
Information Retrieval, 8, 449–480, 2005
c© 2005 Springer Science + Business Media, Inc. Manufactured in The Netherlands.

Comparing Rank and Score Combination Methods
for Data Fusion in Information Retrieval∗

D. FRANK HSU†,‡ hsu@trill.cis.fordham.edu
Department of Computer and Information Science, 113 West 60th Street, LL 813, Fordham University, New York,
NY 10023, USA

ISAK TAKSA§ Isak Taksa@baruch.cuny.edu
Department of Statistics and Computer Information Systems, Baruch College, One Bernard Baruch Way, Box
11-220, New York, NY 10010, USA

Abstract. Combination of multiple evidences (multiple query formulations, multiple retrieval schemes or sys-
tems) has been shown (mostly experimentally) to be effective in data fusion in information retrieval. However,
the question of why and how combination should be done still remains largely unanswered. In this paper, we
provide a model for simulation and a framework for analysis in the study of data fusion in the information retrieval
domain. A rank/score function is defined and the concept of a Cayley graph is used in the design and analysis
of our framework. The model and framework have led us to better understanding of the data fusion phenomena
in information retrieval. In particular, by exploiting the graphical properties of the rank/score function, we have
shown analytically and by simulation that combination using rank performs better than combination using score
under certain conditions. Moreover, we demonstrated that the rank/score function might be used as a predictive
variable for the effectiveness of combination of multiple evidences.

Keywords: information retrieval (IR), data fusion (DF), rank combination, score combination, multiple
evidences, evidence combinations, permutation, symmetric group, Cayley graphs and digraphs, rank/score function

1. Introduction

Information retrieval can be considered as a problem of inference (van Rijsbergen 1986).
It is a process concerned with estimating, given available evidence about things, such as
information need and documents, the likelihood (or probability) of relevance of a document
to the information need. As such, different query formulations constitute different sources of
evidence that could be used to infer the probable relevance of a document to an information
need. This can be generalized to include any source of evidence that might be used for IR
such as the evidence of different retrieval techniques, different document representation
techniques, or different IR systems.

∗Authors wish to dedicate this paper to the memory of our friend and colleague Professor Jacob Shapiro, who
passed away September 2003.
†Previous address: DIMACS Center, Rutgers University, 96 Frelinghuysen Road, Piscataway, NJ 08854-8018,
USA.
‡Supported in part by the DIMACS NSF grant STC-91-19999 and by NJ Commission.
§Supported in part by a grant from The City University of New York PSC-CUNY Research Award.

450 HSU AND TAKSA

Figure 1. Information retrieval (IR) process.

Figure 2. Multiple formulations and multiple schemes.

Information retrieval can be viewed as a process which takes a query (Q) as an input and
produces the output which is a list of documents or results (R) (see figure 1(a)). The IR
process entails a query formulation (F) or representation and a scheme or system (S) which
processes the query formulation in order to obtain results (R) (see figure 1(b)).

With the advent of computer science and information technology (in particular, database
technology and information retrieval technology), it has become feasible and possible to
improve information retrieval system performance by considering multiple formulations
and multiple schemes. Figure 2 depicts three such possibilities.

MFSS—multiple formulations single scheme (figure 2(a)), SFMS—single formulation
multiple schemes (figure 2(b)), and MFMS—multiple formulations multiple schemes
(figure 2(c)). However, very few of the developments have actually investigated the ef-
fect of multiple formulations and/or multiple retrieval schemes on performance.

Saracevic and Kantor (1988) stated explicitly that taking into account the different results
of the different formulations could lead to retrieval performance better than that of any of
the individual query formulations. The project reported in Belkin et al. (1993) studied the
effect of combining multiple representations of information problems on the performance
of the INQUERY probabilistic inference network retrieval engine. Although their results
showed that, in general, progressive combinations of query formulations lead to progressive
improvement in retrieval performance, the INQUERY results (INQC) were substantially
better than those of the combined Boolean queries. The authors then considered the issue of
combining INQC and the combined Boolean queries as two different sources of evidence.
The overall retrieval performance became worse when more weight was given to the Boolean
query evidence. However, the performance was improved when fractional weights were
given to the combined Boolean queries.

Belkin et al. (1994) and Fox and Shaw (1994) investigated the effect of combination
of multiple representations of TREC topics on retrieval performance. Both projects found
that the best method of combination often led to results that were better than the best per-
forming single query. However, they indicated that choosing the best query often results
in significant performance differences from combined queries. They also pointed out that

COMPARING RANK AND SCORE COMBINATION METHODS 451

in any single run there are always instances of combined queries performing better than
the best, and on average combination does better. Belkin et al. (1995) reported on two
studies conducted at Rutgers University (Belkin et al. 1994) and at Virginia Tech (Fox and
Shaw 1994) that investigated the effect on retrieval performance of combination of mul-
tiple representations of TREC-2 topics. When dealing with query combination, the rules
used (CombSUM, CombANZ, and CombMNZ) were based on similarity scores between
a topic and a document. On the other hand, when dealing with multiple evidences from
different schemes (or systems), combinations (MAX, MIN and MED) were based on rank
information. Encouraged by the interesting and generally positive results of the two sep-
arate studies involving combination of evidences (using similarity scores) or data fusion
(using rank information), Belkin et al. (1995) performed two other experiments and had the
following observations:

Remark 1.1. (a) When different systems are commensurable, combination using similar-
ity scores is better than combination using only ranks; (b) when multiple systems have
incompatible scores, a combination method based on ranked outputs rather than the scores
directly is the proper method for combination; and (c) although results from the experi-
ments for combination of results from different databases are encouraging, it is not clear
that such combination is possible among systems that have different methods for computing
similarity scores.

The paper by Pfeifer et al. (1996) gave a review of known similarity measures in a
search for proper names. Their experiments (on measures dealing with phonetic similarity,
typing errors, and plain string similarity) showed that all three approaches perform sig-
nificantly better than a system based on exact-match searches only. They suggested that
further improvements are possible by combining different methods. Although they realized
that combining two or three different similarity measures seems to be very promising, they
indicated that further work for maintaining and searching one or two more methods has to
be considered.

Lee (1997) presented the rationale for evidence combination that different runs return
similar sets of relevant documents but retrieve different sets of non-relevant documents.
He also investigated the effect of using ranks instead of using similarity on retrieval effec-
tiveness. In particular, he showed experimentally that in some circumstances, using ranks
works better than using similarity. He also investigated the effect of using rank instead of
similarity on retrieval effectiveness and found that:

Remark 1.2. Data fusion using rank works better than using similarity scores if the runs
in the combination have ‘different’ rank-similarity curves.

In their study of the problem of predicting, in advance, whether combination (or fusion)
of two or more retrieval schemes will be worth doing, Ng and Kantor (1998) identified:

Remark 1.3. Two predictive variables for the effectiveness of the combination: (a) a list-
based measure of output dissimilarity, and (b) a pair-wise measure of the similarity of the
performance of the two schemes.

452 HSU AND TAKSA

In a subsequent study, Ng and Kantor (2000) investigated the prediction power of these
two variables using symmetrical data fusion and receiver operating characteristic (ROC)
curve. Using precision at the 100th document, P@100, to represent efficacy similarity, they use
ratio Pl/Ph (Pl and Ph are P@100 for the lower and higher performance schemes respectively)
as a variable to measure the similarity of performance of the two IR schemes. Although
they found that most of the positive cases have ratio of precision Pl/Ph close to 1, they also
stated that the two predictive variables do not completely determine whether simple (linear)
and symmetric data fusion will be effective.

The LC (linear combination) model for fusion of IR systems combines the results lists
of multiple IR systems by scoring each document with a weighted sum of the scores from
each of the component systems. Vogt and Cottrell (1999) studied the problem of predicting
the performance of a combined system. Their analysis supports the following:

Remark 1.4. An LC model should only be used when the systems involved have high
performance, a large overlap of relevant documents, and a small overlap of non-relevant
documents.

