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Abstract Label ranking studies the problem of learning a mapping from instances to rank-
ings over a predefined set of labels. Hitherto existing approaches to label ranking implicitly
operate on an underlying (utility) scale which is not calibrated in the sense that it lacks a
natural zero point. We propose a suitable extension of label ranking that incorporates the
calibrated scenario and substantially extends the expressive power of these approaches. In
particular, our extension suggests a conceptually novel technique for extending the common
learning by pairwise comparison approach to the multilabel scenario, a setting previously
not being amenable to the pairwise decomposition technique. The key idea of the approach
is to introduce an artificial calibration label that, in each example, separates the relevant from
the irrelevant labels. We show that this technique can be viewed as a combination of pair-
wise preference learning and the conventional relevance classification technique, where a
separate classifier is trained to predict whether a label is relevant or not. Empirical results in
the area of text categorization, image classification and gene analysis underscore the merits
of the calibrated model in comparison to state-of-the-art multilabel learning methods.
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1 Introduction

Machine learning problems with structured input spaces have recently received increasing
attention, as a variety of important application fields require methods to encode and exploit
data which is organized in a complex way; classification of biomolecular structures may
serve as an interesting example (e.g. Weskamp et al. 2007). Such input spaces cannot be
mapped onto “flat” feature vectors of a fixed length without an inherent loss of essential
information. The development of suitable kernels for structured data is an active research
topic in the field of kernel-based learning (Gärtner 2003).

Structured spaces cannot only be found for input data but also arise naturally from output
data, such as in predicting label sequences or natural language parsing trees (Tsochantaridis
et al. 2004; Altun et al. 2006). In this paper, we will be concerned with structured outputs in
the form of label rankings. More specifically, the problem we consider is to learn a mapping
from instances to rankings (total orders) over a finite number of predefined class labels.
Two general approaches to extending arbitrary (linear) binary classification algorithms to
the label ranking setting have recently been proposed: Ranking by pairwise comparison
(RPC) as a natural extension of pairwise classification (Fürnkranz and Hüllermeier 2003;
Hüllermeier et al. 2008) and constraint classification (CC), which learns a linear utility
function for each label (Har-Peled et al. 2002).

Label ranking extends conventional multiclass classification in the sense that it does not
only predict a “top candidate” but instead gives an ordering of all class labels. Besides, it
is well-known that a number of other learning tasks can be formalized within the setting of
label ranking. Interestingly, however, this does not include multilabel classification. This is
due to a substantial restriction of all hitherto existing label ranking methods, and actually of
the concept of a ranking itself: Even though a ranking informs about the relative order of
all alternatives, it does not provide any information about absolute preferences in the sense
of distinguishing between “good” and “bad” alternatives. Roughly speaking, this is due to
the fact that a ranking does not have a natural “zero-point”. In document categorization, for
example, a label ranking method is able to predict a ranking of all topics in decreasing order
of relevance to a specific document. However, it is not possible to distinguish between the
sets of (presumably) relevant and non-relevant topics.

In this paper, we present a simple yet elegant and effective technique to avoid the afore-
mentioned disadvantage. The key idea is to add an additional label to the original label set
which is interpreted as a “neutral element”. This label calibrates a ranking by splitting it
into a positive and a negative part. By extending conventional label ranking approaches,
this novel framework provides a means to represent and learn bipartite partitions of alter-
natives and, thereby, combines multiclass classification and label ranking. Our technique is
not tailored or limited to a specific label ranking method. Instead, it can be applied to all
methods that make use of pairwise preferences between class labels as training information.
In particular, it suggests a conceptually new technique for extending the common pairwise
classification learning approach to the multilabel scenario, a setting previously not amenable
to a pairwise decomposition technique.

The remainder of this paper is organized as follows: We start with a brief recapitulation
of the problems of learning label rankings (Sect. 2) and multilabel classification and ranking
(Sect. 3). In particular, we will discuss how ranking problems can be addressed with pairwise
classifiers. In Sect. 4, we then introduce our technique that allows to generalize this approach
to multilabel classification problems by introducing an artificial label whose position in the
predicted ranking can serve as a calibration point. We will also show that this approach
effectively combines binary relevance ranking with pairwise label ranking, and discuss its
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computational complexity. Section 5 then describes the setup of our empirical evaluation
of the calibrated approach to multilabel classification and ranking. The results on four real-
world multilabel classification tasks (Sect. 6) show that it compares favorably to alternative
approaches that are based on the binary relevance technique. Finally, we summarize related
work in Sect. 7 and draw our conclusions in Sect. 8.

2 Label ranking

In label ranking, the problem is to learn a mapping from instances x from an instance space
X to rankings �x (total strict orders) over a finite set of labels L = {λ1, . . . , λc}, where
λi �x λj means that, for instance x, label λi is preferred to λj . A ranking over L can be
represented by a permutation as there exists a unique permutation τ such that λi �x λj iff
τ(λi) < τ(λj ), where τ(λi) denotes the position of the label λi in the ranking.1 We shall
denote by τ−1(i) the label λ having assigned position i. The target space of all permutations
over c labels will be referred to as Sc .

It has been pointed out in several publications (Har-Peled et al. 2002; Fürnkranz and
Hüllermeier 2003; Dekel et al. 2004) that a variety of learning problems may be viewed as
special cases of label ranking (perhaps supplemented by a straightforward projection of the
output space Sc) hence underscoring the importance of this setting. Among those are the
following:

• Multiclass classification: A single class label λi is assigned to each example x. This
implicitly defines the set of preferences Rx = {λi �x λj | 1 ≤ j �= i ≤ c}. The output
space Sc is projected to the first component.

• l-Multilabel classification: Each training example x is associated with a subset Px ⊆ L
of possible labels. This implicitly defines the set of preferences Rx = {λi �x λj | λi ∈
Px,λj ∈ L \ Px}. The output space is projected to the first l components.

Ranking by pairwise comparison (RPC) and constraint classification (CC) both provide
a general means to extend arbitrary (linear) binary classification algorithms to the label
ranking scenario. Both approaches require (not necessarily complete) sets of pairwise pref-
erences associated with the training instances to learn a ranking model which, as a post-
processing step, may be projected from Sc to the specific output space Y .

The key idea of RPC is to learn, for each pair of labels (λi, λj ), a binary model Mij (x)

that predicts whether λi �x λj or λj �x λi for an input x. In order to rank the labels for a
new instance, predictions for all pairwise label preferences are obtained and a ranking that
is maximally consistent with these preferences is derived, typically by means of a voting
scheme.2 This technique describes a natural extension of pairwise classification, i.e., the
idea to approach a multiclass classification problem by learning a separate model for each
pair of classes.

