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Abstract In retrieving medical free text, users are often interested in answers pertinent
to certain scenarios that correspond to common tasks performed in medical practice, e.g.,
treatment ordiagnosis of a disease. A major challenge in handling such queries is that
scenario terms in the query (e.g., treatment) are often too general to match specialized
terms in relevant documents (e.g.,chemotherapy). In this paper, we propose a knowledge-
based query expansion method that exploits the UMLS knowledge source to append the
original query with additional terms that are specifically relevant to the query’s scenario(s).
We compared the proposed method with traditional statistical expansion that expands terms
which are statistically correlated but not necessarily scenario specific. Our study on two
standard testbeds shows that the knowledge-based method, by providing scenario-specific
expansion, yields notable improvements over the statistical method in terms of average
precision-recall. On the OHSUMED testbed, for example, the improvement is more than
5% averaging over all scenario-specific queries studied and about 10% for queries that
mention certain scenarios, such as treatment of a disease and differential
diagnosis of a symptom/disease.
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1 Introduction

In recent years, there has been a phenomenal growth of online medical document collections.
Collections such as PubMed1 and MedlinePlus2 provide comprehensive coverage of medical
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literature and teaching materials. In searching these collections, it is desirable to retrieve only
those documents pertaining to a specific medical “scenario,” where a scenario is defined as
a frequently-reappearing medical task. For example, in treating a lung cancer patient, a
physician may pose the query lung cancer treatment in order to find the latest
treatment techniques for this disease. Here, treatment is the medical task that marks
the scenario for this query. Recent studies (Ely et al., 1999, 2000; Haynes et al., 1990;
Hersh et al., 1996; Wilczynski et al., 2001) reveal that in clinical practice, as many as
60% of physicians’ queries center on a limited number of scenarios, e.g., treatment,
diagnosis, etiology, etc. While the contextual information in such queries (e.g., the
particular disease of a patient such as lung cancer, the age group of that patient, etc.)
varies from case to case, the set of frequently-asked medical scenarios remains unchanged.
Retrieving documents that are specifically related to the query’s scenario is referred to as
scenario-specific retrieval.

Scenario-specific retrieval is not adequately addressed by traditional text retrieval systems
(e.g., SMART (Salton and McGill, 1983) or INQUIRY (Callan et al., 1992)). Such systems
suffer from the fundamental problem of query-document mismatch (Efthimiadis, 1996) when
handling scenario-specific queries. Scenario terms in these queries are represented using
general terms, e.g., the term treatment in the query lung cancer treatment.
On the contrary, in full-text medical documents, more specialized terms such as lung
excision or chemotherapy are used to express the same topic. Such mismatch of
terms leads to poor retrieval performance (Tse and Soergel, 2003; Zeng et al., 2002).

There has been a substantial amount of research on query expansion (Buckley et al.,
1994, 1995; Jing and Croft, 1994; Mitra et al., 1998; Qiu and Frei, 1993; Robertson et al.,
1994; Srinivasan, 1996; Xu and Croft, 1996) that ameliorates the query–document mismatch
problem. However, such techniques also have difficulties handling scenario-specific queries.
Query expansion appends the original query with specialized terms that have a statistical
cooccurrence relationship with original query terms in medical literature. Although append-
ing such specialized terms makes the expanded query a better match with relevant documents,
the expansion is not scenario-specific. For example, in handling the query lung cancer
treatment, existing query expansion techniques will append not only terms such as lung
excision or chemotherapy that are relevant to the treatment scenario, but also ir-
relevant terms like smoking and lymph node, simply because the latter terms cooccur
with lung cancer in medical literature. Appending non-scenario-specific terms leads to
the retrieval of documents that are irrelevant to the original query’s scenario, diverging from
our goal of scenario-specific retrieval.

In the domain of medical text retrieval, researchers have proposed to exploit the Uni-
fied Medical Language System (UMLS), a full-fledged knowledge source in the medical
domain, to expand the original query with related terms and to improve retrieval perfor-
mance. Current approaches either explore the synonym relationships defined in UMLS and
expand synonyms of the original query terms (Aronson and Rindflesch, 1997; Guo et al.,
2004; Plovnick and Zeng, 2004) or explore the hypernym/hyponym relationships and ex-
pand terms that have wider/narrower meaning than the original query terms (Hersh et al.,
2000). Extensive evaluation of these approaches has been performed on standard testbeds
such as OHSUMED (Aronson and Rindflesch, 1997; Hersh et al., 2000) and the TREC
Genomics ad hoc topics (Guo et al., 2004). However, no study has consistently produced sig-
nificant differences in retrieval effectiveness before and after expansion. Particularly, we note
that when handling scenario-specific queries, such solutions still generally suffer from the
query-document mismatch problem. For example, the synonyms, hypernyms, or hyponyms
for all the terms in query lung cancer treatment, as defined by the knowledge
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source, are lung carcinoma, cancer, therapy, medical procedure, etc.
With such terms expanded, the query will still have difficulty matching documents that
extensively use specialized terms such as chemotherapy and lung excision.

In this paper, we propose a knowledge-based query expansion technique to support
scenario-specific retrieval. Our technique exploits domain knowledge to restrict query ex-
pansion to scenario-specific terms and yields better retrieval performance than that of tra-
ditional query expansion approaches. The following are challenges in developing such a
knowledge-based technique:

� Using domain knowledge to automatically identify scenario-specific terms. It is impractical
to ask users or domain experts to manually identify scenario-specific terms for every query
and all possible scenarios. Therefore, an automatic approach is highly desirable. However,
the distinction between scenario-specific expansion terms and non-scenario-specific ones
may seem apparent to a human expert, but can be very difficult for a program. To treat this
distinction, we propose to exploit a domain-specific knowledge source.

� Incompleteness of knowledge sources. Knowledge sources are usually not specifically
designed for the purpose of scenario-specific retrieval. As a result, scenarios frequently
appearing in medical queries may not be adequately supported by those knowledge sources.
We propose a knowledge-acquisition methodology to supplement the existing knowledge
sources with additional knowledge that supports undefined scenarios.

The rest of this paper is organized as follows. We first present a framework for knowledge-
based query expansion in Section 2. We then describe the detailed method in this framework
in Section 3. We experimentally evaluate the method and report the results in Section 4.
In Section 5, we address the issue of supplementing a knowledge source via knowledge
acquisition. We further discuss the relevancy of expansion terms judged by domain experts
in Section 6.

2 A framework for knowledge-based query expansion

Figure 1 depicts the components in a knowledge-based query expansion and retrieval frame-
work. For a given query, Statistical Query Expansion (whose scope is marked by the inner
dotted rectangle) will first derive candidate expansion concepts3 that are statistically cooc-
curring with the given query concepts (Section 3.1) and assign weights to each candidate
concept according to the statistical cooccurrence. Such weights will be carried through the
framework.

Based on the candidate concepts derived by statistical expansion, Knowledge-based Query
Expansion (whose scope is marked by the outer dotted rectangle) further derives the scenario-
specific expansion concepts, with the aid of a domain knowledge source such as UMLS
(NLM, 2001) (Section 3.2). Such knowledge may be incomplete and fail to include all
possible query scenarios. Therefore, in an offline process, we apply a Knowledge Acquisition
and Supplementation module to supplement the incomplete knowledge (Section 5).

After the query is expanded with scenario-specific concepts, we employ a Vector Space
Model (VSM) to compare the similarity between the expanded query and each document.
Top-ranked documents with the highest similarity measures are output to the user.

3 In the rest of this paper, a concept is referred to as a word or a word phrase that has a concrete meaning in
a particular application domain. In the medical domain, concepts in free text can be extracted using existing
tools, e.g., MetaMap (Aronson, 2001), Index Finder (Zou et al., 2003), etc.
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Fig. 1 A knowledge-based query expansion and retrieval framework

3 Method

Formally, the problem for knowledge-based query expansion can be stated as follows:
Given a scenario-specific query with a key concept denoted as ckey (e.g., lung cancer
or keratoconus4) and a set of scenario concepts denoted as cs (e.g., treatment or
diagnosis), we need to derive specialized concepts that are related to Ckey and the
relations should be specific to the scenarios defined by cs.

In this section, we describe how to derive such scenario-specific concepts first by present-
ing existing statistical query expansion methods which generate candidates for such scenario-
specific concepts. We then propose a knowledge-based method that selects scenario-specific
concepts from this candidate set with the aid of a domain knowledge source.

3.1 Deriving statistically-related expansion concepts

Statistical expansion is also referred to as automatic query expansion (Efthimiadis, 1996;
Mitra et al., 1998). The basic idea is to derive concepts that are statistically related to the
given query concepts, where the statistical correlation is derived from a document collection
(e.g., OHSUMED; Hersh et al., 1994). Appending such concepts to the original query
makes the query expression more specialized and helps the query better match relevant

4 An eye disease.
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documents. Depending on how such statistically-related concepts are derived, statistical
expansion methods fall into two major categories:

� Cooccurrence-thesaurus-based expansion (Jing and Croft, 1994; Qiu and Frei, 1993; Xu
and Croft, 1996). In this method, a concept cooccurrence thesaurus is first constructed
automatically offline. Given a vocabulary of M concepts, the thesaurus is an M × M
matrix, where the 〈i, j〉 element quantifies the cooccurrence between concept i and concept
j. When a query is posed, we look up the thesaurus to find all concepts that statistically
cooccur with concepts in the given query and assign weights to those cooccurring concepts
according to the values in the cooccurrence matrix. A detailed procedure for computing
the cooccurrence matrix and for assigning weights to expansion concepts can be found in
Qiu and Frei (1993).

� Pseudo-relevance-feedback-based expansion (Buckley et al., 1994, 1995; Efthimiadis and
Biron, 1993; Mitra et al., 1998; Robertson et al., 1994). In pseudo-relevance feedback, the
original query is used to perform an initial retrieval. Concepts extracted from top-ranked
documents in the initial retrieval are considered statistically related and are appended to
the original query. This approach resembles the well-known relevance feedback approach
except that, instead of asking users to identify relevant documents as feedback, top-ranked
(e.g., top-10) documents are automatically treated as “pseudo” relevant documents and are
inserted into the feedback loop. Weight assignment in pseudo-relevance feedback (Buckley
et al., 1994) typically follows the same weighting scheme (〈α, β, γ 〉) for conventional
relevance feedback techniques (Rocchio, 1971).