Previous empirical and experimental results (including those reviewed in this section)
have achieved certain statistical success in understanding the effectiveness of data fusion
(with multiple formulations of queries, or multiple schemes, or in different runs) in informa-
tion retrieval. However, the general questions of “why” and “how” DF in IR can be effective
still remain unanswered. All these indicate that the problem involves tremendously high
complexity and dimensionality. They have become both quantitatively and qualitatively dif-
ficult to trace. In an IR system (see figure 1), different schemes (systems or engines) can use
different techniques (or algorithms) to measure the likelihood or probability of relevance
of a document to a given query. Moreover, the choices of techniques (or algorithms) rely
heavily on the application domain they are applied to or used in. This situation is compli-
cated by having a variety of multiple formulations of the information need and a large and
multi-faceted collection of documents (see figure 2(a)–(c)). Multiple representations (or
query formulations) can occur either as a result of the interpretation of the original need by
multiple experts or as disjoint or non-disjoint subsets from the partition of the original query
(such as a long query). In both cases, they also involve semantic consideration. On the other
hand, the document space consists of not only large and different structured database sys-
tems but also a variety of sites (such as the World Wide Web) located in different networks
and different countries.

In this paper, we continue the study of the problem of data fusion (DF) in information
retrieval domain (see figure 2). On one hand, we restrict ourselves to information retrieval
using similarity measures to search for proper (relevant) documents in the databases or on
the World Wide Web when presented with an information need (a query). On the other
hand, even though we include the general MFMS setting (see figure 2(c)), we only consider
the case of combining results of search in the same database or search space. In general,
we have found:

Remark 1.5. (a) Different formulations (or representations) can be derived from the
same query by different experts. But they can also be obtained from different (disjoint or

COMPARING RANK AND SCORE COMBINATION METHODS 453

non-disjoint) subsets of the same query; and (b) the search can be based on different for-
mulations (see figure 2(a)) or/and using different schemes (or systems) (see figure 2(b) and
(c)) on the same database (or on the World Wide Web).

Data fusion is a process (acquisition, design, and interpretation) of combining infor-
mation gathered by multiple agents (sources, schemes, sensors or systems) into a single
representation (or result). Data fusion has been used in pattern recognition where results
from multiple recognizers (or classifiers) with different feature extracts are combined so as
to achieve better results (Xu et al. 1992). Multiple sensor DF has been studied in various ap-
plication domains such as signal detection, target tracking, image processing, surveillance
and defense applications (Hsu et al. 2003, Lyons et al. 2003, Varshney 1997).

The concept of data fusion has been used, as mentioned above, in information retrieval
to study the combination of multiple evidences resulting from different query formulations
or from different schemes (Belkin et al. 1993, 1994, 1995, Fox and Shaw 1994, Kantor
1998, Lee 1997, Ng and Kantor 1998, 2000, Pfeifer et al. 1996). Many empirical studies
have been performed and various results have been obtained. While some of the major
issues related to the questions such as why and how multiple evidences should be combined
remain unanswered, researchers have come to realize the advantage and benefit of combining
multiple evidences.

Our approach aims to study the problem of when DF in IR is worth doing and how fusion
should be done. We take the modeling approach, which will encompass several fundamental
issues related to the theoretic treatment of the complex problem. We establish a model based
on Cayley graphs and digraphs (called CG model) with the following characteristics:

Remark 1.6. (a) Each of the multiple evidences (say evidence A) is represented as a ranked
list of two functions (x, rA(x)) and (d, sA(d)) indicating ranks with the rank function (the
document rA(x) is ranked x), and documents with the score function (the document d has
similarity score sA(d)) respectively; and (b) assuming that there are n different documents,
rA(x) is then considered as a permutation of these n documents and sA(d) is a function from
the set of n documents to the set of real numbers.

Our model uses a ranked list which consists of a rank function (as a permutation in the
set of all permutations of n elements Sn) and a score function (which is the similarity score
of the document). We perform analytical study and simulation of the DF of different kinds
of ranked lists and investigate the effectiveness of these DF’s. We also study DF techniques
using rank vs. score combination and explore further the question of when and why one
kind of combination is better than the other. We believe that our model and approach will
provide better understanding of the phenomena surrounding the issue of effectiveness of
DF in information retrieval.

In Section 2, we describe our data fusion framework which includes a data fusion model
and architecture of combining two evidences (i.e. two ranked lists). We also give definition
of a Cayley graph and introduce the concept of rank/score function. Section 3 gives an ana-
lytical result which strongly supports the advantage of using the framework. Experimental
results are included in Section 4. More detailed discussions and remarks are summarized
in Section 5 which concludes the paper.

454 HSU AND TAKSA

2. Data fusion model and architecture

We first review and define some of the notations and terminologies, which will be used
in latter sections. For positive integers k and n, let [n] = {1, 2, 3, 4, . . . , n} and [k, n] =
[n] − [k − 1]. Similarly, we define [dn] to be {d1, d2, . . . , dn}. A permutation α on [n] is
an one to one mapping from [n] to itself . It can be written as the following different, but
equivalent, forms:

x 1 2 3 . . . n
α(x) α(1) α(2) α(3) . . . α(n)

and (
1 2 3 4 . . . n

α1 α2 α3 α4 . . . αn

)
= [α1, α2, α3, α4, . . . , αn] = [α1 α2 α3 α4 . . . αn]

It can also be written as the product of disjoint cycles each consisting of elements from [n]:

α = (α11 α12 . . . α1k1)(α21 α22 . . . α2k2)(αh1 αh2 . . . αhkh)

where

α(αi j) = αi (j + 1), α(αi ki) = αi1 and
h∑

i=1

ki = n.

For example, when α is a permutation on the set of numbers {1, 2, 3, 4, 5, 6}, we have

x 1 2 3 4 5 6
α(x) 4 6 3 5 1 2

and

α =
(

1 2 3 4 5 6

4 6 3 5 1 2

)
= [4, 6, 3, 5, 1, 2] = (1 4 5)(2 6)(3) = (1 4 5)(2 6).

Often a cycle of length one is ignored without any ambiguity. We also adopt the convention
that each permutation is written interchangeably (without confusion) as an ordered list of
elements of [n] and as concatenations of cycles of elements of [n]. Let Sn be the set of all
permutations on [n]. Define binary operation “∗” between two permutations α and β in Sn

as (α ∗ β)(x) = α(β(x)). The set Sn together with the binary operator “∗” forms a group. It
is also called the symmetric group Sn of order n. We now define the concept of a group and
a graph.

Definition 2.1. Let � be a finite set of n elements and ∗ be a binary operation in �.� is
said to be a group if it satisfies the following properties:

(a) for every a, b ∈ �, a ∗ b ∈ �,
(b) for every a, b, c ∈ �, (a ∗ b) ∗ c = a ∗ (b ∗ c),

COMPARING RANK AND SCORE COMBINATION METHODS 455

(c) there exists an identity element e in �, such that e ∗ a = a ∗ e = a for all a in �, and
(d) for every a ∈ �, there exists bl and br such that bl ∗ a = e and a ∗ br = e. The

two elements bl and br are called the left inverse and right inverse of the element a
respectively.

The two properties in (a) and (b) are called closure property and associativity respectively.
If for any two elements a, b in �, a ∗ b = b ∗ a, then � is said to be commutative. Often in
this case, � is said to be an Abelian group.

Definition 2.2. Let V be a set of n elements, E a set of collection of subsets with 2 distinct
elements from V , and A a set of collection of ordered pairs with distinct elements from V .
For simplicity, we assume the subsets in E (and the ordered pairs in A) are distinct. G = (V ,
E) and D = (V, A) are said to be a graph and a directed graph respectively, with E as the
edge set of G and A as the arc set of D.

We note that the symmetric group Sn of order n is a special case of a kind of algebraic
entity called permutation group. For definition and properties of a permutation group, the
readers are referred to the book by Biggs and White (1979).