A natural alternative option for modeling preference rankings is to represent each in-
dividual label by means of an associated (real-valued) utility function. More precisely, a
utility function fi : X → R is learned for each of the labels λi , i = 1, . . . , c, where fi(x)

is the utility assigned to λi by the instance x. To obtain a ranking for x, the labels are or-
dered according to these utility scores, i.e., λi �x λj ⇔ fi(x) ≥ fj (x). The challenge for the

1Note that we slightly depart from standard notation as permutations τ are defined on labels λi rather than
their indices i to simplify the technical exposition.
2To account for equal vote statistics, we consider random tie breaking in our implementation.
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learner is to find functions f1, f2, . . . , fc that are as much as possible in agreement with all
constraints. A corresponding method for learning linear utility functions fi(·), i = 1, . . . , c,
from training data has been proposed in the framework of constraint classification (Har-
Peled et al. 2002). Constraint classification encodes each constraint induced by comparative
preference information on labels as two binary training examples. The set of utility func-
tions can be learned by solving the overall inflated binary classification problem by means
of any binary learning algorithm.

Unfortunately, certain categories of learning problems do not admit an embedding as a
special case of the label ranking setting and, hence, are not amenable to pairwise ranking and
constraint classification. In particular, conventional multilabel classification and ranking are
of substantial practical relevance and have received considerable attention in text categoriza-
tion (Schapire and Singer 2000) and genome analysis research (Elisseeff and Weston 2002),
among others. The underlying reason for this severe restriction is that previous approaches to
label ranking implicitly operate on non-calibrated scales. More precisely, these approaches
learn preference models which assign importance scores, i.e., aggregated preference votes
or utility values, to each possible label. However, the training process is performed in a
manner such that absolute importance scores do not provide a reasonable basis for defin-
ing a threshold-based bipartite partition of labels. As a consequence, it is not possible to
determine the set of relevant labels in multilabel classification for example.

3 Multilabel classification and ranking

Multilabel classification refers to the task of learning a function that maps instances x ∈ X
to label subsets Px ⊂ L, where L = {λ1, . . . , λc} is a finite set of predefined labels, typically
with a small to moderate number of alternatives. Thus, in contrast to multiclass learning,
alternatives are not assumed to be mutually exclusive such that multiple labels may be asso-
ciated with a single instance. The set of labels Px are called relevant for the given instance,
the set Nx = L \ Px are the irrelevant labels.

A common approach to multilabel classification is binary relevance learning (BR). BR
trains a separate binary relevance model Mi for each possible label λi , using all examples
x with λi ∈ Px as positive examples and all those with λi ∈ Nx as negative examples. For
classifying a new instance, all binary predictions are obtained and then the set of labels cor-
responding to positive relevance classification is associated with the instance. This scenario
is, for example, commonly used for evaluating algorithms on the REUTERS text classifica-
tion benchmark (Lewis 1997).

In the following, we will study the task of multilabel ranking, which is understood as
learning a model that associates with a query input x both a ranking of the complete label
set {λ1, . . . , λc} and a bipartite partition of this set into relevant and irrelevant labels. Thus,
multilabel ranking can be considered as a generalization of both multilabel classification
and ranking.

In conventional label ranking, a training example typically consists of an instance x ∈ X ,
represented with a fixed set of features, and a set of pairwise preferences over labels Rx ⊂
L2, where (λ,λ′) ∈ Rx is interpreted as λ �x λ′. In multilabel classification, the training
information consists of a set Px of relevant labels and, implicitly, a set Nx = L \ Px of
irrelevant labels. Note that this information can be automatically transformed into a set of
preferences Rx = {(λ,λ′) | λ ∈ Px ∧ λ′ ∈ Nx} (cf. Fig. 1(a)).

While it is straightforward to represent the training information for multilabel classifica-
tion as a preference learning problem, the algorithms that operate in this framework merely
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(a) the set of preferences representing a (b) introducing a calibration label λ0 that
multilabel classification problem separates P and N

(c) the set of preferences representing
a calibrated label ranking problem

Fig. 1 Calibrated label ranking

produce a ranking of the available options. In order to convert the learned ranking into a
multilabel prediction, the learner has to be able to autonomously determine a point at which
the learned ranking is split into sets of relevant and irrelevant labels. Previous applications of
ranking techniques to multilabel learning, such as (Crammer and Singer 2003), have mostly
ignored this problem and restricted their focus on producing rankings, but not on determin-
ing this correct zero point for splitting the ranking. A notable exception is the approach taken
by Elisseeff and Weston (2002), who frame the problem as a meta-learning problem, where
the task is to learn a predictor for the correct threshold in the ranking.

Multilabel ranking can, for example, be realized if the binary classifiers of the binary rel-
evance approach provide real-valued confidence scores or a posteriori probability estimates
for classification outcomes. For example, Schapire and Singer (2000) included an ad hoc
extension to multilabel ranking in their experimental setup by ordering labels according to
decreasing confidence scores.
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4 Calibrated label ranking

In this section, we will introduce calibrated ranking by pairwise comparison (CRPC), a
conceptually new technique for extending the common pairwise learning approach to the
multilabel scenario, a setting previously not being amenable to a pairwise decomposition
approach. Within our framework, RPC can solve both multilabel classification and ranking
problems in a consistent and generally applicable manner. We will first describe the tech-
nique in detail (Sect. 4.1) and then discuss its relation to binary relevance learning (Sect. 4.2)
and its computational complexity (Sect. 4.3).

4.1 Calibrated ranking by pairwise comparisons

We start with a formal definition of the hypothesis space underlying the calibrated label
ranking framework:

Definition 4.1 (Calibrated label ranking model) Denote by X a nonempty input space and
by S 0

c the space of permutations over the set {λ0, λ1, . . . , λc}, that is, the original set of
labels plus an additional calibration label λ0. Then, a model h : X → S 0

c is referred to as a
calibrated label ranking model.

