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Abstract

The discrete wavelet transform (DWT) has potential as a tool for supplying
discriminatory attributes with which to characterize or cluster groups of seismic
traces in reservoir studies. The wavelet transform has the great advantage over the
Fourier transform in being able to better localize changes. The multiscale nature and
structure of the DWT leads to a method of display which highlights this and allows
comparison of changes in the transform with changing data. Many different sorts of
wavelet exist and it is found that the quality of reconstruction of a seismic trace
segment, using some of the coefficients, is dependent on the choice of wavelet, which
leads us to consider choosing a wavelet under a ‘best reconstruction’ criterion.
Location shifts, time zero uncertainties, are also shown to affect the transform, as do
truncations, resampling, etc. Using real data, examples of utilizing the DWT coefficients
as attributes for whole trace segments or fractional trace segments are given. Provided
the DWT is applied consistently, for example with a fixed wavelet, and non-truncated
data, the transform produces useful results. Care must be exercised if it is applied to
data of different lengths. However, as the algorithm is refined and improved in the
future, the DWT should prove increasingly useful.

Introduction

We discuss an approach to summarizing the features of seismic traces using the discrete
wavelet transform (DWT). For geophysicists it is important to note at the outset that
the term wavelet in this paper does not refer to a seismic wavelet, but rather to a
functional shape (the equivalent of which for the Fourier transform is a sine or cosine).
The aim here is to provide several informative ‘attributes’ which characterize lateral
changes in the seismic traces.
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Trace characterization

A typical trace-characterization study proceeds in three steps. Firstly, trace segments
are extracted between consecutive geological events which have been identified on the
sections: these segments thus refer to the same geological interval. Secondly, attributes
are derived from each segment by the proposed method. Finally, the attributes are
examined for clustering effects; i.e. homogeneous regions of attribute space which are
also clustered in location are identified, indicating some form of similarity between
traces in a cluster/region which can then be further investigated by a processor or
geologist. Such clusters can inform on extrapolation of observed characteristics from
wells, or point to regions for more detailed examination. Sometimes areas of poorly
processed data are highlighted indicating that reprocessing of the data is required.

Attribute clustering can be carried out in several dimensions, for example with a
single attribute, a simple thresholding could be used to split the data. With two
attributes, one might look at points to one side of a line on a scatterplot of the attributes,
or enclosed within a polygon. As an example, consider Fig. 1.

Figure 1a shows the locations of survey lines in a region from the southern North
Sea, each dot or cross locating a particular trace segment. Figure 1b shows a scatterplot
of two attributes (derived from the DWTand discussed later). The attributes are split
into two groups, dots and crosses, and the locations of the traces from which the
attribute values come are identified by the same symbols in Fig. 1a. The views can be
dynamically ‘linked,’ so that changing the clustering of the attributes automatically
changes the locations of the corresponding dots and crosses. This example is discussed
further in later sections.

In higher dimensions, visualization becomes difficult, although we can use several
linked scatterplots of pairs of attributes, an extension of the linking in Fig. 1, to give a
view of higher dimensions (see e.g. Cleveland and McGill 1988). To help with this we
can use a statistical clustering technique to give a projection of the data on to fewer
dimensions: for example projection pursuit projects the attribute space on to one
dimension ( Jones and Sibson 1987; Lendzionowski, Walden and White 1990; Walden
1992) or two dimensions (Friedman 1987), enabling clusters to be readily perceived.
We may also examine outlying points, perhaps indicating data problems or regions
where the seismic behaviour is quite different from the rest of the data.

Choice of attributes and wavelet transform

The extraction of useful attributes from seismic traces has been an active research area
for a number of years. For example, Hagen (1982) utilized principal component
correlation coefficients for clustering, while Bois (1980, 1982) fitted autoregressive
models to seismic trace segments, and used the model coefficients as new discriminatory
variables. Dumay and Fournier (1988) used various ‘conventional’ summaries, such as
energies and zero-crossings, as discriminatory variables. Lendzionowski et al. (1990)
demonstrated that instantaneous attributes could successfully identify a gas–water
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contact. Walden (1994) discussed the use of trace energy, half-time (the fraction of the
length of the trace segment required to build up half the total energy) and centre
frequency as attributes to be used in improving the positioning of a pinch-out.

What does the DWT have to offer that methods such as those above do not? An
important point to notice about all the above attributes is that they are derived from the
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Figure 1. (a) Locations of survey lines in a region. Crosses and dots mark the classification of
seismic trace segments according to the split of the scatterplot in (b), which consists of two-
dimensional points corresponding to two discrete wavelet transform attributes (see later for
details) calculated from the trace segments in (a).



whole trace segment. On the other hand, the DWT consists of coefficients which
represent features in different sections of each trace segment, from ‘all’ to a tiny
part. These coefficients can hence be used very flexibly without constantly having to
re-define and re-extract different trace segments. We could of course represent a
sequence in the frequency domain via the Fourier transform. However, this
representation is in terms of infinitely long sines and cosines. Hence local changes to
a sequence cause many Fourier coefficients to change. The DWT, by contrast,
represents the sequence in terms of finitely long quantities, wavelets at different scales,
and hence a local change in the sequence manifests itself as a change to only a very few
wavelet coefficients. Hence lateral changes to a seismic reflection sequence should be
more easily ‘seen’ using the DWT coefficients.