The symmetric group Sn , when imposed a metric, would become a metric space. For ex-
ample, when the metric is Kendall distance dk(α, β) which counts the number of discordant
pairs between α and β, Sn then becomes a metric space denoted as (Sn, dk). However, since
the metric space (Sn, dk) is discrete and it is a special case of a more general structure, we
define the concepts of a Cayley graph and a Cayley digraph as follows:

Definition 2.3. Let � (or �′) be a group and S (or S′) a generating set which does not
include identity element of � (or �′). Cayley digraph G(�, S) is the directed graph with
node set V (G) = � and arc set A(G) = {(a, b) | a, b ∈ �, ba−1 ∈ S}. The Cayley graph
G ′(�′, S′) is an undirected graph with node set V (G ′) = �′ and edge set E(G ′) = {(c, d) |
c, d ∈ �′, cd−1, dc−1 ∈ S}.

The study of Cayley graphs and digraphs, sometimes under the name Cayley color-group
or Cayley diagrams, can be dated to the 1940’s. Recent survey and treatments can be found
in Biggs and White (1979) and Grammatikakis et al. (2001), Chap. 6.4, and Heydemann
(1997). In our applications here, we are more concerned with the case of Cayley graph
where � = Sn , the symmetric group, and S is a generating set with transpositions. Two
kinds of S we are most interested in are T1 and T2:

T1 = {(t, t + 1) | t ∈ [1, n − 1]},
and

T2 = {(i, j) | i, j ∈ [n], i �= j, i < j}.
We are using the Cayley graph G(Sn, T), T = T1 or T = T2, as the rank space. G(Sn, T1)

and G(Sn, T2) are closely related to the two metric spaces (Sn, dk) (defined by Kendall
distance dk(α, β)) and (Sn, dcay) (using Cayley’s distance dcay(α, β)). Both distances dk and

456 HSU AND TAKSA

dcay can be found in Marden (1995). While dk(α, β) counts the number of discordant pairs
between α and β, dcay(α, β) counts the minimum number of arbitrary pair-wise interchanges
needed to bring the α order [α1, α2,, αn] to the β order [β1, β2,, βn].

When dk(α, β) = 1, α and β are related to (or incident with) each other by an adjacent
transposition τ in Sn . It follows that (Sn, T1) is a graph where Sn is the set of all permutations
of [n], [α1, α2,αn], and T1 = {(t, t + 1) | t ∈ [1, n − 1]} defines the adjacency among
two nodes α and β (α ∼ β if β = α ◦ τ for some τ in T1). In fact, this means that Kendall
distance dk(α, β) is equivalent to the graph distance d(α, β) calculated in the Cayley graph
G(Sn, T1). The same kind of equivalence occurs when the distance is the Cayley distance
and the adjacency in the graph is defined using the sets of transpositions T2. Since the Cayley
distance dcay (α, β) counts the minimum number of arbitrary pair-wise interchanges needed
to bring the order of α to the order of β, the pair-wise interchanges are the permutations
which are transpositions T2 = {(i, j) | i, j ∈ [n], i < j, i �= j}. Hence the Cayley graph
(Sn, T2) is equivalent to the metric space (Sn, dcay).

We note that although Cayley distance dcay(α, β) and Cayley graph (and Cayley digraph)
share the same name “Cayley”, they are different in the sense that the former defines a
distance between the rankings (or permutation) and the latter defines a graph on a group of
permutations.

In our approach of studying DF in information retrieval, a ranked list consists of a rank
function and a score function. A rank function rA(x) is a ranking of the documents in
D = {d1, d2, . . . , dn}, where the document d = rA(x) is assigned the rank of x . A score
function sA(d) is the similarity score assigned to the document d. Although often we use the
numerical subindices to denote the documents, it is easy to confuse document ordering and
ranking. In order to alleviate this problem, we use d1, d2, . . . , dn to indicate ordering of the
n documents and when there is no confusion, 1, 2, 3, . . . , n are used to mean d1, d2, . . . , dn .
Hence the two functions, rank function and score function, (rA(x) and sB(d) in Remark 1.6),
are listed as follows (when rA(x) is a function from [10] to [d10] and sA(d) is a function
from [d10] to [0, 1] = the set of real numbers between and including 0 and 1.

x 1 2 3 4 5 6 7 8 9 10

rA(x) d2 d3 d5 d6 d8 d4 d10 d7 d1 d9

and

d d1 d2 d3 d4 d5 d6 d7 d8 d9 d10

sA(d) 0.1 1.0 0.9 0.4 0.7 0.6 0.2 0.5 0.1 0.3

We are now ready to define the concept of a rank/score function.

Definition 2.4. The rank/score function f A for the system A is a function from [n] to
[0, s] = {x ∈ R+ and 0 ≤ x ≤ s}, where s is the highest score the system A can have in the
set of non-negative real numbers R+ such that f A(x) = (sA ◦ rA)(x) = sA(rA(x)) for x in
[n].

COMPARING RANK AND SCORE COMBINATION METHODS 457

It follows that f A has the following values when n = 10 in the example above.

x 1 2 3 4 5 6 7 8 9 10

f A(x) 1.0 0.9 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.1

For a ranked list A with rA(x) and sA(d) and q ∈ [n], we define the following two
parameters to measure the performance of the system (or scheme) of the ranked list A.

Definition 2.5 (Precision at q and average precision). Let A(k) = {rA(i) | i ≤ k} and
A(k) = smallest set A(j), 1 ≤ j ≤ n, s.t. |A(j) ∩Rel| = k, where Rel = set of all documents
that are judged to be relevant. If |Rel| = q for some integer q(0 < q ≤ n), we define two
measures of performance for a system A as follows:

Precision at q of A : P@q(A) = |Rel ∩ A(q)|
q

Average precision of A : Pavg(A) =
∑q

i=1
i

|A(i)|
q

For two ranked lists A and B, we present two different ways of combining A and B. One
uses rank combination and the other uses score combination.

Definition 2.6 (Rank combination). Given two ranked lists A and B with rA(x), sA(d) and
rB(x), sB(d) respectively, let gAB(d) = (1/2)[r−1

A (d) + r−1
B (d)]. Sort the array gAB(d) in

ascending order and let sg(d) be the resulting array. Since the two arrays sg(d) and fg(x)
are equivalent to each other with rC (x) = d, the ranked list C which is the combination of
A and B using ranks has the rank function rC (x) = d with fg(x) = sg(rC (x)).

Definition 2.7 (Score combination). Given two ranked lists A and B with rA(x), sA(d)
and rB(x), sB(d) respectively, let h AB(d) = (1/2)[sA(d) + sB(d)]. Sort the array h AB(d) in
descending order and let sh(d) be the resulting array. Since the two arrays sh(d) and fh(x)
are equivalent to each other with rD(x) = d, the ranked list D which is the combination of
A and B using scores has the rank function rD(x) = d with fh(x) = sh(rD(x)).

We illustrate the above two definitions with the example in figure 3 for a special case
n = 10. Note that each of the two rank functions gAB(x) and h AB(x) may contain duplicate
values (such as in gAB(x) in figure 3(c)). When this happens, we use the convention of
choosing the smaller rank in the inverse mapping g−1

AB or h−1
AB . Therefore in figure 3(d), we

would pick “d1” first and then “d8” because g−1
AB(fg(6)) = g−1

AB(6.5) = {d1, d8}.
From Definition 2.4, the rank/score function f A is a function from [n] to [0, s] = {x ∈ R+

and 0 ≤ x ≤ s} and is independent of the ranked or ordered documents. The function sA(d)
is then obtained as sA(d) = f A(r−1

A (d)). Figures 3(a) and (b) give two examples for sA(d)
and sB(d).

Figure 4 gives four rank/score functions grouped in two different settings to show the con-
trast. The two functions in figure 4(a) are taken from the two score functions in figures 3(a)
and (b). The two examples in figure 4(b) have n = 500 and s = 100.

458 HSU AND TAKSA

Figure 3. Combinations using rank vs. score, n = 10.