We note that the choice of statistical expansion method is orthogonal to the design of the
knowledge-based expansion framework (Fig. 1). In our current experimental evaluation, we
used the cooccurrence-thesaurus-based method to derive statistically-related concepts. For
convenience of discussion, we use co(ci, cj) to denote the cooccurrence between concept
ci and cj, a value that appears as the 〈i, j〉 element in the M × M cooccurrence matrix.
Table 1 lists the top-15 concepts that are statistically-related to keratoconus using the
cooccurrence measure. Here, the cooccurrence measure is computed from the OHSUMED
corpus that will be described in detail in Section 4.1.

Table 1 Concepts that
statistically correlate to
keratoconus

# Concepts that statistically correlate to keratoconus

1 Fuchs dystrophy
2 Penetrating keratoplasty
3 Epikeratoplasty
4 Corneal ectasia
5 Acute hydrops
6 Keratometry
7 Corneal topography
8 Corneal
9 Aphakic corneal edema
10 Epikeratophakia
11 Granular dystrophy corneal
12 Keratoplasty
13 Central cornea
14 Contact lens
15 Ghost vessels
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3.2 Deriving scenario-specific expansion concepts

Using a statistical expansion method, we can derive a set of concepts that are statistically-
related to the key concept, ckey, of the given query. Only a subset of these concepts are
relevant to the given query’s scenario, e.g., treatment. For example, the 5th and 8th
concepts in Table 1, which are acute hydrops and corneal, are not related to the
treatment of keratoconus. Therefore, in terms of deriving expansion concepts for query
keratoconus treatment, these concepts should be filtered out. In this section, we
will first describe the type of knowledge structure that enables us to perform this filtering
and then present the filtering procedure.

3.2.1 UMLS—The knowledge source

Unified Medical Language System (UMLS) is a standard medical knowledge source devel-
oped by the National Library of Medicine. It consists of the Metathesaurus, the Semantic
Network, and the SPECIALIST lexicon. The Semantic Network provides the essential knowl-
edge structures for deriving scenario-specific expansion concepts, and is the primary focus
of the following discussion. The Metathesaurus, which defines over 800,000 medical con-
cepts and the hypernym/hyponym relationships among them, is used in our study for two
purposes: (1) detecting concepts in both queries and document and (2) expanding hyper-
nyms/hyponyms of a query’s key concept. The second purpose will be further illustrated in
Section 3.3. The lexicon is mainly used for unifying lexical features in medical-text-related
natural language processing (NLP) and is not used in our study.

The Semantic Network defines about 100 semantic types such as Disease or Syn-
drome, Body Part, etc. Each semantic type corresponds to a class/category of concepts.
The semantic type of Disease or Syndrome, for instance, corresponds to 44,000 con-
cepts in the Metathesaurus such as keratoconus, lung cancer, diabetes, etc.
Besides the list of semantic types, the Semantic Network also defines the relations among
various semantic types, such as treats and diagnoses. Such relations link isolated
semantic types into a graph/network structure. The top half of Fig. 2 presents a fragment
of this network, which includes all semantic types that have a treats relation with the
semantic type Disease or Syndrome. Relations such as treats in Fig. 2 should
be interpreted as follows: Any concepts that belong to semantic type Therapeutic or
Preventive Procedure, e.g., penetrating keratoplasty or chemother-
apy, have the potential to treat concepts that belong to the semantic type Disease or
Syndrome, e.g., keratoconus or lung cancer. However, it is not indicated whether
such relations concretely exist between two concepts, e.g., a treats relation between
penetrating keratoplasty and lung cancer.

3.2.2 A knowledge-based method to derive scenario-specific expansion concepts

Given the knowledge structure in the Semantic Network, the basic idea in identifying
scenario-specific expansion concept is to use this knowledge structure to filter out
statistically-correlated concepts which do not belong to the “desirable” semantic types. Let
us illustrate this idea through Fig. 2, using the treatment scenario as an example: In
this figure, we start with the set of concepts that are statistically-related to keratoconus.
Our goal in applying the knowledge structure is to identify that: (1) concepts such
as penetrating keratoplasty, contact lens, and griffonia have the
scenario-specific relation, i.e., treats, with keratoconus and should be kept during
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Fig. 2 Using knowledge to identify scenario-specific concept relationships

expansion; (2) concepts such as acute hydrops and corneal do not have the
scenario-specific relation with keratoconus and should be filtered out.

In this figure, each solid circle represents one concept, and the solid lines connecting these
solid circles indicate strong statistical correlations computed for a pair of concepts, e.g., the
solid line between keratoconus and contact lens. A dotted circle represents a class
of concepts, and a dotted line links that class of concepts to a corresponding semantic type.
For example, concepts keratoconus and lung cancer are in the class that links to
Disease or Syndrome.

We identified scenario-specific expansion concepts using the following process: Given a
key concept ckey of the given query, we first identified the semantic type that ckey belongs
to. For example, we identified Disease or Syndrome given the key concept kera-
toconus. Starting from that semantic type, we further followed the relations marked by
the query’s scenario and reached a set of relevant semantic types. For the previous example,
given the query’s scenario, treatment, we followed the treats relation to reach the
three other semantic types as shown in Fig. 2. Finally, we identified those statistically-related
concepts that belong to the relevant semantic types as scenario specific. We further filtered out
other statistically-related concepts that do not satisfy this criteria. From the previous exam-
ple, this final step identified penetrating keratoplasty, contact lens, and
griffonia as scenario-specific expansion concepts and filtered out non-scenario-specific
ones such as acute hydrops and corneal.

Table 2(a) and (b) shows the lists of the concepts that treat and diagnose kerato-
conus, respectively. We derived these concepts based on the process described earlier and
show the top-15 concepts in terms of their correlation with keratoconus. To highlight the
effectiveness in applying the knowledge-based filtering process, we can compare the con-
cepts in Table 2 with those in Table 1 that are statistically correlated with keratoconus.
Five out of these 15 statistically correlated concepts are kept in Table 2(a), whereas two
are kept in Table 2(b). This comparison suggests that the knowledge structure is effective
in filtering out concepts that are not closely related to the scenarios of treatment or
diagnosis.
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Table 2 Concepts that treat or diagnose keratoconus

# (a) Concepts that treat keratoconus (b) Concepts that diagnose keratoconus

1 Penetrating keratoplasty Keratometry
2 Epikeratoplasty Corneal topography
3 Epikeratophakia Slit lamp examination
4 Keratoplasty Topical corticosteroid
5 Contact lens Echocardiography 2 d
6 Thermokeratoplasty Tem
7 Button Interferon
8 Secondary lens implant Alferon
9 Fittings adapters Analysis
10 Esthesiometer Microscopy
11 Griffonia Bleb
12 Trephine Tetanus toxoid
13 Slit lamps Antineoplastic
14 Fistulization Heart auscultation
15 Soft contact lens Chlorbutin

3.3 Hypernym/hyponym expansion

The goal of knowledge-based query expansion is to append specialized terms that appear in
relevant documents but not in the original query. Scenario-specific concepts derived from the
previous subsection represent a subset of such specialized terms. Another set of highly rele-
vant terms contains hypernym/hyponyms of the key concept ckey.5 For example, corneal
estasia, a hypernym of keratoconus, is frequently mentioned by documents regard-
ing keratoconus, treatment. Therefore, our technique should also expand those
concepts that are close to ckey in the hypernym/hyponym hierarchy.

To expand hypernyms/hyponyms of the key concept to the original query, we again re-
fer to the UMLS knowledge source. The Metathesaurus component defines not only the
concepts but also the hypernym/hyponym relationships among these concepts. For exam-
ple, Fig. 3 shows the hypernyms (parents), hyponyms (children), and siblings of concept
keratoconus, where the siblings of a concept are defined as those concepts that share
the same parents with the given concept. Through empirical study (which will be discussed
later), we have found that expanding the direct parents, direct children, and siblings to the
original query generates the best retrieval performance. This is in comparison to expanding
parents/children that are two or more levels away from the key concept. Therefore, in the rest
of our discussion, we will focus on expanding only the direct parents/children and siblings.

3.4 Weight adjustment for expansion terms

To match a query and a document using the Vector Space Model (VSM), we represent both
the query and the document as vectors. Each term in the query becomes a dimension in the
query vector, and receives a weight that quantifies the importance of this term in the entire
query. Under this model, any additional term appended to the original query needs to be
assigned a weight. An appropriate weight scheme for these additional terms is important

5 A hypernym of concept c is a concept with a broader meaning than c, whereas a hyponym is one with a
narrower meaning.
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Fig. 3 The direct parents, direct children, and siblings for keratoconus

because “underweighting” will make the additional terms insignificant compared to the
original query and lead to minor changes in the ranking of the retrieval results. On the
contrary, “overweighting” will make the additional terms improperly significant and cause a
“topic drift” for the original query.

In the past, researchers have proposed weighting schemes for these additional terms
based on the following intuition: The weight for an additional term ca should be proportional
to its correlation with the original query terms. In our problem, the weight for ca, wa , is
proportional to its correlation with the key concept ckey, i.e.,

wa = co(ca, ckey) · wkey (1)

In Eq. (1), the correlation between ca and ckey, co(ca, ckey), is derived using methods
described in Section 3.1. wkey denotes the weight assigned to the key concept ckey. In Section
4.1, we will further explain how wkey is decided according to a common weighting scheme.
Given that co(ca, ckey) lies in [0, 1], the weight that ca receives will not exceed that of ckey.
Using this equation, we compute the weights for the terms that statistically correlate with
keratoconus (Table 1) and the weights for those that treat keratoconus (Ta-
ble 2(a)). We list the weights for these terms in Table 3(a) and (b), respectively. These weights
are computed by assuming the weight of the key concept (i.e., wkey) keratoconus is 1.