The key idea is to interpret the calibration label λ0 as a split point between relevant and
irrelevant labels: all relevant labels are preferred to λ0, which in turn is preferred to all
irrelevant labels. Thus, a calibrated ranking

λi1 � · · · � λij � λ0 � λij+1 � · · · � λic (1)

induces both a ranking among the labels,

λi1 � · · · � λij � λij+1 � · · · � λic , (2)

and a bipartite partition into

P = {λi1 , . . . , λij } and N = {λij+1 , . . . , λic } (3)

in a straightforward way.
As sketched in the previous section, the training information for a multilabel rank-

ing problem consists of a set of preferences Rx , and subsets of labels Px,Nx ⊂ L with
Px ∩ Nx = ∅, which distinguish, respectively, positive labels that should be ranked above
the zero-point element λ0 and negative labels to be ranked below.3 The bipartite partitions
associated with the training instances, in conjunction with the calibration label λ0, are used
to induce additional constraints: the calibrated classifier h should predict λ �x λ0 for all
λ ∈ Px and vice-versa λ0 �x λ′ for all λ′ ∈ Nx (cf. Fig. 1(b)). Moreover, as a consequence of
transitivity, it should predict λ �x λ′ for all λ ∈ Px and λ′ ∈ Nx (cf. Fig. 1(c)). Combining the

3In general, we do not need to assume complete training data, neither for the sets of preferences (Rx might
even be empty) nor for the partitions (which do not necessarily have to cover all the labels, i.e., Px ∪Nx �= L).
Besides, in a noisy learning scenario, it may happen that (λ′, λ) ∈ Rx even though λ ∈ Px and λ′ ∈ Nx . In
this paper, we will not further consider these cases, and assume a strict multilabel scenario.
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new partition-induced preference constraints with the original set of pairwise preferences for
the training data, i.e.,

R′
x

def= Rx ∪ {(λ,λ0) | λ ∈ Px}
∪ {(λ0, λ

′) | λ′ ∈ Nx}, (4)

the calibrated ranking model becomes amenable to existing label ranking methods: A model
can be learned by solving a conventional ranking problem in the augmented calibrated hy-
pothesis space, that is, a ranking problem with c + 1 alternatives. The training data for this
problem is given by the modified sets of constraints R′

x on the original labels λ1, . . . , λc and
the calibration label λ0.

This way, it becomes possible to incorporate and exploit partition-related preference in-
formation and to generalize to settings where predicting a zero-point is required. As the
above derivation has shown, the unified approach is rather general in the sense of being
applicable to all label ranking techniques that accept pairwise preferences between class
labels as training information. In particular, this includes RPC and constraint classification
(Brinker and Hüllermeier 2005).

4.2 Relation to binary relevance learning

Conventional pairwise label ranking learns a binary preference model Mij for all combina-
tions of labels λi and λj with 1 ≤ i < j ≤ c,4 where instances x with (λi, λj ) ∈ Rx are asso-
ciated with positive and those with (λj , λi) ∈ Rx with negative class labels (cf. Fig. 1 (b)).
In the calibrated scenario, the partition-related constraints with respect to λ0 as defined in
(4) are required to learn an additional set of binary preference models M0j with 1 ≤ j ≤ c.
It is important to notice, that these additional models are identical to the common binary-
relevance models Mj .

Theorem 4.2 The models M0j that are learned by a pairwise approach to calibrated rank-
ing, and the models Mj that are learned by conventional binary relevance ranking, are
equivalent.

Proof Each training example x, for which label λj is relevant, is, by definition, a positive
example in the training set for model Mj . The calibrated ranking approach adds the pref-
erence λj �x λ0, which means that x will be a negative example for M0j . Similarly, if λj

is irrelevant, x is negative for Mj and positive for M0j . Assuming a symmetric learner, the
learned models will be equivalent in the sense that Mj = −M0j . �

Thus, calibrated RPC may be viewed as a method for combining RPC with conventional
binary relevance ranking, in the sense that the binary models that are learned for RPC, and
the binary models that are learned for BR, are pooled into a single ensemble. However,
CRPC provides a new interpretation to the BR models, that not only allows for ranking the
labels, but also to determine a suitable split into relevant and irrelevant categories.

By training a larger number of pairwise models, the calibrated extension of RPC achieves
two potential advantages over simple relevance learning. Firstly, it provides additional in-
formation about the ranking of labels. Secondly, it may also improve the discrimination

4The case i > j is typically not required as a consequence of the symmetry of binary classifiers with respect
to positive and negative instances.
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between relevant and irrelevant labels. In fact, it is legitimate to assume (and indeed sup-
ported by empirical evidence in Sect. 6) that the additional binary models can somehow
“stabilize” the related classification. For example, while an error of model Mj = −M0j

definitely causes a misclassification of label λj in simple relevance learning, this error might
be compensated by the models Mij , 1 ≤ i �= j ≤ c, in the case of RPC. The price to pay is,
of course, a higher computational complexity, which, as we will show in the next section,
depends on the average number of relevant labels for an example.

4.3 Computational complexity

In this section, we will derive bounds for the number of training examples that are con-
structed for training the pairwise classifiers. The total computational complexity depends
on the complexity of the base classifier used for processing these examples. In brief, super-
linear classifiers like SVMs will profit from distributing the work-load on many small prob-
lems instead of fewer larger problems as for the BR approach.

Theorem 4.3 CRPC is trained on O(lc) examples, where l = ∑
x |Px | is the total number

of all relevant labels in the training set, and c is the number of possible labels.

Proof In previous work, it has been shown that training a pairwise classifier requires O(cn)

training examples (Fürnkranz 2002). To see this, note that each of the n original training
examples will only appear in the training sets of c − 1 models, therefore the total number of
training examples that have to be processed is (c − 1)n.

For multilabel classification, RPC will compare a training example’s |Px | relevant labels
to all |Nx | = c − |Px | labels that are not relevant for this example. In addition, CRPC will
include every example in the c training sets of the models M0j , j = 1, . . . , c.

Thus, each example occurs in

|Px | · |Nx | + c = |Px | · (c − |Px |) + c ≤ |Px | · c + c = c · (|Px | + 1)

training sets. The total number of training examples in all training sets is therefore

c ·
∑

x

(|Px | + 1)) = c · (l + n) ≤ c · 2l

assuming n ≤ l, i.e., that each example has at least one label. Thus, the total number of
training examples is O(lc). �

This result shows that the complexity of training CRPC depends critically on the total
number of relevant labels in the training examples. For the case of l = n, i.e., for conven-
tional pairwise classification, the derived bound reduces to the linear O(nc) bound that was
shown in (Fürnkranz 2002).5 Multilabel classification increases this bound by a factor l/n

to O(cn · l/n) = O(cl), i.e., the complexity of CRPC is within a factor of l/n of the O(cn)

examples needed for training a BR classifier.
Thus, the crucial factor that determines the complexity of the approach is l/n, the average

number of labels per example. We would like to point out that in many practical applications,

5Note that the O-notation hides, in this case, a constant factor of two, which results from the introduction of
the calibration label λ0.
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this factor is determined by the procedure that is used for labeling the training examples, and
is independent of c. A typical example is the number of keywords that are assigned to a text,
which typically is a low number and does not depend on the number of available keywords.
For example, in the Reuters-RCV1 text categorization dataset, the median value of keywords
is three, and the ratio of documents with more than ten keywords is approximately one per
thousand (cf. also Fig. 2 later in this paper).