Our approach to the study of effectiveness of DF in IR consists of a model of simulation
and analysis and an architecture summarized in figure 5. We use the symmetric group Sn as
our sample space (or sometimes called rank space) with respect to n documents. Since the
total number of possible rank data written as permutations is n! which is computationally
intractable, we use the diagram in figure 5 to simulate the phenomena. Two basic rankers (or
ranked lists) are used (called A and B). Ranker A has a rank function rA(x), a score function
sA(d), and the performance P(A), P@q (A) or Pavg(A). Ranker B is represented in the same
fashion. Ranked lists C and D are rank combinations and score combinations of A and B
respectively as defined in Definitions 2.6 and 2.7. By employing different variations of A

COMPARING RANK AND SCORE COMBINATION METHODS 459

Figure 4. Four rank/score functions in two different groups.

and B, we hope to be able to extend and generalize our results. In Section 4, we will have
results of our simulation in two cases. The first case deals with the situation where rA(x) is
fixed as the identity permutation and f A(x) is also fixed as a straight line passing through
points (1, s) and (n, 0) in the rank/score function graph. In the second case, f A(x) is fixed as
in the first case, but rA(x) is obtained as a random permutation. In the next section (Section
3), we will show that when rB = t ◦ eA, the composition of t ∈ T2 and the identity function
eA, fB(x) has one single turning point (a, b), and q < a with certain conditions, then the
performance of the combination by ranks is always better than that of the combination by
score, i.e. P@q (C) ≥ P@q (D).

3. Analysis of combination methods

In this section, we take the general view as stated in Remark 1.6. As such, each evidence
A is presented as two functions rA(x) and sA(d) indicating ranks with ranked documents
and documents with their similarity scores for n distinct documents. Each rank function

460 HSU AND TAKSA

Figure 5. DF architecture.

rA(x) = [A1, A2, A3, . . . , An] is then considered as a permutation of the n documents (or
objects in general). Therefore, rA(x) is considered an element in the rank space Sn and a node
in the Cayley digraph G(Sn,T1) (see Definition 2.3 and definition of T1). Armed with the
framework described in Section 2 and previous results discussed in Section 1, we are now
able to formulate the central problems in the study of data fusion in information retrieval
domain. Let A and B be two evidences presented as [n], rA(x), sA(d) and [n], rB(x), sB(d)
respectively. These are also considered as nodes in the Cayley digraph G(Sn,T) for some
T . Let C and D be the results of fusion from A and B defined in Definition 2.6 and
Definition 2.7 respectively. Let P(C) and P(D) be the performance measurement defined
in Definition 2.5 (see also figure 5). We summarize Remarks 1.1–1.6 and ask the following
questions:

Remark 3.1. For what A and B, P(C) (or P(D)) ≥ max{P(A), P(B)} and for what A
and B, P(C) ≥ P(D)?

Since the rank space Sn has n! elements, the number of possible (A, B) pairs is of
order (n!)(n! − 1)/2 = O((n!)2) which is computationally unmanageable. In the following
section (Section 4), we will study the problem for two different cases. In particular, we will
investigate in Section 4 by simulation the performance of C (and of D) for two cases: Case
4.1: rA = eA the identity permutation and rB = random, and Case4.2: rA = random and
rB = random. Actual values we used are n = 500, s = 100 with precision at 50 (P@50)
and average precision (Pavg). Among the many results and phenomena observed from these
simulations, we see the following pattern:

COMPARING RANK AND SCORE COMBINATION METHODS 461

Remark 3.2. Let A and B be represented as rA, sA and rB, sB respectively. Let C and D
be obtained and represented as rC , sC and rD, sD respectively as in figure 5 in Section 2.
As long as f A and fB are “far apart” and q ∼ n/10, then %(P@50(C) > P@50(D)) >>

%(P@50(C) < P@50(D)) and %(Pavg(C) > Pavg(D)) >> %(Pavg(C) < Pavg@50(D)) in the
case when rA = eA and rB = random. In the cases that rA = random and rB = random,
%(Pavg(C) > Pavg(D)) > %(Pavg(C) < Pavg(D)).

We now analyze the special case when rA = eA, the identity permutation, and rB = t ◦ eA,
where t ∈ T2, and f A, fB are two non-increasing functions. We assume that f A is the straight
line L((1, s), (n, 0)) connecting the two end points (1, s), (n, 0) and fB is the combination
of the two straight lines with end points L1((1, s), (x, y)) and L2((x, y), (n, 0)) which meet
at (x, y). We state and prove the following theorems (see figure 4(b) in Section 2 for the
special cases n = 500 and s = 100):

Theorem 1. Let A, B, C and D be defined as before. Let f A = L and fB = L1 U L2(L1

and L2 meet at (x∗, y∗)) be defined as above. Let rA = eA be the identity permutation and
rB = t ◦ eA, where t ∈ T2 and t = (i, j). If q < x∗ and (a) i < j < q, (b) q < i < j,
(c) i < q < j < x∗, or (d) i < q < x∗ < j, where max {h AB(i), h AB(j)} ≤ y+ =
(1/2)[y∗ + f A(x∗)] and (1/2)(i + j) > x∗, then P@q (C) ≥ P@q (D).

See Appendix A for proof.

Theorem 2. Let A, B, C, D, rA, f A, rB and fB be defined as in Theorem 1. If q < x∗ and
either (a), (b), (c) or (d) in Theorem 1 is satisfied, then Pavg(C) ≥ Pavg(D).

Proof is similar to that of Theorem 1.

4. Simulation

In this section, we describe the simulation results for different cases. In each of the cases,
we assume the number of documents to be n = 500 and the highest score given to any
rank is s = 100. Hence the total number of possible permutations as rank function is 500!.
The rank functions rB’s are obtained by a random generation process in Case 4.1. In each
simulation, we generate ten thousand (10 k) cases of rB . In our study, we fix f A to be
the straight line connecting the two end points (500, 0) and (1, 100). Since fB can be any
discrete function defined from [1, 500] to [0, 100] which is monotonically non-increasing,
we start with a special case of fB which is a combination of two straight lines with one
turning point (x∗, y∗). Note that the point (200, 30) is such a turning point for the rank/score
function fB in figure 4(b) in Section 2. On the other hand, the rank/score function fB in
figure 4(a) has no such points. Since the problem at issue is combining two ranked lists A
and B, we would like to see rA and rB as arbitrary as possible. Therefore we include a case
where rA and rB are both randomly generated in Case 4.2. These two cases are described
in more details as follows:

Case 4.1 (rA = eA the identity permutation, rB = random). In this case, rA = eA, f A is
the straight line connecting (500, 0) and (1, 100). In fact, f A has the following formula y

462 HSU AND TAKSA

= (−100/499) (x − 500) (See f A in figure 4(b) in Section 2). For each permissible turning
point (x∗, y∗) for the rank/score function fB we generate 10 k rB’s. Then we combine these
10 k ranked lists B’s with ranked list A. The results are listed in figure 6 using P@50 and
Pavg respectively. In figure 6(a), the tuples at point (x∗, y∗) (i.e. (a, b, c)) where a, b and
c are the number of cases out of the 10 k cases so that P@50(C) < P@50(D), P@50(C) >

P@50(D) and P@50(C) = P@50(D) respectively. Likewise, figure 6(b) exhibits the values
of (a, b, c) in percentages (out of the 10 k cases) with one decimal point. Figure 6(c) uses
Pavg instead of P@50. In these cases, only values of (a, b) are used as it rarely happens that
Pavg(C) = Pavg (D).

Case 4.2 (rA = random, rB = random). In this case, f A is the same straight line as in Case
4.1 and fB has the turning point (x∗, y∗). Everything else is the same. We list the results in
figure 7(a)–(c).