3.4.1 Weight boosting

In our experiments, we will compare the retrieval effectiveness of knowledge-based query
expansion with that of statistical expansion. Since the knowledge-based method applies a
filtering step to derive a subset of all statistically-related terms, the impact created by this
subset on retrieval effectiveness will be less than the entire set of statistically related terms.
Therefore, weight adjustments are needed to compensate for the filtering. For instance, in
our example of keratoconus, treatment, the “cumulative weight” for all terms in
Table 3(b) is obviously smaller than the “cumulative weight” of those in Table 3(a). To
increase the impact of the terms derived by the knowledge-based method, we can “boost”
their weights by multiplying a linear factor β, so that the cumulative weight of those terms
is comparable to those of the statistically related terms. We refer to β as the boosting factor.
With this factor, we alter Eq. (1) which assigns the weight for any additional term ca as
follows:

wa = β · co(ca, ckey) · wkey (2)
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Table 3 Weights for sample
expansion concepts Weight

(a) Concepts that statistically correlate to keratoconus
Fuchs dystrophy 0.289
Penetrating keratoplasty 0.247
Epikeratoplasty 0.230
Corneal ectasia 0.168
Acute hydrops 0.165
Keratometry 0.133
Corneal topography 0.132
Corneal 0.130
Aphakic corneal edema 0.122
Epikeratophakia 0.119
Granular dystrophy corneal 0.109
Keratoplasty 0.103
Central cornea 0.103
Contact lens 0.101
Ghost vessels 0.095

(b) Concepts that treat keratoconus
Penetrating keratoplasty 0.247
Epikeratoplasty 0.230
Epikeratophakia 0.119
Keratoplasty 0.103
Contact lens 0.101
Thermokeratoplasty 0.092
Button 0.067
Secondary lens implant 0.057
Fittings adapters 0.048
Esthesiometer 0.043
Griffonia 0.035
Trephine 0.033
Slit lamps 0.032
Fistulization 0.030
Soft contact lens 0.026

We derive β based on the following intuition. We quantify the cumulative weight for
both the statistical expansion terms (e.g., those in Table 3(a)) and the knowledge-based
expansion terms (e.g., those in Table 3(b)). The former cumulative weight will be larger
than the latter. We define β to be the former divided by the latter. In this way, the cumulative
weight for the knowledge-based expansion terms equals that of the statistical expansion
terms after boosting.

More specifically, we quantify the cumulative weight of a set of expansion terms using the
length of the “expansion vector” composed by these terms. Here, we define the vector length
according to the standard vector space notation: Let V KB = 〈wKB

1 , . . . , wKB
k 〉 be the aug-

menting vector consisting solely of terms derived by the knowledge-based method, where
wKB

i (1 ≤ i ≤ k) denotes the weight for the ith term in knowledge-based expansion (Eq.
(1)). Likewise, let V stat = 〈wstat

1 , . . . , wstat
l 〉 be the augmenting vector consisting of all sta-

tistically related terms. The process of deriving {wKB
1 , . . . , wKB

k } yields k < l. Consequently,
{wKB

1 , . . . , wKB
k } ⊂ {wstat

1 , . . . , wstat
l }. Let |VKB| be the length of the vector VKB, i.e.,

|V KB| =
√

(wKB
1 )2 + (wKB

2 )2 + · · · + (wKB
k )2 (3)
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Likewise, let |Vstat| represent the length of vector Vstat that can be computed similarly as in
Eq. (3). Further, we define the boosting factor for VKB to be

β = |V stat|
|V KB| (4)

In our experiments, we will experimentally study the effects of boosting by comparing the
retrieval results with and without using boosting. Furthermore, we are interested in studying
the effects of different levels of boosting to gain insight on the “optimal” boosting level. This
motivates us to introduce a boosting-level-controlling factor α to refine Eq. (4)

βr = 1 + α ·
( |V stat|

|V KB| − 1

)
(5)

where βr is the refined boosting factor. The parameter α, ranging within [0, 1], can be used
to control the boosting scale. From Eq. (5), we note that βr = 1 when we set α = 0, which
represents no boosting. βr increases as α increases. As α increases to 1, βr becomes |V stat|

|V KB| .
(In our experiments, we have actually evaluated cases by setting α > 1. As the results will
show later, the retrieval effectiveness is usually suboptimal compared to an α value within
[0, 1].) Thus, we can use α to experimentally study the sensitivity of retrieval results with
regard to boosting.

4 Experimental results

In this section, we experimentally evaluate the effectiveness of the knowledge-based query
expansion for two standard medical corpuses. Our main focus is to compare the results of
our technique with that of statistical expansion. We start with the experimental setup and
then present the results under selective settings.

4.1 Experiment setup

4.1.1 Testbeds

A testbed for a retrieval experiment consists of three components: (1) a corpus (or a document
collection), (2) a set of benchmark queries, and (3) relevance judgments indicating which
documents are relevant for each query. Our experiment is based on the following two testbeds:

OHSUMED (Hersh et al., 1994). This testbed has been widely used in medical information
retrieval research. OHSUMED consists of (1) a corpus, (2) a query set, and (3) relevance
judgments for each query.

� Corpus. The corpus consists of the abstracts of 348,000 MEDLINE articles from 1988
to 1992. Each document contains a title, the abstract, a set of Medical Subject Headings
(MeSH), author information, publication type, source, a MEDLINE identifier, and a docu-
ment ID. The MeSH headings are expert-assigned indexing terms drawn from a subset of
UMLS concepts. In our experiment, we only keep the title and the abstract in representing
each document. We discard the MeSH headings in order to simulate a typical information
retrieval setting in which no expert-assigned indexing terms are available.
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Table 4 IDs of OHSUMED queries mentioning each scenario

Scenario Query IDs

Treatment of a disease 2, 13, 15, 16, 27, 29, 30, 31, 32, 35, 37, 38, 39, 40, 42, 43,
45, 53, 56, 57, 58, 62, 67, 69, 72, 74, 75, 76, 77, 79, 81,
85, 93, 98, 102

Diagnosis of a disease 15, 21, 37, 53, 57, 58, 72, 80, 81, 82, 97
Prevention of a disease 64, 85
Differential diagnosis of a symptom/disease 14, 23, 41, 43, 47, 51, 65, 69, 70, 74, 76, 103
Pathophysiology of a disease 2, 3, 26, 64, 77
Complications of a disease/medication 3, 30, 52, 61, 62, 66, 79
Etiology of a disease 14, 26, 29
Risk factors of a disease 35, 64, 85
Prognosis of a disease 45
Epidemiology of a disease 3
Research of a disease 75
Organisms of a disease 81
Criteria of medication 49, 52, 94
When to perform a medication 33
Preventive healthcare for a type of patients 96

� Query set. The query set consists of 106 queries. Each query contains a patient description,
an information request, and a query ID. We are interested in short and general queries.
Thus, we use the information-request subportion to represent each query. Among the 106
queries, we have identified a total number of 57 queries that are scenario-specific. In
Table 4, we categorize these 57 queries based on the scenario(s) each query mentions.
The corresponding ID of each query is listed in this table. (The full text of each query is
shown in Liu and Chu (2006)). Note that a query mentioning multiple distinct scenarios
will appear multiple times in this table corresponding to its scenarios.

� Relevance judgments. For a given OHSUMED query, a document is either judged by
experts as definitely-relevant (DR), partially-relevant (PR), irrelevant, or not judged at all
(Hersh et al., 1994). In our experiments, we restrict the retrieval to the 14,430 judged
documents only and count both the DR and the PR documents as relevant answers as we
measure the precision-recall of a particular retrieval method.6

The McMaster Clinical HEDGES Database (Montori et al., 2003; Wilczynski et al., 2001;
Wilczynski and Haynes, 2003; Wong et al., 2003). This testbed was originally constructed
for the task of medical document classification instead of free-text query answering. As a
result, adaptation is needed for our study. We will first describe the original dataset, and then
explain how we adapted it to make it a usable testbed for our experimental evaluation.

� Original dataset. The McMaster Clinical HEDGES Database contains 48,000 PubMed
articles published in 2000. Each article was classified into the following scenario categories:
treatment, diagnosis, etiology, prognosis, clinical prediction guide of a disease, economics
of a healthcare issue, or review of a healthcare topic. Consensus about the classification
was drawn among six human experts (Wilczynski et al., 2001). When the experts classified
each article, they had access to the hardcopies of the full text. However, to construct a

6 Treating both the DR and the PR documents as relevant documents is consistent with the settings in existing
studies (Hersh et al., 1994, 2000).
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testbed for our retrieval system, we were only able to download the title and abstract of
each article from the PubMed system. (The full text of each article is typically unavailable
through PubMed.)

� Construction of scenario-specific queries. Since the McMaster Clinical HEDGES Database
is constructed to test document classification, it does not contain a query set. Using the
following procedure, we constructed a set of 55 scenario-specific queries, and determined
the relevance judgments for these queries based on the document classification that can be
adapted for these queries:

Step 1. We identified all the disease/symptom concepts in the OHSUMED query set. We
identified such concepts based on their semantic type information (defined by UMLS).
We used these concepts as the key concepts in constructing our scenario-specific queries
for the McMaster testbed. In selecting these concepts, we manually filtered out eight
concepts (out of an original number of 90 concepts) that we considered as too general to
make a scenario-specific query, e.g., infection, lesion, and carcinoma. After
this step, we obtained 82 such key concepts.

Step 2. For each key concept identified in Step 1, we constructed four scenario-
specific queries, namely the treatment, diagnosis, etiology, and prog-
nosis of a disease/symptom. For example, for the concept breast cancer, we
constructed the queries breast cancer treatment, breast cancer di-
agnosis, breast cancer etiology, and breast cancer prognosis.
We restricted our study to these four scenarios because our current knowledge source
only covers these four scenarios.

Step 3. For each query generated in Step 2, we generated its relevance judgments by
applying the following simple criterion: A document is considered to be relevant to a
given query if (1) experts have classified the document to the category of the query’s
scenario and (2) the document mentions the query’s key concept. This criterion has
been our best choice to automate the process of generating relevance judgments on
a relatively large scale; however, it may misidentify irrelevant documents as relevant.
After we identified the relevant documents for each query, we further filtered out certain
queries based on the intuition that a query with too few relevance judgments will lead
to less reliable retrieval results (especially in terms of precision/recall). For example,
for a query with only one relevant document, two similar retrieval systems may obtain
completely different precision/recall results if one ranks the relevant document on top,
and another accidentally ranks it out of top-10. To implement this intuition, we filtered
out queries that have less than five relevant documents. After this filtering step, we were
left with 55 queries.

Due to space limitations, we show the 55 McMaster queries together with the scenarios
identified for each query in the extended version of this paper (Liu and Chu, 2006).