The above results that show that the effort is linear in the total number of labels in the
training set only apply to the training time. We still have to store a quadratic number of
classifiers, and, in principle, all of them have to be queried at classification time. Park and
Fürnkranz (2007) have recently proposed an efficient algorithm that allows to compute the
top-ranked class for prediction in essentially linear time. We are currently working on an
adaptation of this algorithm for multilabel classification, which will compute the ranking
from top to bottom, and stop as soon as the calibration label has been found. However, even
with this method, we still have to store all pairwise classifiers, which may become a practical
burden for large number of classes. For some types of learning algorithms (like decision
trees or rule learners), we think that the fact that the pairwise models tend to be simpler than
the one-against-all models balances this to some extent, but other types of classifiers, such
as perceptrons or SVMs, have to store a constant number of parameters for both types of
problems, and thus, for such base classifiers, the memory demand of the pairwise method is
quadratic in the number of classes. This problem is next on our research agenda.

5 Experimental setup

The purpose of this section is to provide an empirical evaluation of calibrated RPC. Our
goal is to show that the calibration procedure adds good multilabel classification abilities to
the already strong ranking performance of pairwise ranking algorithms. Thus, we have to
establish two results: on the one hand, we want to demonstrate that the calibration procedure
proposed above yields a good selection of relevant labels, i.e., that it outperforms the binary
relevance approach. On the other hand, we intend to show that it does not lose in ranking
performance compared to conventional pairwise ranking, which in turn outperforms ranking
approaches that are based on a one-against all decomposition of the problem.

5.1 Learning algorithms

As a base classifier, we selected linear perceptrons, for which Crammer and Singer (2003)
have shown that they are an efficient alternative to linear support-vector machines on large-
scale learning multilabel ranking problems such as the Reuters-RCV1 collection. More pre-
cisely, their multiclass multilabel perceptrons (MMP) train one perceptron for each possible
label, but, unlike the conventional binary-relevance scenario, these classifiers are not trained
independently, but in a way such that they collectively produce a reasonable ranking for a
given ranking loss function. We will follow the recommendations of Crammer and Singer
(2003) and train the perceptrons by optimizing the ISERROR-loss function (the 0/1-loss in-
dicating whether the ranking is correct or not) with uniform updates (where all misranked
pairs receive an equal weight). We have also tried to optimize other ranking losses (e.g.,
to directly optimize RANKINGLOSS), but the results were qualitatively the same, and we
omit them here for clarity. Crammer and Singer (2003) have shown that MMPs outperform
conventional binary relevance ranking (BR).

Subsequently, Loza Mencía and Fürnkranz (2008) have introduced pairwise multilabel
perceptrons (MLPC). MLPC train one perceptron for each pair of classes, each perceptron
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is trained independently of all others. While this approach is somewhat less efficient than
MMPs, Loza Mencía and Fürnkranz (2008) have shown that tackling large datasets such as
Reuters-RCV1 is still feasible with the pairwise approach, and results in a gain of accuracy.

However, both MMPs and MLPCs are only able to produce a ranking of all possible la-
bels. In the following, we will compare all of the above options (BR, MMP, MLPC) to cali-
brated multilabel perceptrons (CMLPC), a calibrated variant of MLPC. Calibrated MLPCs
employ the calibration technique introduced in this paper and use MLPC for learning the
pairwise models for the new, enlarged label set.

Even though we only report experiments with a single classifier in this paper, we
are convinced that the qualitative results are typical, independent of the chosen base
classifier. Pairwise methods have previously been shown to improve performance for
neural networks (Knerr et al. 1990, 1992; Price et al. 1995; Lu and Ito 1999), sup-
port vector machines (Schmidt and Gish 1996; Hastie and Tibshirani 1998; Kreßel 1999;
Hsu and Lin 2002), statistical learning (Bradley and Terry 1952; Friedman 1996), rule and
decision tree learning (Fürnkranz 2002, 2003) and others. Moreover, for two of the datasets
used in this study, we have also experimented with calibrated pairwise ranking using support
vector machines as base classifiers, and obtained similar results (Brinker et al. 2006). How-
ever, in these experiments we had to restrict ourselves to a small subset of the REUTERS
dataset, so we decided to use the more efficient perceptron classifiers for the more extensive
set of experiments reported in this paper.

5.2 Datasets

The datasets that were included in the experimental setup cover three application areas in
which multilabeled data are frequently observed: text categorization (the Reuters-RCV1 and
Reuters-21578 datasets), image classification (the scene dataset) and bioinformatics (the
yeast dataset).6

The Reuters Corpus Volume I (Reuters-RCV1) is one of the most widely used test col-
lection for text categorization research. It contains 804,414 newswire documents, which we
split into 535,987 training documents (all documents before and including April 26th, 1999)
and 268,427 test documents (all documents after April 26th, 1999). We used the token files
of Lewis et al. (2004), which are already word-stemmed and stop word reduced. However
we repeated the stop word reduction as we experienced that there were still a few occur-
rences. The 25,000 most frequent features on the training set were selected and weighted
with TF-IDF weights (Salton and Buckley 1988). We did not restrict the set of 103 cate-
gories although one class does not contain any examples in the training set.

We also experimented with the older Reuters-21578 corpus (Lewis 1997), which has
11,367 examples and 120 possible labels. Through similar pre-processing as in the Reuters-
RCV1 dataset, we obtained 10,000 features for this dataset.

The learning task in the Yeast gene functional multiclass classification problem is to as-
sociate genes with a subset of 14 functional classes from the Comprehensive Yeast Genome
Database of the Munich Information Center for Protein Sequences.7 Each of 2417 genes is
represented with 103 features. In previous experiments (Loza Mencía and Fürnkranz 2008),
we found that even the pairwise problems are hard to separate with a linear classifier (much

6The Reuters-RCV1 dataset is available from http://trec.nist.gov/data/reuters/reuters.html, the Reuters-21578
dataset from http://www.daviddlewis.com/resources/testcollections/reuters21578/, and the yeast and scene
datasets from http://mlkd.csd.auth.gr/multilabel.html.
7http://mips.gsf.de/genre/proj/yeast/.

http://trec.nist.gov/data/reuters/reuters.html
http://www.daviddlewis.com/resources/testcollections/reuters21578/
http://mlkd.csd.auth.gr/multilabel.html
http://mips.gsf.de/genre/proj/yeast/
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more so in the binary relevance setting). Thus, in this set of experiments, we added all pair-
wise feature products to the original feature representation, in order to simulate a quadratic
kernel function.