We note that figures 6 and 7 exhibit certain features which are quite noticeable. One
of the most interesting phenomena is that when the turning point (x∗, y∗) is below the
standard line (i.e. f A) at certain locations, the performance of the combination using rank
(P(C)) is most likely to be better than that of the combination using score (P(D)). In the
case when rA is the identity permutation, the results are fairly consistent. Even when rA is
randomly generated (figure 7), Pavg (C) is greater than Pavg (D) in most of the locations (for
turning point for fB). This prompts us to explore the problem, once again, of finding any
other predictive variable for the effectiveness of data fusion. In fact, in the previous section
(Section 3), we have shown that under the condition that fB has the turning point (x∗, y∗)
and rB is the single cycle of permutation (i.e. the transposition (i , j) for any 1 ≤ i, j ≤ n
and i �= j), the combination by rank performs better than combination by score in either
P@q or Pavg cases as long as q < x∗.

We are also interested in the performance of C and D as compared to those of A and
B. The data fusion model and architecture we established in Section 2 in this paper is
very helpful in the study of data fusion in information retrieval. The simulation procedure
is fairly easy to implement. For example, in the quest to find predictive variables for the
effectiveness of data fusion, the two predictive measures identified by Ng and Kantor (1998,
2000) are Pl /Ph and dk (A, B) where Pl = min{P(A), P(B)} and Ph = max{P(A), P(B)}.
In this paper, we have shown analytically and experimentally that the graphical relation
between the rank/score functions f A and fB , d (f A, fB), is an indicator to distinguish P(C)
and P(D). The data generated and exhibited in figures 8 and 9 demonstrated that the two
parameters d(f A, fB) and Pl /Ph are, to great extent, barometers to predict the effectiveness
of combinations.

Figure 8 lists the change of (a, b, c) along the change of the turning point (x∗, y∗), where
P = P@50, rA and rB are randomly generated, and

a = number of 10 k cases with P(C) > max{P(A), P(B)},

b = number of 10 k cases with P(D) > max{P(A), P(B)}, and

c = number of 10 k cases with min {P(C), P(D)}> max {P(A), P(B)}.

COMPARING RANK AND SCORE COMBINATION METHODS 463

Figure 9 shows the distribution in percentage of the 10 k cases at (x , y), where x = 0.1
to 1.0 in step of 0.1 and y = (50, 10) to (450, 90) in steps of (50, 10) and

a = % of 10 k cases with P(C) > max{P(A), P(B)},
b = % of 10 k cases with P(D) > max{P(A), P(B)}, and

c = % of 10 k cases with min {P(C), P(D)} > max{P(A), P(B)}.

Figures 9(a)–(d) deal with P@50 and Pavg respectively. All these figures have Pl /Ph as the
x-coordinate.

5. Discussion and future work

In this paper, we have established a framework (see figure 5) for analysis and simulation
in the study of data fusion in the information retrieval domain by defining rank function
and score function and using the concept of a rank/score function. Every evidence (from
query formulation, retrieval schema or system) is represented as a ranked list (such as A)
with three functions: rA(x) = rank function, sA(d) = score function and f A = rank/score
function. The rank function rA is viewed as a permutation of [dn] = the set of n docu-
ments. Using the concept of a Cayley graph, we consider a rank function rA (of n doc-
uments) as a node (and a permutation of [n]) of the Cayley graph, (Sn, T), where Sn is
the symmetric group of order n and T is a generating set of Sn excluding the identity
permutation e.

Recall from Remark 1.6, Definition 2.4 and figure 5, rank function rA and score function
sA are defined respectively from N to D and from D to R+. Hence the rank/score function
is obtained as f A = sA ◦ rA. In some application domains, the rank function r∗

A may be
defined as the inverse function of rA (i.e.: from D to N). In such a case, the rank/score
function would be f ∗

A = sA ◦ r∗−1 (i.e.: f ∗
A ◦ r∗

A = sA).
Our current study is the first of a series of investigations exploring the central question of

why and how data fusion (or evidence combination) should be done. We have started with
some specific cases when the rank/score function f A = straight line and fB = semi-linear
with one point of intersection (x∗, y∗) (see Sections 3 and 4) even though both functions
can be any discrete function defined from [1, 500] to [0, 100] which is monotonically non-
increasing (see figure 4(a)). In Section 5.3(d), we will discuss that the condition n = 500
can be relaxed to include any constant n. We have proved in Section 3 that if rA = eA, the
identity permutation, rB = t ◦ eA where t C- Ti and q < x∗ with certain conditions, then
P@q (C) ≥P@q (D). Then in Section 4, applying both cases (i) rA = eA, rB = random, and
(ii) rA, rB are random to all 81 points of intersection (x∗, y∗) and generating ten thousand
(10 k) permutations for each random case, we have found several interesting phenomena.
All these analytical and simulation results, summarized in Sections 5.1 and 5.2, strongly
support those findings observed by previous researches surveyed in Section 1 as highlighted
in Remarks 1.1–1.4. Section 5.3 discusses our future work on several directions as suggested
in the current study.

464 HSU AND TAKSA

5.1. Combination using rank vs. score

The thrust of our approach is that we are able to define and extract the rank/score function f A

from a ranking procedure A which gives the rank function rA and score function sA. On the
other hand, the score function sA can be obtained as sA(d) = (f A ◦r−1

A)(d) = f A(r−1
A (d)) =

f A(x) if rA and f A are known, where rA(x) = d, d is a document ranked by rA as rank order
x . This differentiation between f A(x) (defined on ranks) and sA(d) (defined on documents)
enables us to characterize different ranking procedures (algorithms or systems), and then
to better quantify the differences between them (see Remarks 1.1 and 1.2). Our results in
Sections 3 and 4 with respect to (x∗, y∗), (y∗ < − 1

5 x∗ + 100), (n = 500, s = 100, q = 50)
confirmed the observations made by previous researchers and summarized in Remark 1.1
(see Belkin 1994, 1995) and Remark 1.2 (see Lee 1997). Specifically, we have demonstrated
in our simulation that when

∑500
x=1 |(f A(x) − fB(x)| is big enough, combination using ranks

performs better than combination using scores under certain conditions. In particular, we
have shown analytically in Theorems 1 and 2 that when the difference between rA and rB

is a transposition (i , j) with certain conditions and q < x∗ with certain conditions, the
performance of rank combination is at least as good as that of score combination.

5.2. Effectiveness of combination

Various techniques and experiments have been performed to study the effectiveness of com-
bining two or more systems (formulations, algorithms, or different runs) (Aslam et al. 2003,
Belkin 1993, 1994, 1995, Hsu et al. 2003, Lee 1997, Lyons et al. 2003, Marden, 1995, Ng
and Kantor 1998, 2000, Vogt and Cottrell 1999). These include the progressive combination
of query formulations and the linear combination (LC) model for fusion of IR system by
scoring each document with a weighted sum of the scores from each of the component sys-
tems (Vogt and Cottrel 1999) and the study by Ng and Kantor (1998, 2000) which identified
two predictive variables: the Kendall distance and the performance ratio (see Remarks 1.3
and 1.4). The Kendall distance dK (rA, rB) measures the degree of concordance between
two different rank lists rA and rB . The performance ratio Pl /Ph measures the similarity of
performance of the two IR schemes A and B. Our simulation results (see figures 9(a)–(c))
are in conformity with those by Ng and Kantor on the performance ratio Pl /Ph . We have
run ten thousand random cases for each of the nine points of intersection (x∗, y∗), where
(x∗, y∗) = (50 t, 10 t) and 1 ≤ t ≤ 9 (see figures 9(a)–(d)).

When considering the positive fusion cases of the combination of different rank lists A and
B, the distribution of the positive cases is clustered around Pl /Ph ∼1 for each of the three
comparisons regarding effectiveness of the combinations: P(C) vs. max{P(A), P(B)},
P(D) vs. max{P(A), P(B)}, and min{P(C), P(D)} vs. max{P(A), P(B)}, where C and
D are combination of A and B using rank and score respectively. As to the Kendall distance
dK (rA, rB), we have not attempted to find such pattern in our simulation. However, the
simulation results for Case 4.2 discussed in Section 4 and exhibited in figure 8 demonstrated
that the graphical behaviors of the rank/score function might be a feasible predictive variable
for the effectiveness of combination.