4.1.2 VSM and indexing

In Information Retrieval studies, indexing typically refers to the step of converting free-text
documents and queries to representations comprehensible to a query-document similarity
computation model, e.g., the Vector Space Model (VSM) (Salton and McGill, 1983) or a
probabilistic retrieval model (Callan et al., 1992). In our study, we focused on experimental
evaluation using the stem-based VSM (Salton and McGill, 1983), a VSM that is extensively
applied in similar studies.
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Using a stem-based VSM, both a query and a document are represented as vectors of
word stems. Given a piece of free text, we first removed common stop words such as “a,”
“the,” etc., and then derived word stems from the text using the Lovins stemmer (Lovins,
1968). We further applied the t f · id f weighting scheme (more specifically the atc · atc
scheme (Salton and Buckley, 1988)) to assign weights to stems in documents and the query
before expansion. (This weighting process yields the weight for the key concept in Eq. (1)).

Under the stem-based VSM, all terms expanded to a given query need to be in the word-
stem format. Thus, for expansion concepts derived from procedures in Sections 3.2 and
3.3, we applied the following procedure to identify the corresponding word stems: For each
expansion concept, we first looked up its string forms in UMLS. We further removed stop
words and used the Lovins stemmer to convert the string forms into word stems. Lastly, we
assigned weights to these expansion word stems using the method described in Section 3.4.

4.2 Retrieval performance

In the following, we study the performance improvement of knowledge-based expansion
compared to that of statistical expansion. We first study the improvements for selected
expansion sizes, then study the sensitivity of boosting for selected query scenarios.

The retrieval performance is measured using the following three different metrics:

avgp—11-point precision average (precision averaged over the 11 standard recall points
(Salton and McGill, 1983))

p@10—precision in top-10 retrieved documents
p@20—precision in top-20 retrieved documents

4.2.1 Expansion sizes

For a given expansion size s, we used both knowledge-based expansion and statistical
expansion to expand the top-s stems that have the heaviest weights. For knowledge-based
expansion, no weight boosting was applied at this stage.

We compute the three metrics for both methods on the OHSUMED and McMaster
testbeds. We further average the results over the queries in these two testbeds. Table 5 shows
the performance comparison of the two methods on both testbeds, under various metrics.
The first row in each subtable shows the performance of statistical expansion, whereas the
second row shows that of knowledge-based expansion and its percentage of improvement
over statistical expansion.

In these figures, “s = All” means appending all possible expansion terms that have a
nonzero weight (Eq. (2)) into the original query. Using the knowledge-based method, setting
“s = All” led to expanding 1717 terms to each query on average, with standard deviation as
1755; using the statistical method, it led to an average of 50,317 terms and 15,243 being the
standard deviation.

From these experimental results, we observe the following: The performance for
knowledge-based expansion generally increases as s increases and usually reaches the peak
when s = All. (The only exception is in the case of using the avgp metric on the McMaster
testbed, in which the performance of the knowledge-based method roughly remains stable
as s increases.) However, the performance of the statistical method degrades as s becomes
larger. On the OHSUMED testbed, its performance degrades after s = 100 (Table 5(a)) or
s = 200 (Table 5(b) and (c)); on the McMaster testbed, the performance starts degrading
almost immediately after s becomes greater than 20. This is due to the fact that statistical

Springer



Inf Retrieval (2007) 10:173–202 187
Ta

bl
e

5
Pe

rf
or

m
an

ce
co

m
pa

ri
so

n
of

th
e

tw
o

ex
pa

ns
io

n
m

et
ho

ds
un

de
r

va
ri

ou
s

ex
pa

ns
io

n
si

ze
s

s
10

20
30

40
50

10
0

20
0

30
0

A
ll

(a
)

Pe
rf

or
m

an
ce

co
m

pa
ri

so
n

us
in

g
th

e
av

gp
m

et
ri

c
fo

r
th

e
O

H
SU

M
E

D
te

st
be

d
St

at
is

tic
al

ex
pa

ns
io

n
0.

41
7

0.
42

4
0.

42
8

0.
43

0.
42

9
0.

43
2

0.
42

9
0.

43
0.

42
5

K
no

w
le

dg
e-

ba
se

d
ex

pa
ns

io
n

(%
of

im
pr

ov
em

en
t)

0.
42

2
(1

.2
%

)
0.

43
1

(1
.7

%
)

0.
43

0
(0

.5
%

)
0.

43
2

(0
.5

%
)

0.
43

4
(1

.2
%

)
0.

43
8

(1
.4

%
)

0.
44

2
(3

.0
%

)
0.

44
3

(3
.0

%
)

0.
44

5
(4

.7
%

)
(b

)
Pe

rf
or

m
an

ce
co

m
pa

ri
so

n
us

in
g

th
e

p@
10

m
et

ri
c

fo
r

th
e

O
H

SU
M

E
D

te
st

be
d

St
at

is
tic

al
ex

pa
ns

io
n

0.
53

5
0.

54
6

0.
54

9
0.

55
3

0.
55

1
0.

56
7

0.
58

1
0.

57
4

0.
56

7
K

no
w

le
dg

e-
ba

se
d

ex
pa

ns
io

n
(%

of
im

pr
ov

em
en

t)
0.

54
4

(1
.7

%
)

0.
54

7
(0

.2
%

)
0.

55
4

(1
.0

%
)

0.
55

1
(−

0.
4%

)
0.

55
3

(0
.4

%
)

0.
57

2
(0

.9
%

)
0.

57
2

(−
1.

5%
)

0.
57

7
(0

.5
%

)
0.

58
8

(3
.7

%
)

(c
)

Pe
rf

or
m

an
ce

co
m

pa
ri

so
n

us
in

g
th

e
p@

20
m

et
ri

c
fo

r
th

e
O

H
SU

M
E

D
te

st
be

d
St

at
is

tic
al

ex
pa

ns
io

n
0.

48
2

0.
49

1
0.

49
3

0.
49

1
0.

49
2

0.
49

6
0.

49
7

0.
49

3
0.

49
6

K
no

w
le

dg
e-

ba
se

d
ex

pa
ns

io
n

(%
of

im
pr

ov
em

en
t)

0.
48

3
(0

.2
%

)
0.

49
1

(0
%

)
0.

49
4

(0
.2

%
)

0.
49

6
(1

%
)

0.
49

3
(0

.2
%

)
0.

49
8

(0
.4

%
)

0.
49

6
(−

0.
2%

)
0.

49
7

(0
.8

%
)

0.
49

8
(0

.4
%

)
(d

)
Pe

rf
or

m
an

ce
co

m
pa

ri
so

n
us

in
g

th
e

av
gp

m
et

ri
e

fo
r

th
e

M
cM

as
te

r
te

st
be

d
St

at
is

tic
al

ex
pa

ns
io

n
0.

32
6

0.
32

8
0.

32
5

0.
32

4
0.

32
3

0.
31

9
0.

31
1

0.
30

9
0.

29
5

K
no

w
le

dg
e-

ba
se

d
ex

pa
ns

io
n

(%
of

im
pr

ov
em

en
t)

0.
32

5
(−

0.
1%

)
0.

32
8

(0
.1

%
)

0.
32

4
(−

0.
3%

)
0.

32
6

(0
.8

%
)

0.
32

5
(0

.4
%

)
0.

32
4

(1
.4

%
)

0.
32

1
(3

.3
%

)
0.

32
(3

.4
%

)
0.

32
1

(9
%

)
(e

)
Pe

rf
or

m
an

ce
co

m
pa

ri
so

n
us

in
g

th
e

p@
10

m
et

ri
c

fo
r

th
e

M
cM

as
te

r
te

st
be

d
St

at
is

tic
al

ex
pa

ns
io

n
0.

31
6

0.
32

4
0.

32
4

0.
31

8
0.

32
4

0.
31

1
0.

29
5

0.
3

0.
29

3
K

no
w

le
dg

e-
ba

se
d

ex
pa

ns
io

n
(%

of
im

pr
ov

em
en

t)
0.

32
2

(1
.7

%
)

0.
32

4
(0

%
)

0.
32

2
(−

0.
6%

)
0.

32
5

(2
.3

%
)

0.
32

2
(−

0.
6%

)
0.

31
8

(2
.3

%
)

0.
31

5
(6

.8
%

)
0.

32
(6

.7
%

)
0.

33
5

(1
4.

3%
)

(f
)

Pe
rf

or
m

an
ce

co
m

pa
ri

so
n

us
in

g
th

e
p@

20
m

et
ri

c
fo

r
th

e
M

cM
as

te
r

te
st

be
d

St
at

is
tic

al
ex

pa
ns

io
n

0.
28

5
0.

28
5

0.
28

5
0.

28
3

0.
28

3
0.

28
1

0.
27

9
0.

27
8

0.
27

9
K

no
w

le
dg

e-
ba

se
d

ex
pa

ns
io

n
(%

of
im

pr
ov

em
en

t)
0.

28
5

(0
.3

%
)

0.
28

7
(0

.6
%

)
0.

28
7

(1
%

)
0.

29
1

(2
.9

%
)

0.
29

(2
.6

%
)

0.
29

3
(4

.2
%

)
0.

28
6

(2
.6

%
)

0.
29

1
(4

.6
%

)
0.

29
2

(4
.6

%
)

Springer



188 Inf Retrieval (2007) 10:173–202

expansion does not distinguish between expansion terms that are scenario-specific and those
that are not. As a result, as more terms are appended to the original query, the negative
effect of including those non-scenario-specific terms begins to accumulate and after a certain
point, the performance drops. In contrast, the knowledge-based method appends scenario-
specific terms only, and consequently, the performance of the knowledge-based method
keeps increasing as more “useful” terms are appended.

We have also compared the statistical expansion method with no expansion, to understand
the general effectiveness of query expansion on the scenario-specific queries we chose. Due
to space limit, we have not included the result of this comparison. In general, statistical
expansion consistently outperforms the no-expansion method by more than 5%, which
represents a significant improvement. In other words, the method of statistical expansion
that we are comparing against already generates reasonably good retrieval results.)