The task in the Scene dataset (Boutell et al. 2004) is to recognize which of six possible
scenes (beach, sunset, field, fall foliage, mountain, urban) can be found in 2407 pictures.
Many pictures contain more than one scene. For each image, spatial color moments are used
as features. Each picture is divided into 49 blocks using a 7 × 7 grid. A picture is then
represented using the mean and the variance of each color band of each block, i.e., using a
total of 2 × 3 × 7 × 7 = 294 features. Like in the Yeast dataset, we enriched the feature set
with all pairwise feature products.

All algorithms are trained incrementally. For the Reuters-RCV1 datasets, a single,
chronological pass through the data was used (one epoch) because our previous results have
shown that multiple iterations are not necessary (Loza Mencía and Fürnkranz 2008). On the
other datasets, we trained for multiple epochs. We report the results for training after 100
epochs. However, in terms of the relative order of the tested methods, we found that the
results are quite insensitive to the exact numbers of epochs.

Except for the large Reuters RCV1 data, where we used the dedicated test set, all reported
results are estimated from 10-fold cross-validation.

5.3 Evaluation measures

There is no generally accepted procedure for evaluating multilabel classifications. Our ap-
proach is to consider a multilabel classification problem as a meta-classification problem
where the task is to separate the set of possible labels into relevant labels and irrelevant la-
bels. Let P̂x denote the set of labels predicted by the multilabel classifier and N̂x = L − P̂x

the set of labels that are not predicted by the classifier. Thus, we can, for each individual in-
stance x, compute a two-by-two confusion matrix Cx of relevant/irrelevant vs. predicted/not
predicted labels:

Cx predicted not predicted

relevant |Px ∩ P̂x | |Px ∩ N̂x | |Px |
irrelevant |Nx ∩ P̂x | |Nx ∩ N̂x | |Nx |

|P̂x | |N̂x | |L|

From such a confusion matrix Cx , we can compute several well-known measures:

• The Hamming loss (HAMLOSS) computes the percentage of labels that are misclassified,
i.e., relevant labels that are not predicted or irrelevant labels that are predicted. This basi-
cally corresponds to the error in the confusion matrix. In order to be consistent with the
following measures, we report 1− the Hamming loss, which corresponds to the accuracy
on the predicted labels.

HAMLOSS(Cx)
def= 1 − 1

|L|
∣
∣P̂x�Px

∣
∣. (5)

• Precision (PREC) computes the percentage of predicted labels that are relevant, recall
(REC) computes the percentage of relevant labels that are predicted, and the F1-measure



144 Mach Learn (2008) 73: 133–153

is the harmonic mean between the two.

PREC(Cx)
def= |P̂x ∩ Px |

|P̂x |
, (6)

REC(Cx)
def= |P̂x ∩ Px |

|Px | , (7)

F1(Cx)
def= 2

1
REC(Cx)

+ 1
PREC(Cx )

= 2REC(Cx)PREC(Cx)

REC(Cx) + PREC(Cx)
. (8)

To average these values, we compute a micro-average over all values in a test set, i.e., we
add up the confusion matrices Cx for examples in the test set and compute the measure from
the resulting confusion matrix. Thus, for any given measure f , the average is computed as:

favg = f

(
n∑

i=1

Cxi

)

. (9)

If we use a cross-validation, the measures favgj
, j = 1, . . . ,10 are then (macro-)averaged

over all 10 folds.
Some previous works on multilabel classification, in particular the work on MMPs to

which we compare, evaluated the ranking performance and neglected the calibration. For
this reason, we also employ three previously used ranking measures (Crammer and Singer
2003). Using these measures allows us to compare the ranking performance of our calibrated
methods to previous methods that do not use calibration and cannot be evaluated with the
above multilabel loss functions.

We use the following notational conventions: For a given instance x, let τ(λi) denote the
position of λi in the predicted ranking (with the calibrating label λ0 being removed from the
ranking) and τ−1(i) the label λ that is assigned to position i.

• Average precision (AVGPREC) computes for each relevant label the percentage of relevant
labels among all labels that are ranked before it, and averages these percentages over all
relevant labels.

AVGPREC(Px, τ )
def= 1

|Px |
∑

λ∈Px

|{λ′ ∈ Px |τ(λ′) ≤ τ(λ)}|
τ(λ)

. (10)

• The ranking loss (RANKLOSS) computes the average fraction of pairs of labels which are
not correctly ordered:

RANKLOSS(Px, τ )
def= |{(λ,λ′) ∈ Px × Nx : τ(λ) > τ(λ′)}|

|Px ||Nx | .

• The one-error loss (ONEERROR) determines whether the top-ranked label is relevant or
not, and ignores the relevancy of all other labels.

ONEERROR(Px, τ )
def=

{
1 if τ−1(1) �∈ Px ,

0 otherwise.
(11)

These measures are computed for each example and then averaged over all examples.
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6 Results

Reuters-RCV1 with 103 classes and 804,414 examples is the largest and, in our opinion,
most interesting test bed for the pairwise approach, because it puts its scalability to test. We
will present a detailed analysis for the results for this dataset, and, in Sect. 6.4, show a brief
summary of results on the other datasets, which will essentially confirm the results on the
Reuters-RCV1 benchmark.

6.1 Ranking performance

The first three columns of Table 1 show the ranking performance of the three algorithms
MMP, its pairwise counter-part MLPC, and its calibrated version CMLPC. The binary rele-
vance classifier BR, a one-against-all ensemble of conventional perceptrons, is clearly out-
performed by all other approaches. This is not surprising, as it is the only method that is
not concerned with optimizing a ranking. However, the pairwise algorithms also outperform
MMPs that improve binary relevance ranking with a training procedure that aims at optimiz-
ing their ranking performance. For example, the pairwise classifiers have a ≈ 0.8% (≈2,100
documents) advantage in the percentage of examples for which the top rank is correct (col-
umn ONEERROR).

More surprisingly, CMLPC also improves the ranking performance over MLPC. Due
to the large number of test examples, these seemingly small improvements are statistically
highly significant (p � 0.0001), as are all other pairwise differences in this table.8 Appar-
ently, the information provided by the introduction of the artificial calibration label not only
allows to split the classes into relevant and irrelevant, but the additional c binary models
that are learned by CMLPC also help to somewhat improve the ranking of the other classes.
However, large improvements cannot be expected, because the additional preferences in-
volving the calibration label can increase the voting count of each label by at most 1, which
allows only minor changes in the ranking positions.