COMPARING RANK AND SCORE COMBINATION METHODS 465

5.3. Future work

We have discussed, in Section 4.1, that when rA = eA and rB = random we have P(C)
> P(D) (either @50 or on average) (see figures 6(a)–(c)) for most of the cases at point
of intersection (x∗, y∗), where (y∗ < − 1

5 x∗ + 100). It is interesting to note that when
(y∗ > − 1

5 x∗ +100), the situation changes and in fact it becomes the opposite. At the points
(x∗, y∗) of intersects where (y∗ = − 1

5 x∗ + 100), the situation varies and in majority of the
10 k cases P(C) = P(D) when performance@50 is used. When rA and rB are generated at
random, slightly higher percentage of the 10 k cases have Pavg (C) > Pavg (D) than Pavg (D)
> Pavg (C) (see figure 7(c)). However, when performance@50 is used, no apparent pattern
can be drawn (see figure 7(a) and (b)).

The current study suggests several problems worthy of further study and several issues
that require further investigations. We summarize as follows:

(a) Let G@q (X) = P@q (X) − max{P@q (A), P@q (B)}, where X = C or D. Let G@q (C ,D)
= P@q (C) − P@q (D). Gavg(X) and Gavg(C, D) are defined in a similar fashion. In this
paper, we have studied the behavior of these parameters under the condition that f A

is linear and fB is semi-linear with one point of intersection. One direction to pursue
is to study the two parameters G@q (X) and G@q (C, D) when f A is linear and fB is
piecewise-linear with k points of intersection, or the more general cases, when f A

and fB are piecewise linear or are in more general situation of being non-increasing
monotonic functions.

(b) In our computation of sC and sD , we simply take the average of the ranks and scores
of A and B respectively (see Definitions 2.6 and 2.7). However, different weights
can be assigned to each individual schema and different ways of combinations can be
performed in the combination of two or more schemas. Several authors (see Dwork et al.
2001, Fagin et al. 2003, Hsu and Palumbo 2004, Ibraev et al. 2001, Kantor 1998 and
Vogt and Cottrell 1994) studied the effectiveness of different weighting assignments
and different methods of combination. Our goal in this direction is to extend our results
to the weighted combination for A and B (assigning weights α and 1 − α to A and B
respectively, where 0 < α ≤ 1) and for more than two schemas. In (2004), Hsu and
Palumbo studied data fusion in the Cayley graph G(Sn , T1) to combine A and B using
weights α at an increment of 0.1. We also aim to extend our results to compare rank vs.
score combinations using different methods of combination such as Markov chain or
other non-linear methods.

(c) The current paper has defined the rank/score function f A (for a schema A) and estab-
lished an abstract sample space Sn (for a schema A with rank list rA = [A1, A2, . . . , An]
on the set of n documents) (our examples use n = 500). We have observed (figure(9)(a)–
(d)) that positive cases exist when Pl /Ph is close to 1, but have not yet attempted to find
any correlation between positive cases and the metric dK (rA, rB) (the Kendall distance).
Kantor (1998) has proposed a geometric model which treats Pl , Ph and Pideal (a perfect
solution) as three points in an abstract space. Then Ibraev et al. (2001) showed that in the
ideal case, the performance of data fusion for a pair IR schemas may be approximated
by a quadratic polynomial. From the equation of the curve, it follows that for effective
DF the weight of the better schema must be greater than that of the worse schema.

466 HSU AND TAKSA

However, some anecdotal evidence suggest that there exist cases where DF is effective
when the worse schema has more weight. In our study of DF effectiveness, we can use
the rank space Sn with dK (rA, rB) as the distance function. In fact, we can restrict our
space to the hyperplane of Sn consisting of all points rA’s = [A1, A2, . . . , An] with∑n

i=1 Ai = n(n+1)
2 . We will investigate DF effectiveness using our Cayley graph model

(Sn ,T1) and dK (rA, rB) in the hyperspace of
∑n

i=1 Ai = n(n+1)
2 and compare our results

with the geometric model studied by Kantor et al (2001) and Kantor (1998). Work along
this line has been performed by Hsu and Palumbo (2004) with respect to using Sn as
the rank space and � (Sn , T1) as the Cayley graph model. While Kantor et al’s approach
is considered as a geometric model, the approach of Hsu and Palumbo (2004), and Hsu
et al. (2002) using the Cayley graph (Sn , T1) as a rank space is rather combinatorial.

(d) We note that in our simulation we use n = 500. However this condition could be relaxed
to include any constant n. The cut of value for precision was chosen to be q = 50 which
is 10% of the n = 500. This ratio is very much related to the real situation of information
retrieval systems. We also note that in the real situation the range for sA and sB may
vary. It is important that these two functions have to be normalized to some common
range (in our case, we use s = 100 or 1.00) before they can be combined to generate
C or D. In general, normalization of the score functions of two or more schemas is a
vital step and should have a great impact on the effectiveness of the combinations.

(e) We note that framework proposed and results obtained in this paper for information
retrieval can be applied in other domains also. The rank and fuse (RAF) approach
for target tracking in CCTV surveillance (Hsu et al. 2003, Lyons et al. 2003) and
rank and combine (RAC) method for microarray and gene expression data analysis in
bioinformatics (Chuang et al. 2004, Hsu and Palumbo 2004) are two examples of this
application.

Appendix A

Proof of Theorem 1

We divide the problem into three cases according to the relative positions of i and j with
respect to q: (a) i < j < q , (b) q < i < j , and (c) i < q < j . In the first two cases, it is
easy to see that P@q (C) = P@q (D), since the swap of i and j (when i , j are less than or
greater than q) does not make any difference to the performance of C or D. Therefore, we
consider only case (c) from now on where i < q < j . Since q < x∗, we then divide case
(c) into two subcases:

Subcase (c) (i): i < q < j < x∗. We have sA(j) − sB(j) > sA(i) − sB(i) since the decrease
of sB(x) is faster than that of sA(x).

Subcase (c) (ii): i < q < x∗ < j . In this case, sA(j) − sB(j) can be greater than, equal to,
or less than sA(i) − sB(i) depending on how big j is.

In order to prove these two cases, we treat rA, rB , sA, sB , rC , rD , and other related
functions or permutations as arrays on the index set [n]. Then we have rA(i) = i , rA(j) = j
and rB(i) = j , rB(j) = i . Hence we have gAB(i) = 1/2(i + j) = gAB(j). After sorting the

COMPARING RANK AND SCORE COMBINATION METHODS 467

array f AB into ascending order to become sg , we have

sg

(⌊
i + j

2

⌋)
= 1

2
(i + j) = sg

(⌈
i + j

2

⌉)
.

Therefore rc(
 i+ j
2 �) = i and rc(� i+ j

2) = j . The values for h AB(i) and h AB(j) can be
calculated using formula (3) and (4).Then the question is: which of the two numbers h AB(i)
and h AB(j) is bigger than the other?

In Subcase (c) (i), with sA(j) − sB(j) > sA(i) − sB(i), we have h AB(j) > h AB(i) by
Definition 2.7. After sorting the array h AB into descending order to become sg , we have
sh(i ′) = h AB(j) and sh(j ′) = h AB(i) for some i ′, j ′ in [i , j] with i < i ′ and j ′ < j . Hence
we have rD(i ′) = j and rD(j ′) = i . Hence we have the following situation for subcase (c) (i):

[n] : 1, 2, 3,, i,, i ′, . . . ,
 i+ j
2 �, � i+ j

2 , . . . , j ′, . . . , j, . . . , x∗, . . . , n
rC (x) : d1, d2, d3, . , di , d j , . , dn

rD(x) : d1, d2, d3, . . . , rD(i), . . . , d j , , di , . . . rD(j), , dn

Recall that we have i < q < j in this case. If q ∈ ([i, i ′]U [j ′, j]), the theorem holds
because P@q (C) = P@q (D). If q ∈ ([i ′,
 i+ j

2 �] ∪ [� i+ j
2 , j]), then P@q (C) > P@q (D).