4.2.2 The effectiveness of weight boosting

In the next experiments, we multiplied a boosting factor to the weights of knowledge-based
expansion terms (Eq. (2)). The boosting factor β is computed using Eq. (5), under the different
settings of α = 0.25, 0.5, 0.75, 1, 1.25, 1.5. Tables 6–11 show the effects of different boosting
amounts on the performance for knowledge-based query expansion, under the three metrics
and for the two testbeds. Each cell in these tables shows (1) the performance of knowledge-
based expansion and (2) the percentage of improvement of knowledge-based expansion over
statistical expansion under the same expansion size. In these tables, the thick-bordered cells
represent the best performance for that column (i.e., under the same setting of expansion
size); shaded cells represent the best performance for that row (i.e., under the same setting
of boosting factor). The best performance in the entire table is highlighted in the shaded and
thick-bordered cell.

The following observations can be made from these results:

Table 6 Weight boosting for the OHSUMED testbed, measured by avgp

s
α 10 20 30 40 50 100 200 300 All

0 (no
boosting)

0.422
(1.2%)

0.431
(1.7%)

0.430
(0.5%)

0.432
(0.5%)

0.434
(1.2%)

0.438
(1.4%)

0.442
(3.0%)

0.443
(3.0%)

0.445
(4.7%)

0.25 0.425
(1.9%)

0.436
(2.8%)

0.435
(1.6%)

0.436
(1.4%)

0.439
(2.3%)

0.443
(2.5%)

0.445
(3.7%)

0.448
(4.2%)

0.450
(5.9%)

0.5 0.426
(2.2%)

0.435
(2.6%)

0.438
(2.3%)

0.439
(2.1%)

0.440
(2.6%)

0.444
(2.8%)

0.447
(4.2%)

0.450
(4.7%)

0.451
(6.1%)

0.75 0.428
(2.6%)

0.436
(2.8%)

0.437
(2.1%)

0.439
(2.1%)

0.440
(2.6%)

0.444
(2.8%)

0.447
(4.2%)

0.450
(4.7%)

0.450
(5.9%)

1 0.428
(2.6%)

0.436
(2.8%)

0.437
(2.1%)

0.437
(1.6%)

0.439
(2.3%)

0.443
(2.5%)

0.446
(4%)

0.450
(4.7%)

0.452
(6.4%)

1.25 0.426
(2.2%)

0.436
(2.8%)

0.435
(1.6%)

0.437
(1.6%)

0.439
(2.3%)

0.442
(2.3%)

0.445
(3.7%)

0.449
(4.4%)

0.450
(5.9%)

1.5 0.425
(1.9%)

0.435
(2.6%)

0.434
(1.4%)

0.436
(1.4%)

0.439
(2.3%)

0.439
(1.6%)

0.443
(3.3%)

0.445
(3.5%)

0.447
(5.2%)
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Table 7 Weight boosting for the OHSUMED testbed, measured by p@10

s
α 10 20 30 40 50 100 200 300 All

0 (no
boosting)

0.544
(1.7%)

0.547
(0.2%)

0.554
(1.0%)

0.551
( − 0.4%)

0.553
(0.4%)

0.572
(0.9%)

0.572
( − 1.5%)

0.577
(0.5%)

0.588
(3.7%)

0.25 0.549
(2.6%)

0.556
(1.8%)

0.556
(1.3%)

0.558
(0.9%)

0.567
(2.9%)

0.572
(0.9%)

0.577
( − 0.7%)

0.588
(2.4%)

0.595
(4.9%)

0.5 0.549
(2.6%)

0.561
(2.7%)

0.563
(2.6%)

0.565
(2.2%)

0.570
(3.4%)

0.584
(3%)

0.586
(0.9%)

0.593
(3.3%)

0.6
(5.8%)

0.75 0.546
(2.1%)

0.565
(3.5%)

0.561
(2.2%)

0.568
(2.7%)

0.568
(3.1%)

0.589
(3.9%)

0.584
(0.5%)

0.595
(3.7%)

0.596
(5.1%)

1 0.552
(3.2%)

0.567
(3.8%)

0.568
(3.5%)

0.577
(4.3%)

0.577
(4.7%)

0.595
(4.9%)

0.586
(0.9%)

0.595
(3.7%)

0.6
(5.8%)

1.25 0.554
(3.6%)

0.560
(2.6%)

0.567
(3.3%)

0.567
(2.5%)

0.572
(3.8%)

0.582
(2.6%)

0.579
( − 0.3%)

0.591
(3%)

0.593
(4.6%)

1.5 0.558
(4.3%)

0.558
(2.2%)

0.570
(3.8%)

0.570
(3.1%)

0.574
(4.2%)

0.581
(2.5%)

0.577
( − 0.7%)

0.588
(2.4%)

0.584
(3%)

Table 8 Weight boosting for the OHSUMED testbed, measured by p@20

s
α 10 20 30 40 50 100 200 300 All

0 (no
boosting)

0.483
(0.2%)

0.491
(0%)

0.494
(0.2%)

0.496
(1%)

0.493
(0.2%)

0.498
(0.4%)

0.496
( − 0.2%)

0.497
(0.8%)

0.498
(0.4%)

0.25 0.486
(0.8%)

0.496
(1%)

0.494
(0.2%)

0.499
(1.6%)

0.496
(0.8%)

0.503
(1.4%)

0.502
(1%)

0.503
(2%)

0.502
(1.2%)

0.5 0.486
(0.8%)

0.499
(1.6%)

0.499
(1.2%)

0.503
(2.4%)

0.502
(2%)

0.509
(2.6%)

0.509
(2.4%)

0.511
(3.7%)

0.511
(3%)

0.75 0.487
(1%)

0.496
(1%)

0.499
(1.2%)

0.509
(3.7%)

0.507
(3%)

0.510
(2.8%)

0.512
(3%)

0.510
(3.4%)

0.511
(3%)

1 0.483
(0.2%)

0.498
(1.4%)

0.501
(1.6%)

0.509
(3.7%)

0.507
(3%)

0.511
(3%)

0.517
(4%)

0.512
(3.9%)

0.510
(2.8%)

1.25 0.482
(0%)

0.496
(1%)

0.498
(1%)

0.510
(3.9%)

0.509
(3.5%)

0.514
(3.6%)

0.514
(3.4%)

0.513
(4.1%)

0.511
(3%)

1.5 0.487
(1%)

0.492
(0.2%)

0.498
(1%)

0.508
(3.5%)

0.504
(3.4%)

0.513
(3.4%)

0.513
(3.2%)

0.511
(3.7%)

0.507
(2.2%)

� For the OHSUMED testbed, the best performance within each column (the thick-bordered
cells) generally falls in the range from α = 0.5 to α = 1.25. This indicates that boosting
helps improve the performance of knowledge-based expansion. In particular, boosting
introduces significant improvements under the metrics of p@10 and p@20. We note that
setting α = 0.5 or 0.75 generally yields the best boosting effect for the avgp metric; setting
α = 1 or 1.25 yields better performances for the p@10 and p@20 metrics.

� For the McMaster testbed, however, boosting seems to be less effective: The best perfor-
mance within each column falls in the range from α = 0 to α = 0.75.

� For both testbeds, if we fix the boosting factor, the best performance within each row (the
shaded cells) is generally achieved by having an expansion size s as large as possible (with
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Table 9 Weight boosting for the McMaster testbed, measured by avgp

s

α 10 20 30 40 50 100 200 300 All

0 (no
boosting)

0.325
( − 0.1%)

0.328
(0.1%)

0.324
(-0.3%)

0.326
(0.8%)

0.325
(0.4%)

0.324
(1.4%)

0.321
(3.3%)

0.32
(3.4%)

0.321
(9%)

0.25 0.325
( − 0.3%)

0.326
( − 0.5%)

0.324
( − 0.5%)

0.325
(0.3%)

0.323
( − 0.2%)

0.322
(1%)

0.32
(2.7%)

0.315
(1.9%)

0.318
(8%)

0.5 0.324
( − 0.5%)

0.326
( − 0.8%)

0.321
( − 1.2%)

0.323
( − 0.3%)

0.319
( − 1.3%)

0.321
(0.5%)

0.316
(1.7%)

0.313
(1.2%)

0.314
(6.5%)

0.75 0.326
(0.1%)

0.321
( − 2.1%)

0.321
( − 1.5%)

0.321
( − 0.7%)

0.319
( − 1.4%)

0.318
( − 0.4%)

0.315
(1.2%)

0.311
(0.8%)

0.311
(5.5%)

1 0.323
( − 0.7%)

0.32
( − 2.6%)

0.317
( − 2.6%)

0.317
( − 2%)

0.317
( − 1.9%)

0.315
( − 1.4%)

0.312
(0.4%)

0.311
(0.6%)

0.31
(5.2%)

1.25 0.321
( − 1.3%)

0.318
( − 3%)

0.316
( − 2.8%)

0.318
( − 1.8%)

0.315
( − 2.5%)

0.313
( − 2%)

0.311
(0%)

0.309
(0%)

0.309
(5%)

1.5 0.317
( − 2.5%)

0.315
( − 3.9%)

0.314
( − 3.5%)

0.316
( − 2.5%)

0.313
( − 3.3%)

0.311
( − 2.6%)

0.308
( − 0.9%)

0.307
( − 0.6%)

0.306
(3.8%)

Table 10 Weight boosting for the McMaster testbed, measured by p@10

s

α 10 20 30 40 50 100 200 300 All

0 (no
boosting)

0.322
(1.7%)

0.324
(0%)

0.322
( − 0.6%)

0.325
(2.3%)

0.322
( − 0.6%)

0.318
(2.3%)

0.315
(6.8%)

0.32
(6.7%)

0.335
(14.3%)

0.25 0.32
(1.1%)

0.322
( − 0.6%)

0.318
( − 1.7%)

0.322
(1.1%)

0.32
(–1.1%)

0.315
(1.2%)

0.316
(7.4%)

0.313
(4.2%)

0.324
(10.6%)

0.5 0.322
(1.7%)

0.329
(1.7%)

0.32
(–1.1%)

0.32
(0.6%)

0.318
( − 1.7%)

0.318
(2.3%)

0.313
(6.2%)

0.311
(3.6%)

0.318
(8.7%)

0.75 0.318
(0.6%)

0.324
(0%)

0.316
( − 2.2%)

0.307
( − 3.4%)

0.313
( − 3.4%)

0.313
(0.6%)

0.307
(4.3%)

0.315
(4.8%)

0.32
(9.3%)

1 0.318
(0.6%)

0.322
( − 0.6%)

0.311
( − 3.9%)

0.305
( − 4%)

0.313
( − 3.4%)

0.315
(1.2%)

0.316
(7.4%)

0.32
(6.7%)

0.32
(9.3%)

1.25 0.316
(0%)

0.32
( − 1.1%)

0.313
( − 3.4%)

0.311
( − 2.3%)

0.315
( − 2.8%)

0.315
(1.2%)

0.311
(5.6%)

0.315
(4.8%)

0.322
(9.9%)

1.5 0.318
(0.6%)

0.318
( − 1.7%)

0.305
( − 5.6%)

0.311
( − 2.3%)

0.315
( − 2.8%)

0.311
(0%)

0.313
(6.2%)

0.315
(4.8%)

0.325
(11.2%)

the exception case of the avgp metric measured on McMaster). This is consistent with the
reported results in the previous experiments.