Table 1 Comparison of binary relevance ranking (BR), one-against-all ranking (MMP), pairwise ranking
(MLPC) and calibrated pairwise ranking (CMLPC) on the full Reuters-RCV1 dataset

AVGPREC RANKLOSS ONEERROR HAMLOSS

BR 88.23% 2.529% 5.02% 98.74%

MMP 92.82% 0.687% 3.75% –

MLPC 93.67% 0.478% 2.96% –

CMLPC 93.81% 0.472% 2.90% 98.97%

8In this case, where we have a ranking for each example in the test case, we used a version of the sign test that
is particularly suited for problems with a high number of ties, and seems to be a variant of the widely used
McNemar test (McNemar 1947). We chose a sign test because it is simple, it does not make any assumptions
about the distribution of the observations, and it is quite conservative (significance with the sign test implies
significance with more sensitive tests but not vice versa). The particular version we used computes the test
statistic z = (NA −NB)/

√
NA + NB , where NA is the number of examples for which algorithm A produces

a better ranking than algorithm B and NB is the number of times for which B ranks better than A (Putter
1955). This statistic is asymptotically distributed like a standard normal distribution. It is based on the idea of
distributing the ties randomly between A and B , but this version has a higher asymptotic relative efficiency. It
was therefore recommended in a comparative study of several sign tests that allow for the possibility of large
numbers of ties (Coakley and Heise 1996).
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Fig. 2 Predicted and actual number of relevant classes for the calibrated ranking and for the binary relevance
approach on the full Reuters-RCV1 dataset

6.2 Calibration performance

The Hamming Loss, shown in the last column of Table 1, can only be computed for the
binary relevance classifiers and the calibrated pairwise multilabel perceptrons, because the
other approaches are restricted to rank the labels and do not separate them into relevant and
irrelevant labels. The results show that CMLPC competently splits between relevant and
irrelevant classes: for every prediction there is on average approximately only one class that
is placed on the wrong side of the boundary (either via bad ranking or via a bad setting of
boundary). For BR, the performance is similar but somewhat worse.

Figure 2 shows the actual distribution of the number of labels for each example, and the
distributions that result from the predictions of BR and CMLPC (irrespective of whether the
predictions are correct or not). Obviously, both algorithms follow the original distribution
quite closely. CMLPC predicts the correct number of classes in about 75% of the cases, in
more than 90% the deviation was one class or less. Interestingly, these numbers are even
higher for the binary relevance ranking, even though its overall performance is worse be-
cause of its bad ranking performance as discussed above. Thus, the calibration point of the
CMLPC rankings is closer tied to the ranking performance of the algorithm, while for BR
the two appear to be more independent. In general, a small bias towards underestimating the
number of labels is noticeable for CMLPC.

In order to get an idea on the quality of the predicted boundary between relevant and
irrelevant examples, Table 2 shows a comparison of the boundaries predicted by BR and
CMLPC to a fixed boundary of three (i.e., we always predict the median value of three
labels), and the real boundary (i.e., we “cheat” by looking at the actual number of relevant
labels of the test instances and draw the same boundary in the predicted ranking). As the
median and the real boundaries are predetermined, we can also—for these cases—include
the ranking algorithms into the comparison.

The results show that CMLPC clearly improves over the median, but it also does not
come near the performance using the real boundary. The comparison to MLPC and MMP
confirms once more that CMLPC produces the best rankings, with a clear advantage over
MMP and BR. The binary relevance ranking BR has, for the predicted boundary, a small
advantage in terms of recall, but clearly suffers from a lack in precision. This confirms our
conclusions above that CMLPC predicts the boundaries somewhat more cautiously than BR,
which suffers from a bad ranking performance, as can again be seen from the results for the
median and real boundaries.
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Table 2 Average recall, precision and F1 for various boundaries between relevant and irrelevant labels

PREC REC F1

Median (3) BR 78.86% 73.24% 75.95%

MMP 81.92% 76.08% 78.89%

MLPC 82.56% 76.67% 79.51%

CMLPC 82.74% 76.85% 79.68%

Predicted (|P̂x |) BR 80.15% 79.70% 79.93%

CMLPC 86.77% 79.33% 82.88%

Real (|Px |) BR 81.40% 81.40% 81.40%

MMP 86.74% 86.74% 86.74%

MLPC 87.74% 87.74% 87.74%

CMLPC 87.99% 87.99% 87.99%

Fig. 3 Micro averaged recall/precision and ROC curves on the full Reuters-RCV1 dataset

Note that the performance that we called “real” in Table 2 is not necessarily the optimal
choice in the sense that it is the highest achievable value. Higher F1-values are achievable if
we deviate from the original number of labels, because of a suboptimal ranking of the labels.
The optimal boundary for each example depends on both the example and the predicted
ranking. Also note that choosing always the correct number of relevant classes necessarily
results in equal values for precision and recall as the denominators in (7) coincide.

In order to visualize the behavior over all possible boundaries, we also computed re-
call/precision and ROC curves for each example. This was done by building a label confu-
sion matrix Cb

x for each possible boundary b = 0, . . . ,103 (i.e., on all positions in the rank-
ing). The respective recall/precision and true positive/false positive values were then plotted
resulting in a polygon with 103 segments. We again used micro-averaging to average these
curves by computing summary matrices

Cb =
n∑

i=1

Cb
xi
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Table 3 Number of operations of the different algorithms for training and testing

BR MMP MLPC CMLPC

Training 4,237,467,068 4,307,889,941 13,287,753,360 17,525,186,974

Testing 2,080,697,850 2,080,697,850 106,115,590,350 108,196,288,200

for b = 0, . . . ,103. Recall/precision and ROC curves were plotted using the recall/precision
and TP/FP values from these confusion matrices.

The left part of Fig. 3 shows the resulting recall/precision curve. The curve of BR is
completely dominated by the MMP curve, which in turn is dominated by the MLPC and the
CMLPC curves.

The complete ROC curve exhibits a qualitatively similar behavior. In the right part of
Fig. 3, we have enlarged the upper left area [0.0–0.2, 0.8–1.0] to make these small differ-
ences more visible. There are also regions in the graph where very small differences between
CMLPC and MLPC are noticeable in the graphs, but the resolution of the graphs in this pa-
per is too small to show them. The areas under the curves (AUC) are 0.9747 for BR, 0.9931
for MMP, 0.9952 for MLPC, and 0.9953 for CMLPC. This means that the probability that
a randomly selected relevant class is ranked before a randomly selected irrelevant class is
almost > 0.995 for the pairwise approaches. For example, for the median case of 3 relevant
and 100 irrelevant labels, there are 3 × 100 possible pairs of relevant and irrelevant classes,
and on average 1.5 of them are incorrectly predicted.