In Subcase (c) (ii) where i < q < x∗ < j , we have three possibilities depending on
sA(j) − sB(j) is greater than, equal to, or less than sA(i) − sB(i). When sA(j) − sB(j) >

sA(i)−sB(i), we have h AB(j) > h AB(i). Hence the proof is similar to previous case, Subcase
(c) (i). When sA(j) − sB(j) = sA(i) − sB(i), we have h AB(j) = h AB(i) by Definition 2.7.
It follows that rD(i ′) = di and rD(i ′ + 1) = d j where i ′ C- (i, j) and i < i ′ < j . In this
case, no matter where q is, we have P@q (C) ≥ P@q (D). For the last possibility where
sA(j) − s(B) < sA(i) − sB(i), we have h AB(j) < h AB(i) by Definition 2.7. It follows that
rD(i ′) = di and rD(j ′) = d j where i < i ′ < j ′ < j . Hence we have the following situation
for the third possibility of Subcase (c) (ii):

[n]: 1, 2, 3, . . . i, i ′, . . . ,
 i+ j
2 �� i+ j

2 , . . . j ′, . . . j, n
rC (x): ., di , . . . , d j , .

h AB(x): , h AB(i), . , h AB(j),
sh(d): , h AB(i), , h AB(j),
rD(x): , rD(i), . . . , di , , d j , . . . , rD(j),

Since in this subcase h AB(i) > h AB(j), i < i ′ < j ′ < j and i < q < x∗ < j , we have
either i ′ < x∗ or i ′ > x∗. Let (x∗, y+) be the middle point between (x∗, y∗) and (x∗, f A(x∗)).
By the assumption (d) in the Theorem 1 that max {h AB(i), h AB(j)} = h AB(i) ≤ y+, we have
rD(i ′) = di , where i ′ is such that sh(i ′) = h AB(i) and i ′ > x∗. On the other hand we have
i+ j

2 > x∗. Combining these two inequalities i ′ > x∗ and i+ j
2 > x∗ (note: rC (i+ j

2) = di)
together with the assumption q < x∗ in this case, we have P@q (C) = P@q (D). This
completes the proof of the theorem.

468 HSU AND TAKSA
A

pp
en

di
x

B

(a
)

F
ig

ur
e

6.
(a

):
r A

=
e A

,
r B

=
ra

nd
om

.
f A

=
lin

e
be

tw
ee

n
(0

,1
00

)
an

d
(5

00
,0

),
f B

=
si

ng
le

tu
rn

in
g

po
in

t
at

(x
∗ ,

y∗
).

P @
50

at
(x

∗ ,
y∗

),
P @

50
(C

)
vs

P @
50

(D
)

(<
,

>
,=

)—
nu

m
be

r
of

ca
se

s
(t

ot
al

10
,0

00
),

(b
):

r A
=

e A
,

r B
=

ra
nd

om
.

f A
=

lin
e

be
tw

ee
n

(0
,1

00
)

an
d

(5
00

,0
),

f B
=

si
ng

le
tu

rn
in

g
po

in
ta

t(
x∗

,
y∗

).
P @

50
at

(x
∗ ,

y∗
),

P @
50

(C
)

vs
P @

50
(D

)
(<

,>
,=

)—
pe

rc
en

ta
ge

s
(n

um
be

r
of

ca
se

s—
10

,0
00

),
(c

):
r A

=
e A

,
r B

=
ra

nd
om

.
f A

=
lin

e
be

tw
ee

n
(0

,1
00

)
an

d
(5

00
,0

),
f B

=
si

ng
le

tu
rn

in
g

po
in

ta
t(

x∗
,

y∗
).

P a
vg

at
(x

∗ ,
y∗

),
P a

vg
(C

)
vs

P a
vg

(D
).

(<
,>

)
−

pe
rc

en
ta

ge
s

(n
um

be
r

of
ca

se
s—

10
,0

00
).

(C
on

ti
nu

ed
on

ne
xt

pa
ge

.)

COMPARING RANK AND SCORE COMBINATION METHODS 469

(b
)

F
ig

ur
e

6.
(C

on
ti

nu
ed

).

470 HSU AND TAKSA

(c
)

F
ig

ur
e

6.
(C

on
ti

nu
ed

).

COMPARING RANK AND SCORE COMBINATION METHODS 471

(a
)

F
ig

ur
e

7.
(a

):
r A

=
ra

nd
om

,r
B

=
ra

nd
om

.
f A

=
lin

e
be

tw
ee

n
(0

,1
00

)
an

d
(5

00
,0

),
f B

=
si

ng
le

tu
rn

in
g

po
in

ta
t(

x∗
,

y∗
).

P @
50

at
(x

∗ ,
y∗

),
P @

50
(C

)
vs

P @
50

(D
)

(<
,

>
,=

)—
nu

m
be

r
of

ca
se

s
(t

ot
al

—
10

,0
00

).
(b

):
r A

=
ra

nd
om

,r
B

=
ra

nd
om

.
f A

=
lin

e
be

tw
ee

n
(0

,1
00

)
an

d
(5

00
,0

),
f B

=
si

ng
le

tu
rn

in
g

po
in

t.
at

(x
∗ ,

y∗
).

P @
50

at
(x

∗ ,
y∗

),
P @

50
(C

)
vs

P @
50

(D
).

(<
,>

,=
)—

pe
rc

en
ta

ge
s

(n
um

be
r

of
ca

se
s—

10
,0

00
).

(c
):

r A
=

ra
nd

om
,r

B
=

ra
nd

om
.

f A
=

lin
e

be
tw

ee
n

(0
,1

00
)

an
d

(5
00

,0
),

f B
=

si
ng

le
tu

rn
in

g
po

in
t.

at
(x

∗ ,
y∗

).
P a

vg
at

(x
∗ ,

y∗
),

P a
vg

(C
)

vs
P a

vg
(D

).
(<

,>
)—

pe
rc

en
ta

ge
s

(n
um

be
r

of
ca

se
s—

10
,0

00
).

(C
on

ti
nu

ed
on

ne
xt

pa
ge

.)

472 HSU AND TAKSA

(b
)

COMPARING RANK AND SCORE COMBINATION METHODS 473

(c
)

F
ig

ur
e

7.
(C

on
ti

nu
ed

).

474 HSU AND TAKSA

F
ig

ur
e

8.
r A

=
ra

nd
om

,r
B

=
ra

nd
om

.
f A

=
lin

e
be

tw
ee

n
(0

,1
00

)a
nd

(5
00

,0
),

f B
=

si
ng

le
tu

rn
in

g
po

in
ta

t(
x∗

,
y∗

).
P

=
P @

50
at

(x
∗ ,

y∗
),

x
=

(x
∗ ,

y∗
)i

n
f B

gr
ap

h.
y

=
nu

m
be

r
of

ca
se

s
(t

ot
al

nu
m

be
r

of
ca

se
s
=

10
,0

00
at

ea
ch

x
=

(x
∗ ,

y∗
))

.

COMPARING RANK AND SCORE COMBINATION METHODS 475

(a
)

F
ig

ur
e

9.
(a

)r
A

=
ra

nd
om

,r
B

=
ra

nd
om

.
f A

=
lin

e
be

tw
ee

n
(0

,1
00

)
an

d
(5

00
,0

).
x

=
P l

/P
h
,y

=
t

an
d

f B
=

si
ng

le
tu

rn
in

g
po

in
t(

t,
t/

5)
.