4.2.3 Sensitivity of performance improvements with query scenarios

We now study how knowledge-based expansion performs for different query scenarios.
For the OHSUMED testbed, we grouped the 57 queries according to their scenarios, and
further selected the five largest groups of scenarios, namely treatment, diagnosis,
pathophysiology of a disease, differential diagnosis of a symptom/disease,
andcomplications of a disease/medication. We skipped the remaining scenarios because
each of these scenarios has too few queries to derive reliable statistics. (The number of queries
that belong to each scenario can be easily counted from Table 4.) Similarly, we grouped the
55 McMaster queries based on the four scenarios they belong to: namely treatment,
diagnosis, etiology, and prognosis of a disease.
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Table 11 Weight boosting for the McMaster testbed, measured by p@20

s

α 10 20 30 40 50 100 200 300 All

0 (no
boosting)

0.285
(0.3%)

0.287
(0.6%)

0.287
(1%)

0.291
(2.9%)

0.29
(2.6%)

0.293
(4.2%)

0.286
(2.6%)

0.291
(4.6%)

0.292
(4.6%)

0.25 0.285
(0.3%)

0.289
(1.3%)

0.287
(1%)

0.287
(1.6%)

0.289
(2.3%)

0.289
(2.9%)

0.285
(2%)

0.287
(3.3%)

0.289
(3.6%)

0.5 0.285
(0.3%)

0.288
(1%)

0.288
(1.3%)

0.286
(1.3%)

0.29
(2.6%)

0.287
(2.3%)

0.285
(2%)

0.288
(3.6%)

0.288
(3.3%)

0.75 0.29
(1.9%)

0.285
(0%)

0.288
(1.3%)

0.285
(0.6%)

0.293
(3.5%)

0.286
(1.9%)

0.287
(2.9%)

0.288
(3.6%)

0.285
(2.3%)

1 0.287
(1%)

0.287
(0.6%)

0.285
(0.3%)

0.282
( − 0.3%)

0.293
(3.5%)

0.288
(2.6%)

0.286
(2.6%)

0.285
(2.3%)

0.285
(2.3%)

1.25 0.287
(1%)

0.286
(0.3%)

0.285
(0.3%)

0.285
(0.6%)

0.291
(2.9%)

0.288
(2.6%)

0.281
(0.7%)

0.284
(2%)

0.288
(3.3%)

1.5 0.284
( − 0.3%)

0.284
( − 0.6%)

0.286
(0.6%)

0.283
(0%)

0.293
(3.5%)

0.289
(2.9%)

0.285
(2%)

0.285
(2.3%)

0.289
(3.6%)

We average the performance of knowledge-based expansion within each group of queries
and show the avgp, p@10 and p@20 results in Tables 12–14. Each cell in these tables
shows (1) the performance of knowledge-based expansion averaged over the corresponding
group of queries, under the corresponding boosting setting (α), and (2) the percentage
of improvement of knowledge-based expansion over statistical expansion under the same
settings. For example, the shaded cell in Table 12 shows that among the 35 treatment
OHSUMED queries, under the boosting setting of α = 0.75, knowledge-based expansion
achieves an average avgp of 0.474. This represents a 6.0% improvement over the statistical
method measured within the same group of queries.

To derive the results in Tables 12–14, we set the expansion size s = All, All, and 200,
respectively; for the results in Tables 15–17, we set the expansion size s = 20, All, and 50.
Such settings are based on our observations in the previous subsection where the knowledge-
based method tends to perform the best with these expansion sizes under the corresponding
evaluation metrics.

Table 12 Performance improvements for selected scenarios measured by avgp for the OHSUMED testbed.
Expansion size s = All

Scenario
Differential Complication

Treatment of a diagnosis of a Diagnosis of a of a disease/ Pathophysiology
α disease symptom/disease disease medication of a disease

0 0.465 (3.9%) 0.444 (9.4%) 0.464 (7.5%) 0.466 (2.4%) 0.564 (0.5%)

0.25 0.470 (5.2%) 0.444 (9.4%) 0.470 (9.0%) 0.470 (3.1%) 0.569 (1.4%)

0.5 0.474 (5.9%) 0.439 (8.0%) 0.472 (9.4%) 0.470 (3.2%) 0.571 (1.8%)

0.75 0.474 (6.0%) 0.434 (6.8%) 0.473 (9.7%) 0.464 (2.0%) 0.573 (2.3%)

1 0.474 (5.9%) 0.438 (7.9%) 0.474 (9.8%) 0.466 (2.4%) 0.580 (3.4%)

1.25 0.472 (5.4%) 0.433 (6.6%) 0.480 (11%) 0.470 (3.1%) 0.579 (3.3%)

1.5 0.466 (4.2%) 0.431 (6.1%) 0.475 (9.9%) 0.467 (2.6%) 0.579 (3.3%)
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Table 13 Performance improvements for selected scenarios measured by p@10 for the OHSUMED testbed.
Expansion size s = All

Scenario
Differential Complication

Treatment of a diagnosis of a Diagnosis of a of a disease/ Pathophysiology
α disease symptom/disease disease medication of a disease

0 0.597 (4.0%) 0.586 (6.5%) 0.622 (3.7%) 0.550 ( − 2.0%) 0.720 ( − 2.7%)
0.25 0.609 (6.0%) 0.586 (6.5%) 0.633 (5.6%) 0.575 (2.2%) 0.720 ( − 2.7%)

0.5 0.611 (6.5%) 0.539 (7.8%) 0.633 (5.6%) 0.575 (2.2%) 0.740 (0.0%)

0.75 0.603 (5.0%) 0.586 (6.5%) 0.633 (5.6%) 0.563 (0.0%) 0.740 (0.0%)

1 0.606 (5.5%) 0.614 (11.7%) 0.644 (7.4%) 0.563 (0.0%) 0.720 ( − 2.7%)

1.25 0.597 (4.0%) 0.614 (11.7%) 0.656 (9.3%) 0.575 (2.2%) 0.720 ( − 2.7%)

1.5 0.586 (2.0%) 0.593 (7.8%) 0.644 (7.4%) 0.575 (2.2%) 0.740 (0.0%)

Table 14 Performance improvements for selected scenarios measured by p@20 for the OHSUMED testbed.
Expansion size s = 200

Scenario
Differential Complication

Treatment of a diagnosis of a Diagnosis of a of a disease/ Pathophysiology
α disease symptom/disease disease medication of a disease

0 0.497 ( − 0.3%) 0.500 (1.4%) 0.517 ( − 1.1%) 0.525 ( − 2.3%) 0.720 (0.0%)

0.25 0.506 (1.4%) 0.500 (1.4%) 0.539 (3.2%) 0.531 ( − 1.2%) 0.710 ( − 1.4%)
0.5 0.514 (3.2%) 0.500 (1.4%) 0.539 (3.2%) 0.538 (0.0%) 0.710 ( − 1.4%)
0.75 0.520 (4.3%) 0.500 (1.4%) 0.550 (5.3%) 0.538 (0.0%) 0.700 ( − 2.8%)

1 0.523 (4.9%) 0.507 (2.9%) 0.572 (9.6%) 0.544 (1.2%) 0.700 ( − 2.8%)

1.25 0.519 (4.0%) 0.507 (2.9%) 0.550 (5.3%) 0.544 (1.2%) 0.700 ( − 2.8%)
1.5 0.516 (3.4%) 0.507 (2.9%) 0.544 (4.3%) 0.544 (1.2%) 0.700 ( − 2.8%)

Table 15 Performance improvements for selected scenarios measured by avgp for the McMaster testbed.
Expansion size s = 20

Scenario
α Treatment of a disease Diagnosis of a disease Etiology of a disease Prognosis of a disease

0 0.49 (–0.6%) 0.145 (3.9%) 0.324 (0.9%) 0.229 ( − 0.4%)

0.25 0.488 ( − 1%) 0.145 (3.8%) 0.319 ( − 0.7%) 0.23 ( − 0.1%)
0.5 0.486 ( − 1.4%) 0.143 (2.8%) 0.318 ( − 1%) 0.231 (0.1%)
0.75 0.484 ( − 1.9%) 0.143 (2.5%) 0.307 ( − 4.4%) 0.231 (0.2%)
1 0.48 ( − 2.7%) 0.142 (2.1%) 0.304 ( − 5.2%) 0.232 (0.6%)

1.25 0.477 ( − 3.3%) 0.142 (2%) 0.3 ( − 6.3%) 0.235 (1.8%)

1.5 0.47 ( − 4.7%) 0.142 (1.5%) 0.298 ( − 7.1%) 0.234 (1.7%)

These results generally suggest that knowledge-based expansion performs differently
for queries with different scenarios. More specifically, the method yields more im-
provements in scenarios such as treatment, differential diagnosis, and
diagnosis, whereas it yields less improvements in such scenarios as complication,
pathophysiology, etiology, and prognosis. An explanation lies in the different
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Table 16 Performance improvements for selected scenarios measured by p@10 for the McMaster testbed.
Expansion size s = All

Scenario
α Treatment of a disease Diagnosis of a disease Etiology of a disease Prognosis of a disease

0 0.482 (26.2%) 0.129 (12.5%) 0.324 (5.8%) 0.271 (5.6%)

0.25 0.465 (21.5%) 0.129 (12.5%) 0.318 (3.8%) 0.257 (0%)
0.5 0.447 (16.9%) 0.114 (0%) 0.324 (5.8%) 0.257 (0%)