6.3 Computational complexity

We measured the run-time in order to compare it to our analysis of the computational com-
plexity in Sect. 4.3. We found it the most convenient to measure an amount of processed
operations instead of an amount of (CPU-)time, since in this way it is guaranteed to be
independent from external factors such as logging activities and others not part of the ba-
sic algorithm, suboptimal routines in the underlying workbench, activities of the operation
system etc. Since all the algorithms used on the full Reuters dataset are based on the Percep-
tron algorithm, a basic operation that is appropriate to compare the results of the different
algorithms can easily be found. We defined the basic operation to be an arithmetic float-
ing number operation when calculating a dot product or adding two vectors, the two most
frequent operations in the Perceptron algorithm. Other operations such as comparisons and
sortings were ignored.

Table 3 shows the number of arithmetic operations in the training and testing process
used by the respective algorithms. The ratio of training operations between the binary rel-
evance and the pairwise comparison approach averages 3 and therefore corresponds to the
median number of relevant classes per example in the used dataset. These results confirm our
analysis in Sect. 4.3. Also note that the complexity of the CMLPC approach equals the sum
of the complexities of the MLPC and the BR approaches,9 in agreement with Theorem 4.2.

6.4 Results on other datasets

Tables 4 and 5 show the ranking loss and the calibration performance of the algorithms on
the Reuters-21578, yeast, and scene datasets. Essentially, the results confirm the key findings
of the previous sections, namely that

9For the training complexities this match is only approximate due to different initialization vectors.
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Table 4 Comparison of the ranking performance of binary relevance ranking (BR), one-against-all ranking
(MMP), pairwise ranking (MLPC) and calibrated pairwise ranking (CMLPC) on the Reuters-21578, scene,
and yeast data. The best result in each column is indicated in bold font, significant differences to CMLPC are
indicated with +/- (10%), ++/- - (5%), and +++/- - - (1%)

AVGPREC RANKLOSS ONEERROR

Reuters-21578

BR 91.33% - - - 8.0711 - - - 0.0750 - - -

MMP 95.49% - - - 1.1793 - - - 0.0601 -

MLPC 95.50% - - - 0.7189 - - - 0.0618 - - -

CMLPC 95.84% 0.7064 0.0560

scene

BR 85.64% - - 0.4304 - - - 0.2405 - -

MMP 85.82% - - 0.4121 - - - 0.2397 -

MLPC 86.43% - 0.3922 - 0.2281 =

CMLPC 86.70% 0.3831 0.2243

yeast

BR 70.41% - - - 8.5811 - - - 0.3152 - - -

MMP 71.39% - - - 7.8867 - - - 0.3099 - - -

MLPC 75.15% = 6.4560 ++ 0.2495 ++

CMLPC 75.05% 6.4921 0.2540

1. the pairwise ranking methods outperform the one-against-all ranking methods (Table 4)10

2. adding the calibration label to the ranking does not systematically deteriorate perfor-
mance (in the yeast dataset it lead to worse results, on the scene and Reuters-21578 it
helped)

3. the calibrated pairwise method outperforms the binary relevance predictor in terms of
multilabel losses (Table 5)

4. the calibrated pairwise method is typically a bit more conservative in predicting the num-
ber of relevant labels (lower recall, in particular for Reuters-21578) but this is outweighed
by its superior ranking performance (higher precision and higher F1)11

Essentially, the calibrated pairwise method combines the advantages of both methods: it
utilizes the improved ranking capabilities of the pairwise approach, but, through its calibra-

10Table 4 shows results of a paired t -test for establishing statistical significance. We also computed Fried-
man’s test and the Bonferroni-Dunn test, as recommended by Demšar (2006). Friedman’s tests indicates that
the average rankings for the algorithms are significantly different from random (or in other words that at least
one of the medians is different from the others). With the Bonferroni-Dunn test, we can only conclude that
CMLP is significantly better than BR (the average ranks over all four datasets for the four rank evaluation
measures are for CMLP 1.25, MLP 1.75, MMP 3.0, and BR 4.0). However, it should be noted that the critical
rank difference for four classifiers is 2.185, i.e., even if the rankings were perfectly consistent (average ranks
1.0 for CMLP and 2.0 for MLP), we could not conclude that CMLP is significantly better than MMP because
their rank difference would only be 2.0 < 2.185.
11The astute reader may wonder why for the results of BR on the scene dataset the F1 measure is lower than
both the recall and the precision measure. This happens because we macro-average the results of the 10 cross-
validation folds. If recall is higher than precision on some folds and lower on other folds, the macro-averaged
F1 may indeed be lower than both. For example: r1 = p2 = 0.7,p1 = r2 = 0.3 → f1 = f2 = favg = 0.42,
whereas ravg = pavg = 0.5.
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Table 5 Comparison of the calibration performance of binary relevance ranking (BR), and calibrated pair-
wise ranking (CMLPC) on the Reuters-21578, scene, and yeast data. The best result in each column is indi-
cated in bold font, significant differences to CMLPC are indicated with +/- (10%), ++/- - (5%), and +++/- - -
(1%)

HAMLOSS PREC REC F1

Reuters-21578

BR 99.60% - - - 78.38% - - - 85.21% +++ 81.64% - - -

CMLPC 99.70% 89.55% 80.53% 84.78%

scene

BR 89.58% - - 71.80% - - 71.21% = 71.19% - -

CMLPC 90.31% 74.43% 70.84% 72.41%

yeast

BR 75.91% - - - 60.47% - - - 59.07% - - - 59.76% - - -

CMLPC 77.67% 64.01% 59.95% 61.91%

tion label, is able to make a good prediction where in the predicted ranking the labels should
be separated into relevant and irrelevant labels.

7 Related work

Schapire and Singer (1999) derived a family of multilabel extensions in the framework of
AdaBoost (referred to as AdaBoost.MH and AdaBoost.MR) which provided the algorith-
mic basis for the Boostexter text and speech categorization system (Schapire and Singer
2000). In a similar manner, the multilabel generalization of support vector machines ad-
vocated by Elisseeff and Weston (2002) exploits comparative preferences among pairs of
labels as defined for the multilabel case in Sect. 2, while lacking a natural approach to deter-
mine the relevance zero-point in the multilabel ranking. More recently, Shalev-Shwartz and
Singer (2006) presented a general framework for efficiently learning label rankings using
the maximum margin methodology. The underlying concept of preference graph decompo-
sitions incorporates (Elisseeff and Weston 2002) and several other classification approaches
as special cases.

Rousu et al. (2006) consider the hierarchical multilabel learning scenario, a combination
of hierarchical classification (Cai and Hofmann 2004) and multilabel learning. Here, the
labels are assumed to be organized in a hierarchical structure but in contrast to hierarchi-
cal classification an instance may be associated with one or more labels. The underlying
classification model is an adaptation of the so-called maximum margin Markov network.