P
=

P @
50

at
(x

,y
),

P
(C

)
vs

m
ax
{P

(A
),

P
(B

)}
.(

>
)—

pe
rc

en
ta

ge
(∑ 1

0 i=
1

(x
i,

y)
=

10
0)

,n
um

be
r

of
ca

se
s

fo
r

ea
ch

y—
10

,0
00

.(
b)

r A
=

ra
nd

om
,r

B
=

ra
nd

om
f A

=
lin

e
be

tw
ee

n
(0

,1
00

)
an

d
(5

00
,0

).
x

=
P l

/P
h
,

y
=

t
an

d
f B

=
si

ng
le

tu
rn

in
g

po
in

t(
t,

t/
5)

.
P

=
P @

50
at

(x
,

y)
,

P
(D

)
vs

m
ax
{P

(A
),

P
(B

)}
.(

>
)–

pe
rc

en
ta

ge
(
∑ 1

0 i=
1

(x
i,

y)
=

10
0)

,n
um

be
r

of
ca

se
s

fo
r

ea
ch

y—
10

,0
00

.(
c)

r A
=

ra
nd

om
,r

B
=

ra
nd

om
.

f A
=

lin
e

be
tw

ee
n

(0
,1

00
)

an
d

(5
00

,0
).

x
=

P l
/P

h
,y

=
t

an
d

f B
=

si
ng

le
tu

rn
in

g
po

in
t(

t,
t/

5)
.

P
=

P @
50

at
(x

,y
),

m
in
{

P
(C

),
P

(D
)}

vs
m

ax
P

(A
),

P
(B

(>
)–

pe
rc

en
ta

ge
(∑ 1

0 i=
1

(x
i,

y)
=

10
0)

,n
um

be
ro

fc
as

es
fo

re
ac

h
y—

10
,0

00
.(

d)
r A

=
ra

nd
om

,r
B

=
ra

nd
om

,
f A

=
lin

e
be

tw
ee

n
(0

,1
00

)a
nd

(5
00

,0
).

x
=

P l
/P

h
,y

=
t

an
d

f B
=

si
ng

le
tu

rn
in

g
po

in
t(

t,
t/

5)
.

P
=

P @
50

at
(x

,y
),

(a
,b

,c
),

a
=

pe
rc

en
ta

ge
of

ca
se

s
w

he
re

P
(C

)>
m

ax
{P

(A
),

P
(B

)}
.b

=
pe

rc
en

ta
ge

of
ca

se
s

w
he

re
P

(D
)
>

m
ax
{P

(A
),

P
(B

)}
.c

=
pe

rc
en

ta
ge

of
ca

se
s

w
he

re
m

in
{P

(C
),

P
(D

)}
>

m
ax
{P

(A
),

P
(B

)}
.∑ 1

0 i=
1

(x
i,

y)
=

10
0)

,
nu

m
be

r
of

ca
se

s
fo

r
ea

ch
y—

10
,0

00
.

476 HSU AND TAKSA

(b
)

COMPARING RANK AND SCORE COMBINATION METHODS 477

(c
)

F
ig

ur
e

9.
(C

on
ti

nu
ed

).

478 HSU AND TAKSA

(d
)

F
ig

ur
e

9.
(C

on
ti

nu
ed

).

COMPARING RANK AND SCORE COMBINATION METHODS 479

References

Aslam JA, Pavlu V and Savell R (2003) A unified model for metasearch, pooling, and system evaluation. In:
Proceedings of the Twelfth International Conference on Information and Knowledge Management. New Orleans,
LA, pp. 484–491.

Belkin NJ, Cool C, Croft WB and Callan JP (1993) The effect of multiple query representations on information
retrieval performance. In: Proceedings of the 16th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval. Pittsburgh, PA, pp. 339–346.

Belkin NJ, Kantor PB, Cool C, and Quatrain R (1994) Combining evidence for information retrieval. In: Harman
D (ed.), TREC-2, in: Proceedings of the Second Text Retrieval Conference. Washington, D.C., GPO, pp. 35–44.

Belkin NJ, Kantor PB, Fox EA and Shaw JA (1995) Combining evidence of multiple query representation for
information retrieval. Information Processing & Management, 31(3):431–448.

Biggs NL and White T (1979) Permutation Groups and Combinatorial Structures, Cambridge University Press,
LMS Lecture Note Series 33.

Chuang H-Y, Liu H, Chen F-A, Kao C-Y and Hsu DF (2004) Combination method in microarray analysis,
In: Proceedings of the 7th International Symposium on Parallel Architectures, Algorithms and Networks (I-
SPAN’04). IEEE Computer Society Press, pp. 625–630.

Dwork C, Kumar R, Naor M and Sivakumar D (2001) Rank aggregation methods for the web. In: Proceeding of
WWW10. Hong Kong, pp. 613–622.

Fagin R, Kumar R and Sivakumar D (2003) Comparing top k-lists. SIAM Journal on Discrete Mathematics.
17:134–160.

Fox EA and Shaw JA (1994) Combination of multiple searches. In: Proceedings of the Second Text Retrieval
Conference (TREC-2), National Institute of Standards and Technology Special Publication 500-215, pp. 243–
252.

Grammatikakis MD, Hsu DF and Kraetzl M (2001) Parallel System Interconnections and Communications. CRC
Press.

Heydemann MC (1997) Cayley graphs and interconnection networks. In Hahn G. and Sabidussi G. (eds.), Graph
Symmetry. Kluwer Academic Publishers, pp. 161–224.

Hsu DF, Lyons DM, Usandivaras C and Montero F (2003) RAF: A dynamic and efficient approach to fusion for
multiple target tracking in CCTV surveillance. In: Proceedings of IEEE International Conference on Multisensor
Fusion and Integration for Inteligent Systems (MFI). IEEE Computer Society Press, pp. 222–228.

Hsu DF and Palumbo A (2004) A study of data Fusion in Cayley Graphs G(Sn , Pn). In: Proceedings of the 7th
International Symposium on Parallel Architectures, Algorithms and Networks (I-SPAN’04). IEEE Computer
Society Press, pp. 557–562.

Hsu DF, Shapiro J and Taksa I (2002) Methods of data fusion in information retrieval: Rank vs. score combination,
DIMACS Technical Report 2002–58, pp. 1–47.

Ibraev U, Ng KB and Kantor PB (2001) Counter intuitive cases of data fusion in information retrieval. Rutgers
University Technical Report.

Kantor PB (1998) Semantic dimension: On the effectiveness of naive data fusion methods in certain learning
and detection problems. In: Fifth International Symposium on Artificial Intelligence and Mathematics. Ft.
Lauderdale, FL.

Lee JH (1997) Analyses of multiple evidence combination. In: Proceedings of the 20th Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval. Philadelphia, PA, pp. 267–276.

Lyons DM, Hsu DF, Usandivaras C and Montero F (2003) Experimental results from using rank and fuse approach
for multi-target tracking in CCTV surveillance. In: Proceedings of IEEE International Conference on AVSS.
IEEE Computer Society Press, pp. 345–351.

Marden JI (1995) Analyzing and modeling rank data. Monographs on Statistics and Applied Probability No. 64,
Chapman & Hall.

Ng KB and Kantor PB (1998) An investigation of the preconditions for effective data fusion in information
retrieval: A pilot study. In: Proceedings of the 61st Annual Meeting of the American Society for Information
Science, pp. 166–178.

Ng KB and Kantor PB (2000) Predicting the effectiveness of naı̈ve data fusion on the basis of system characteristics,
Journal of the American Society for Information Science, 51(13):1177–1189.

480 HSU AND TAKSA

Pfeifer U, Poersch T and Fuhr N (1996) Retrieval effectiveness of proper name search methods. Information
Processing and Management, 32(6):667–679.

van Rijsbergen CJ (1986) A new theoretical framework of information retrieval. In: Proceedings of the 9th Annual
International ACM SIGIR Conference on Research and Development in Information Retrieval. Pisa, Italy,
pp. 194–200.

Saracevic T and Kantor PB (1988) A study of information seeking and retrieving. III Searchers, searches, overlap.
Journal of the ASIS, 39:197–216.

Varshney PK (ed.) (1997) In: Proceedings of the IEEE. Special issue on data fusion 85(1) pp. 3–183.
Vogt CC and Cottrell GW (1999) Fusion via a linear combination of scores. Information Retrieval, 1(3):151–173.
Xu L, Krzyzak A and Suen CY (1992) Methods of combining multiple classifiers and their applications to

handwriting recognition. IEEE Transactions on Systems, Man, and Cybernetics, 22(3):418—435.