0.75 0.441 (15.4%) 0.143 (25%) 0.318 (3.8%) 0.264 (2.8%)

1 0.441 (15.4%) 0.143 (25%) 0.318 (3.8%) 0.264 (2.8%)
1.25 0.435 (13.8%) 0.143 (25%) 0.318 (3.8%) 0.279 (8.3%)

1.5 0.441 (15.4%) 0.143 (25%) 0.318 (3.8%) 0.286 (11.1%)

Table 17 Performance improvements for selected scenarios measured by p@20 for the McMaster testbed.
Expansion size s = 50

Scenario
α Treatment of a disease Diagnosis of a disease Etiology of a disease Prognosis of a disease

0 0.462 (3.3%) 0.1 (7.7%) 0.282 (2.1%) 0.186 (0%)

0.25 0.462 (3.3%) 0.107 (15.4%) 0.276 (0%) 0.186 (0%)
0.5 0.462 (3.3%) 0.114 (23.1%) 0.276 (0%) 0.186 (0%)

0.75 0.468 (4.6%) 0.121 (30.8%) 0.271 ( − 2.1%) 0.193 (3.8%)

1 0.471 (5.3%) 0.114 (23.1%) 0.268 ( − 3.2%) 0.196 (5.8%)

1.25 0.462 (3.3%) 0.114 (23.1%) 0.268 ( − 3.2%) 0.2 (7.7%)

1.5 0.468 (4.6%) 0.114 (23.1%) 0.265 ( − 4.3%) 0.204 (9.6%)

knowledge structures for these scenarios. The knowledge structures (i.e., the fragments
of UMLS Semantic Network such as Fig. 2) for the latter four scenarios were originally
missing in UMLS and were acquired by ourselves from experts. (We will further present
the details of this knowledge acquisition process in Section 5.) These acquired structures
have more semantic types marked as relevant than those for the former three scenarios.
As a result, when handling queries with the latter four scenarios, the knowledge-based
method keeps more concepts during the filtering step. Thus, the expansion result for the
knowledge-based method resembles that of the statistical expansion method, leading to
almost equivalent performance between the two methods and less improvements. We believe
that a refined clustering and ranking of the knowledge structures for the four scenarios (i.e.,
complication, pathophysiology, etiology, and prognosis) will increase
the improvements in retrieval performance.

4.3 Discussion of results

4.3.1 Choice of α for weight boosting

Our experimental results from Tables 6–11 suggest that weight boosting is helpful in im-
proving retrieval performance. Further, the results shown in Tables 12–17 suggest that the
performance of weight boosting is sensitive to the query scenario. Certain query scenar-
ios such as treatment and diagnosis are associated with more compact knowledge

Springer



194 Inf Retrieval (2007) 10:173–202

structures, which lead to significantly less expansion concepts using our knowledge-based
method compared to those by statistical expansion. In these scenarios, setting α between
0.75 and 1.25, which represents more aggressive weight boosting, achieves noticeable im-
provements. In other scenarios associated with less compact knowledge structures, e.g.,
complication, the difference is insignificant between the set of expansion concepts by
our method and those by statistical expansion. As a result, the cumulative weights of the two
sets of expansion concepts are close to each other. For such scenarios, our experimental data
suggests a more conservative weight boosting with α ∈ [0, 0.5].

4.3.2 Comparison with previous knowledge-based query expansion studies

Our research differs from most knowledge-based query expansion studies (Hersh et al., 2000;
Guo et al., 2004; Plovnick and Zeng, 2004) in the baseline method used for comparison.
Most existing studies only compare against a baseline generated by no query expansion. Such
studies expand the synonyms, hypernyms, and hyponyms of the original query concepts, and
usually report an insignificant improvement (Guo et al., 2004) or even degrading performance
(Hersh et al., 2000) compared to the no expansion method. In contrast, our study compares
against statistical expansion which, in our experimental setup, has an observed improvement
over no expansion by at least 5%.

In Aronson and Rindflesch’s study (Aronson and Rindflesch, 1997), the researchers
applied the UMLS Metathesaurus to automatically expand synonyms to the original query.
In one particular setup, their approach achieved a 5% improvement over a previous study
(Srinivasan, 1996) which applied statistical expansion on the same testbed. This result
indicates the value of human knowledge in query expansion, and generally aligns with the
observation in our experiments. We note that the difference between their research and ours
is that their approach is limited to expanding synonyms only, and is not scenario-specific as
we have presented in Section 1.

5 Knowledge acquisition

The quality of our knowledge-based method largely depends upon the quality and com-
pleteness of the domain-specific knowledge source. The knowledge structure in the UMLS
knowledge base is not specifically designed for scenario-specific retrieval. As a result, we
discovered some frequently asked scenarios (e.g., etiology or complications of a
disease) that are either undefined in UMLS, or defined but with incomplete knowledge.
Therefore, we developed a methodology to acquire knowledge and to supplement the UMLS
knowledge source. The methodology consists of the following two steps:

1. Acquire knowledge for undefined scenarios to supplement the UMLS knowledge source.
2. Refine the knowledge of the scenarios defined in the UMLS knowledge source (including

the knowledge supplemented by Step 1).

5.1 Knowledge acquisition methodology

5.1.1 Knowledge acquisition for undefined scenarios

For an undefined scenario, we present to medical experts an incomplete relationship graph
as shown in Fig. 4. Edges in this relationship graph are labeled with one of the undefined
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Disease or 
Syndrome

Semanti c Type

??? ??????

is_etiology_o f

is_etiology_o f
is_etiology_o f

Fig. 4 A sample template to acquire knowledge for previously undefined scenarios

scenarios, e.g., “etiology.” The experts will fill in the question marks with existing UMLS
semantic types that fit the relationship. For example, because viruses are related to the etiology
of a wide variety of diseases, the semantic type “Virus” will replace one of the question marks
in Fig. 4. This new relationship graph (etiology of diseases) will be appended to the UMLS
Semantic Network, and can be used for queries with the “etiology” scenario.

5.1.2 Knowledge refinement through relevance judgments

A relationship graph for a given scenario (either previously defined by UMLS or newly
acquired from Step 1) may be incomplete in including all relevant Semantic Types. A hypo-
thetical example of this incompleteness would be the missing relationship treats between
Therapeutic or Preventive Procedure and Disease or Syndrome. Our
basic idea in amending this incompleteness is to explore the “implicit” knowledge embedded
in the relevance judgments of a standard IR testbed. Such a test-bed typically provides a
set of benchmark queries and for each query, a prespecified set of relevant documents. To
amend the knowledge structure for a certain scenario, e.g., treatment, we focus on sample
queries that are specific to this scenario, e.g., keratoconus treatment. We then study
the content of documents that are marked as relevant to these queries. From the content, we
can identify concepts that are directly relevant to the query’s scenario, e.g., treatment.
If the semantic type for those concepts are missing in the knowledge structure, we can then
refine the knowledge structure by adding the corresponding semantic types. For example, let
us consider a hypothetical case where the type Therapeutic or Preventive Pro-
cedure is missing in the knowledge structure of Fig. 2. If by studying the sample query
keratoconus treatment, we identify quite a few “Therapeutic or Preven-
tive Procedure” concepts appearing in relevant documents such as penetrating
keratoplasty and epikeratoplasty, we are then able to identify Therapeutic
or Preventive Procedure as a relevant semantic type and append it to Fig. 2.

Given that a typical benchmark query has a long list of relevant documents, it is labor-
intensive to study the content of every relevant document. One way to accelerate this process
is to first apply an incomplete knowledge structure to perform knowledge-based query ex-
pansion and perform retrieval tests based on such expansion. An incomplete knowledge
structure leads to an “imperfect” query expansion, which, in turn, fails to retrieve certain
relevant documents to the top of the ranked list. Comparing this ranked list with the gold stan-
dard and identifying the missing relevant documents will give us pointers to determine the
incomplete knowledge. For example, failure to includeTherapeutic or Preventive
Procedure in the knowledge structure in Fig. 2 prevents us from expanding concepts such
as penetrating keratoplasty to the sample query of keratoconus, treat-
ment. As a result, documents with a focus on penetrating keratoplasty will be
ranked unfavorably low. After we identify such documents, we can discover the missing
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expansion concepts contributing to the low rankings and refine the knowledge structure as
we have just described.

5.2 Knowledge acquisition process

We chose the 57 scenario-specific queries (Table 4) in the OHSUMED testbed to apply our
proposed knowledge-acquisition method because of the following considerations:

� The OHSUMED queries are collected from physicians treating patients in a clinical setting.
Therefore, the OHSUMED query scenarios should be representative in healthcare, and the
knowledge acquired from these scenarios should be broadly applicable.

� The knowledge-acquisition methodology also requires exploring relevance judgments for
a set of benchmark queries. OHSUMED is the largest testbed for medical free-text retrieval
that has relevance judgments for knowledge refinement.

We have identified 12 OHSUMED scenarios whose knowledge structures are missing in
UMLS. We applied the two-step knowledge-acquisition method to acquire the knowledge
structures for these 12 undefined scenarios and to refine the knowledge structures for all
scenarios. During the first step of the acquisition process, we interviewed two intern doctors
with M.D. degrees at the UCLA School of Medicine. During the interview, we first described
the meaning of the relationship graphs as seen in Fig. 4. Afterwards, we presented the entire
list of UMLS semantic types to the experts so that appropriate semantic types were filled
into the question marks. We communicated the results from one expert to another until they
reached a consensus for each scenario. For the second step of knowledge acquisition, we
performed retrieval tests on the OHSUMED testbed using both queries expanded by the
knowledge-based method and the method of expanding all statistically-related concepts.
We focused on 12 queries where the statistical method outperforms the knowledge-based
method in terms of the precision in top-10 results. We further applied the method presented
in the previous section to study the content of these top-ranked documents and augmented
the knowledge structure for the corresponding scenario with appropriate semantic types.

5.3 Knowledge acquisition results

The acquisition results are shown in Table 18. Due to space constraints, we only provide a
statistical summary of the results. The Appendix presents the results in full detail.