Instance-based approaches to multilabel learning provide an interesting alternative to
model-based approaches, such as those discussed in the previous paragraphs, which essen-
tially induce global prediction models for the entire input space from the training data. As
opposed to model-based approaches which typically entail a substantially increased com-
putational complexity (in comparison to classification learning), there exist conceptually
simple and computationally very efficient generalizations to multilabel ranking using the
case-based paradigm (Brinker and Hüllermeier 2007; Zhang and Zhou 2005). One of the
concepts underlying the case-based generalization in (Brinker and Hüllermeier 2007) is
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closely related to the calibration technique advocated in this paper and leads to a rank aggre-
gation optimization problem. The k-nearest neighbor approach to multilabel classification
in (Zhang and Zhou 2005) is inspired by Bayesian reasoning.

In a survey on multilabel classification, Tsoumakas and Katakis (2007) distinguish be-
tween two categories of approaches, namely, those which employ a transformation into a
set of binary classification problems and approaches adapting existing methods to handle
multilabeled data directly. In a certain sense, our approach can be seen as a transformation
technique, however, not into a set of binary problems but into a single label ranking problem.
A subsequent transformation into the binary domain, such as for ranking by pairwise com-
parison, is a viable option, but other approaches for solving label ranking problems could
also be used (Hüllermeier et al. 2008 contains a brief survey).

Yang (1999) discusses and evaluates a few straight-forward approaches for determining
a zero-point. The first one, RCut, uses a fixed threshold for all examples (the one that op-
timizes the F1-score), the second approach, PCut, suggests to optimize the threshold for
each possible label independently, and the final one, SCut, proposes to optimize these label
thresholds on a separate validation set. Our calibration method compared favorably to the
simple RCut approach,12 but we did not compare to the label thresholds. However, none of
these approaches allow one to adjust the thresholds for each individual example, which we
think is the key distinguishing feature of our proposal.

8 Concluding remarks

We have proposed a generic and unified extension to overcome the severe restriction on the
expressive power of previous approaches to label ranking induced by the lack of a calibrated
scale. The key idea of this approach is to introduce a calibration label that represents the
boundary between relevant and irrelevant labels. This generic approach to the calibrated
ranking setting enables general ranking techniques, such as ranking by pairwise comparison
and constraint classification, to incorporate and exploit partition-related preference informa-
tion and to generalize to settings for which predicting the zero-point is required.

In particular, the calibrated extension suggests a conceptually novel technique for ex-
tending the common learning by pairwise comparison technique to the multilabel scenario,
a setting previously not being amenable to pairwise decomposition. We should mention that
in this case the introduction of this calibration label effectively produces an ensemble that
combines the models learned by the conventional binary relevance ranking approach and
those learned by the pairwise classification approach.

The main conclusion from our experimental results in the areas of text categorization
and gene analysis is that the calibrated pairwise approach clearly outperforms the binary
relevance approach. We have also seen some evidence that the calibration not only allows
one to calibrate the ranking, but that it can also improve the quality of the ranking itself be-
cause of the increased redundancy provided by the additional classifiers in the ensemble. We
plan a systematic investigation of this issue for its potential of improving the performance
in general ranking problems.

A particular limitation of the binary-relevance extension to multilabel ranking, which is
not shared by the calibrated framework proposed in this paper, lies in the fact that it only
applies to soft classifiers, which are able to provide confidence scores with the prediction.

12We had selected the fixed threshold of 3 because it is the median value of classes, but we later confirmed
that this is also the one that optimizes the F1-score.
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Exploring the benefits of calibrated ranking with binary-relevance classifiers is a promising
aspect of future work.

Acknowledgements This research was supported by the German Research Foundation (DFG). We would
like to thank the anonymous reviewers and the editor for their helpful suggestions. We also thank Janez
Demšar for an interesting discussion on significance tests.

References

Altun, Y., McAllester, D., & Belkin, M. (2006). Margin semi-supervised learning for structured variables.
In Y. Weiss, B. Schölkopf, & J. Platt (Eds.), Advances in neural information processing systems 18.
Cambridge: MIT Press.

Boutell, M. R., Luo, J., Shen, X., & Brown, C. M. (2004). Learning multi-label scene classification. Pattern
Recognition, 37(9), 1757–1771.

Bradley, R. A., & Terry, M. E. (1952). The rank analysis of incomplete block designs, I: the method of paired
comparisons. Biometrika, 39, 324–345.

Brinker, K., & Hüllermeier, E. (2005). Calibrated label-ranking. In S. Agarwal, C. Cortes, & R. Herbrich
(Eds.), Proceedings of the NIPS-2005 workshop on learning to rank (pp. 1–6), Whistler, BC, Canada.

Brinker, K., & Hüllermeier, E. (2007). Case-based multilabel ranking. In Proceedings of the 20th interna-
tional joint conference on artificial intelligence (IJCAI-07) (pp. 702–707).

Brinker, K., Fürnkranz, J., & Hüllermeier, E. (2006). A unified model for multilabel classification and rank-
ing. In G. Brewka, S. Coradeschi, A. Perini, & P. Traverso (Eds.), Proceedings of the 17th European
conference on artificial intelligence (ECAI-06) (pp. 489–493).

Cai, L., & Hofmann, T. (2004). Hierarchical document categorization with support vector machines. In Pro-
ceedings of the 13th ACM conference on information and knowledge management (CIKM-04) (pp. 78–
87), Washington, DC.

Coakley, C. W., & Heise, M. A. (1996). Versions of the sign test in the presence of ties. Biometrics, 52,
1242–1251.

Crammer, K., & Singer, Y. (2003). A new family of online algorithms for category ranking. Journal of Ma-
chine Learning Research, 3, 1025–1058.

Dekel, O., Manning, C. D., & Singer, Y. (2004). Log-linear models for label ranking. In S. Thrun, L. K. Saul,
& B. Schölkopf (Eds.), Advances in neural information processing systems 16 (NIPS 2003) (pp. 497–
504). Cambridge: MIT Press.

Demšar, J. (2006). Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning
Research, 7, 1–30.

Elisseeff, A., & Weston, J. (2002). A kernel method for multi-labelled classification. In T. G. Dietterich,
S. Becker, & Z. Ghahramani (Eds.), Advances in neural information processing systems 14 (pp. 681–
687). Cambridge: MIT Press.

Friedman, J. H. (1996). Another approach to polychotomous classification (Technical report). Department of
Statistics, Stanford University, Stanford, CA.

Fürnkranz, J. (2003). Round robin ensembles. Intelligent Data Analysis, 7(5), 385–404.
Fürnkranz, J. (2002). Round robin classification. Journal of Machine Learning Research, 2, 721–747.
Fürnkranz, J., & Hüllermeier, E. (2003). Pairwise preference learning and ranking. In N. Lavrač, D. Gam-
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