challenge. It is likely that decoupling
of the speaker and channel will come from a better
understanding of speci®c channel e�ects on the
speech signal since this would lead to the imme-
diate pay-o� of better features and compensation
techniques.

Fusion of systems may be a means to build on a
solid baseline approach and provide the best at-
tributes of di�erent systems. This of course re-
quires the search for complementary information
to model; what indications are strong when the

Fig. 11. System performance is shown as a function of pitch closeness between the true speaker training data and the test segments.

The results are shown for the two-session training condition on same number 30-s test segments. The high and low 10% and 25% in

pitch closeness of all target tests are plotted, along with the curve for all such tests. It is shown that performance degrades when target

models and test segments are not close in pitch.
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baseline is weak? Furthermore, successful fusion
will require ways to adjudicate between con¯icting
signals and to combine systems producing con-
tinuous scores with systems producing event-based
scores.

6.2. A technology perspective

Speaker recognition technology has made tre-
mendous strides forward since the initial work in
the ®eld some 30 years ago. The perspective then
was that, while the research was interesting, the
technology would never be practical ± because it
would take a whole computer to perform the task!
Of course this was back when computers cost real
money, orders of magnitude more money than
now, for a computer that by today's standards
would be totally inept. If researchers then could
possibly have imagined and believed in, today's
computing and information infrastructure, what

would they have thought? Probably that making a
business success of speaker recognition would be
trivial! But since we are not there yet, it might be
good to re¯ect on why not.

One of the problems that must be faced in the
application of speaker recognition for access
control is the rejection of valid users. In real
systems, it is utterly unacceptable to reject valid
users. Therefore, there must be acceptable backup
procedures to ensure that valid users are not
rejected.

Another stumbling block for automatic speaker
recognition is the discrepancy between human and
machine performance. Historically, humans have
outperformed machines by a wide margin. How-
ever, humans and machines give di�erent results
and seem to operate quite di�erently. For exam-
ple, humans are more robust than machines to
distortions and noise. On the other hand, ma-
chines have demonstrated greater ability than

Fig. 12. A DET plot for text-independent speaker detection, contrasting true-speaker performance for tests segments subjectively

classi®ed as ``good'', ``bad'' and ``really bad''.
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humans to distinguish the voices of identical
twins. Perhaps we are approaching the point
where machines overtake humans in speaker rec-
ognition ability.

Fig. 13 shows the results of a recent comparison
of human versus machine performance on 3-s test
segments, made during the 1998 NIST (NIST,
1998) evaluation of text-independent speaker rec-
ognition. While neither humans nor machines did
an impressive job, the di�erence was not great ±
about a factor of 2 in error rate. (Note that both
same number and di�erent number tests are in-
cluded in Fig. 13. This is why this ®gure shows
poorer machine performance than that shown in
Fig. 4. For a further discussion of human versus
machine performance on a limited subset of the
full evaluation test set, see (Schmidt-Nielsen and
Crystal, 1998).

Future directions in speaker recognition tech-
nology are not totally clear, but several observa-
tions might be helpful. First, computer power will
continue to grow exponentially for at least the near
(and foreseeable) future. The challenge is clear ±
®gure out how to exploit that power, because it is a
safe bet that major advances will demand ever
greater computing power and that leading re-
searchers will have ®gured out how to use it pro-
ductively. Second, human listeners have a relatively
keen ability to recognize familiar voices. (People
apparently are much more accurate in classifying
familiar voices than unfamiliar voices.) It might
therefore be worthwhile to try to understand the
nature of this capability and to begin to create
models to perform this function by computer. This
sounds like a formidable challenge. But at least we
have an existence proof to encourage us onward!

Fig. 13. A DET plot for text-independent speaker detection, contrasting human listener performance with machine performance for

3-s test segments. Both same number and di�erent number tests are included in the curves shown.
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