The scenarios in the first three rows, i.e., treatment, diagnosis, and preven-
tion, are originally defined by UMLS. The first column in these rows shows the number
of semantic types marked as relevant for each scenario (i.e., the number of semantic types
that experts have filled into the blank rectangles of Fig. 4). The second column for these
rows is “N/A” because there was no need to acquire knowledge structure from domain
experts for these scenarios. The third column shows the number of semantic types added
during knowledge refinement (the second step of knowledge acquisition). For example, for
the diagnosis scenario, two additional semantic types, Laboratory or Test Re-
sult and Biologically Active Substance were added because of the study on
Query # 97: Iron deficiency anemia, which test is the best. These
two semantic types were added because the absence of these two types has prevented the
knowledge-based method from expanding two critical concepts into the original query:
serum ferritin and Fe iron, each belonging to one of the two semantic types. From
the relevance judgment set, we noted that missing these two concepts leads to the low ranking
of three relevant documents that heavily use these two concepts.
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Table 18 Knowledge acquisition results

# of additional Total # of
# of semantic # of semantic semantic types semantic types
types defined in types acquired through knowledge after knowledge

Scenarios UMLS from experts refinement aequisition

Treatment of a disease 3 N/A 1 4
Diagnosis of a disease 5 N/A 2 7
Prevention of a disease 1 N/A 0 3

Differential diagnosis of a
symptom/disease

N/A 10 4 14

Etiology of a disease N/A 40 1 41
Risk factors of a disease N/A 40 2 42
Complications of a

disease/medication
N/A 15 0 15

Pathophysiology of a
disease

N/A 56 0 56

Prognosis of a disease N/A 15 2 17
Epidemiology of a disease N/A 13 0 13
Research of a disease N/A 28 0 28
Organisms of a disease N/A 7 0 7
Criteria of medication N/A 26 0 26
When to perform a

medication
N/A 5 6 11

Preventive healthcare for
a type of patients

N/A 10 2 12

Starting from the fourth row, we list the scenarios for which we need to acquire knowledge
structure from domain experts. The first column for these scenarios is “N/A” because these
scenarios are originally undefined in UMLS. The second column shows the number of
semantic types that experts have filled into the structure template of Fig. 4. The third column
shows the number of additional semantic types from knowledge refinement (the second step
of knowledge acquisition), and the last column shows the total number of semantic types
after knowledge acquisition.

The proposed knowledge-acquisition method on the OHSUMED testbed has shown to
be efficient and effective. We finished communicating with domain experts to acquire the
knowledge structures for the 12 scenarios in less than 20 h, and spent an additional 20 h
to refine the knowledge structure by exploring the relevance judgments. We applied the
augmented knowledge source in our knowledge-based query expansion experiments. The
augmented knowledge was shown to be effective in helping improve the retrieval performance
of the knowledge-based method over the statistical expansion method.

6 Study of the relevancy of expansion concepts by domain experts

Through experiments on the two standard medical text retrieval testbeds, we have observed
that under most retrieval settings knowledge-based query expansion outperforms statistical
expansion. Our conjecture is that knowledge-based query expansion selects more specific
expansion concepts to the original query’s scenario than statistical expansion does. To ver-
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ify this conjecture, we have asked domain experts to manually evaluate the relevancy of
expansion concepts.

The basic idea for this study is the following: For each query in a given retrieval testbed,
we apply the two query expansion methods to generate two sets of expansion concepts. We
then prepare an evaluation form that inquires about the relevancy of each expansion concept
to the original query. In this form, we present the query’s text, and ask domain experts to
judge the relevancy based on the query’s scenario(s). For each concept, we provide four
scales of relevancy: relevant, somewhat relevant, irrelevant, or do not know. A concept will
be marked as somewhat relevant if the concept is indirectly related to the original query or
conditionally relevant in certain clinical cases. We blind the method used to generate each
concept. In doing so, we reduce bias that an expert might have toward a particular method.

To implement this idea, we chose the 57 scenario-specific queries in the OHSUMED
testbed. We applied the two expansion methods and derived 40 expansion concepts from
each method with the highest weights. We presented the evaluation form consisting of these
concepts to three medical experts who are intern doctors at the UCLA School of Medicine.
We asked them to make judgments only on those queries that belong to their area of expertise,
e.g., oncology, urology, etc. On average, each expert judged the expansion concepts for 15
queries. Thus, for each expansion method, we obtained 1600 expansion concepts classified
as one of the four categories.

Figures 5 and 6 present a summary of the results from this human subject study. For the
expansion concepts derived from each method, we summarized the results into a histogram.
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The bins of this histogram are the four scales of relevancy. We note that 56.9% of the
expansion concepts derived by the knowledge-based method are judged as either relevant
or somewhat relevant, whereas only 38.8% of expansion concepts by statistical expansion
are judged similarly. This represents a 46.6% improvement. This result validates that
knowledge-based query expansion derives more relevant expansion concepts to the original
query’s scenario(s) than those by statistical expansion, and thus yields improved retrieval
results for scenario-specific queries.

7 Conclusion

Scenario-specific queries represent a special type of query that is frequently used in medical
free-text retrieval. In this research, we have proposed a knowledge-based query expansion

Table 19 The set of semantic types relevant to each scenario, results acquired by consulting medical experts

Scenario Set of relevant semantic types by consulting experts (IDs only)

Differential diagnosis of a disease T059, T060, T097, T121, T184, T046, T047, T048, T049, T191
Etiology of a disease T004, T005, T006, T007, T009, T031, T073, T074, T075, T103, T104,

T105, T106, T107, T108, T109, T110, T111, T112, T113, T114, T115,
T116, T118, T119, T120, T121, T122, T123, T124, T125, T126, T127,
T128, T129, T130, T131, T167, T168, T192, T053, T054, T055, T047,
T048, T191, T049, T190, T019, T020, T037

Risk factors of a disease T004, T005, T006, T007, T009, T031, T073, T074, T075, T103, T104,
T105, T106, T107, T108, T109, T110, T111, T112, T113, T114, T115,
T116, T118, T119, T120, T121, T122, T123, T124, T125, T126, T127,
T128, T129, T130, T131, T167, T168, T192, T053, T054, T055, T047,
T048, T191, T049, T190, T019, T020, T037

Complications of a
disease/medication

T033, T034, T184, T059, T060, T061, T047, T048, T190, T019, T020,
T054, T055, T080, T081

Pathophysiology of a disease T062, T059, T039, T040, T041, T042, T043, T044, T045, T046, T047,
T048, T191, T049, T050, T018, T021, T023, T024, T025, T026, T028,
T190, T019, T020, T109, T110, T111, T112, T113, T114, T115, T116,
T118, T119, T120, T121, T122, T123, T124, T125, T126, T127, T128,
T129, T192, T033, T034, T184, T185, T086, T087, T088, T169, T022,
T059

Prognosis of a disease T033, T034, T184, T059, T060, T061, T047, T048, T190, T019, T020,
T054, T055, T080, T081

Epidemiology of a disease T083, T097, T098, T099, T100, T101, T102, T002, T003, T004, T005,
T006, T007

Research of a disease T062, T063, T109, T110, T111, T112, T113, T114, T115, T116, T118,
T119, T123, T124, T125, T126, T127, T128, T129, T192, T085, T086,
T087, T088, T004, T005, T006, T007

Organisms for a disease T001, T002, T003, T004, T005, T006, T007
Criteria of medication T033, T034, T184, T059, T060, T109, T110, T111, T112, T113, T114,

T115, T116, T118, T119, T123, T124, T125, T126, T127, T128, T129,
T192, T190, T019, T020

When to perform a medication T059, T060, T033, T034, T184
Preventive healthcare for a type

of patient
T059, T053, T054, T055, T056, T064, T065, T124, T127, T129, T080,

T169
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Table 20 The set or semantic types relevant to each scenario, acquired from knowledge refinement by
exploring relevance judgements

Set of relevant semantic types appended during knowledge
Scenario refinement

Treatment of a disease T093
Diagnosis of a disease T034, T123
Prevention of a disease N/A
Differential diagnosis of a disease T034, T123, T031, T082
Etiology of a disease T059
Risk factors of a disease T059, T034
Complications of a disease/medication N/A
Pathophysiology of a disease N/A
Prognosis of a disease T169, T025
Epidemiology of a disease N/A
Research of a disease N/A
Organisms for a disease N/A
Criteria of medication N/A
When to perform a medication T046, T047, T048, T049, T191, T023
Preventive healthcare for a type of patient T080, T169

method to improve the retrieval performance for such queries. We have made the following
contributions:

� We have developed a methodology that exploits the knowledge structures in the UMLS
Semantic Network and the UMLS Metathesaurus to identify concepts that are specifically
related to the scenario(s) in the query. Appending such identified concepts to the query
results in scenario-specific expansion.

� We have developed an efficient and effective methodology for knowledge acquisition to
supplement and refine the knowledge source.

� We have performed extensive experimental evaluation of the retrieval performance of
knowledge-based query expansion by comparing with that of statistical expansion. Our
experimental studies reveal that:

� Knowledge provided by UMLS is useful in creating scenario-specific query expansion,
leading to over 5% of improvements over statistical expansion in the majority of cases
studied. Such improvements are significant since statistical expansion outperforms the
no-expansion method by at least 5% in our experimental setup.

� Since knowledge-based expansion tends to expand less terms into the original query,
boosting the weights of these terms is necessary to generate improvements over the
statistical method.

� Because the knowledge structures defined for different query scenarios exhibit differ-
ent characteristics, the performance improvements of the knowledge-based expansion
method differ for these scenarios.

The focus of this research is to support scenario-specific queries in the medical domain.
Scenario-specific queries can appear in other domains as well. In extending our research to
other domains, we note that the quality of domain knowledge is important to the performance
of our method. In certain domains where such knowledge is not readily available, the success
of our approach depends on the knowledge acquisition process which is resource-intensive.
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This represents a limitation of our current approach in terms of extensibility across different
domains, and is a worthy topic for future research.

Appendix: Knowledge acquisition results

We first consulted medical experts to acquire the set of semantic types relevant to a sce-
nario that is previously undefined by UMLS (e.g., “etiology of disease”). Table 19 lists the
acquisition results. Due to space limit, we only provide the ID of each semantic type. The
definition can be found in the “SRDEF” table of UMLS. We further performed knowledge
refinement through relevance judgements and present the refinement results in Table 20. The
second column in the figure shows the additional semantic types added to the corresponding
scenario from this step.
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