The wavelet transform has already found uses in exploration geophysics. One of the
earliest papers on the subject was that by Goupillaud, Grossmann and Morlet (1984)
and further use of the transform was made by Morlet et al. (1982a, b) in a study of the
propagation of plane waves. While this paper was under review, Pike (1994) showed
how the modulus of the wavelet transform could be used towards classification of
scatterers in high resolution marine seismic data; he also used the wavelet transform for
attenuation estimation. These studies used the continuous rather than discrete wavelet
transform. Interestingly, Pike (1994), who used the Morlet wavelet, comments that
‘Examination of alternative wavelets that may be more diagnostic for classification of
scattering should be pursued.’ We examine wavelet choice here. Finally, Olmo, Lo
Presti and Spagnolini (1994) showed how the wavelet transform can be utilized for
velocity analysis.

In this application we extract trace segments between consecutive geological events
which have been identified on the sections: these segments thus refer to the same
geological interval. The basic DWT, like the simplest fast Fourier transform, needs a
data length which is a power of 2. Hence, for convenience we take all the segments to
consist of the same number of points, some convenient power of 2, which keeps all
segments within a geological interval defined by top and bottom reference events; all
segments start at the top reference event.

The discrete wavelet transform

The discrete wavelet transform (DWT ) decomposes an input data sequence
X ¼ ðx1; . . . ; xN ÞT into so-called wavelet coefficients, which capture the behaviour of
the sequence at different scales or frequencies. In our application, think of the
‘sequence’ as the trace segment amplitudes at a particular location; Fig. 2a shows 32
such amplitudes. One way of considering the transform is in the context of
‘multiresolution analysis’: looking at or approximating the sequence in some way at
different scales. The wavelet coefficients then characterize the differences between
these successive approximations. The transform can also be considered as a series of
filtering operations for extracting information from contiguous octave bands in the
frequency-domain representation of the sequence.
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The detailed mathematical background to wavelets can be found in Daubechies
(1992). An interesting review and comparison with the Fourier transform can be found
in Strang (1993). Another application to clustering is that of Bradshaw and Spies (1992).

Here we do not go into mathematical details, but seek merely to explain the structure
of the transform and several aspects of its behaviour.

The transform

The DWT can be written as a matrix W operating on an input sequence
Xp ¼ ðx1; . . . ; xN ÞTu ðxp;1; . . . ; xp;N ÞT say, where N ¼ 2p Note that a subscript p has
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Figure 2. (a) A segment of seismic trace of length N ¼ 25 ¼ 32 (b) and a naı̈ve display of the
resulting DWT coefficients which does not indicate the different scales involved.



been added to the original sequence to emphasize that it is of length 2p; the original
sequence is said to be at scale 1. We denote the transformed sequence by

Z ¼ WXp:

The transform used is orthogonal, so that

Xp ¼ W¹1Z ¼ W TZ:

What is the nature of the transform? At each (decreasing) step, starting at m ¼ p ¹ 1,
the current x-sequence is ‘filtered’ with a low-pass filter fglg to produce the next set of
scaling coefficients:

xm;k ¼
X

L¹1

l¼0

glxmþ1; lþ2k¹1; k ¼ 1; . . . ; 2m
; ð1Þ

where L is the length of the filter. The output is a low-pass or smoothed version of
the input, and the number of points output is the number input divided by 2; the
x-sequence is said to have been ‘decimated’, ‘down-sampled’ or ‘down-scaled’ by a
factor of 2. At each stage the current x-vector component is also ‘filtered’ with another
filter fhlg, which this time is a high-pass filter to produce the next set of wavelet
coefficients:

dm;k ¼
X

L¹1

l¼0

hlxmþ1; lþ2k¹1; k ¼ 1; . . . ; 2m
: ð2Þ

There are two important points to note about (1) and (2).
[i] Although fglg and fhlg are referred to as wavelet filters, the operations in (1) and

(2), as commonly used in the literature, are inner products rather than convolutions.
[ii] While, at the first step, fdp ¹1;kg is associated with changes on a scale of one,

fxp ¹1;kg is associated with averages on a scale of two: the scales associated with the
outputs of the high- and low-pass filters thus differ by a factor of two. The sequence
fxm;kg is said to be at scale 2p¹m ¼ N =2m, and fdm;kg is said to be at scale 2p¹m¹1 ¼

N =2mþ1.
Eventually, after p steps, we end up with X 0 ¼ x 0;1 and all the accumulated detail or

wavelet coefficients, so that the transform can be written

Xp ¼ x1; . . . ; xN

ÿ �T→ x0;1; d0;1
|{z}

scaleN =2

d1;1; d1;2
|����{z����}

scaleN =4

; . . . ; dp¹1;1;...;dp¹1;2 p¹1

|������������{z������������}

scale1

� �T

¼ Z; ð3Þ

where coefficients of the same scale are bracketed. The nature of the transform is
illustrated in Fig. 3.

In order to avoid tedious technicalities we shall ignore filtering ‘end effects.’ Suffice it
to say that we use an implementation with periodic or wrap-around boundary
conditions.
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The filters are the key to the method and the nomenclature. The filters satisfy two-
scale difference equations,

fðtÞ ¼ 21=2
X

l

glfð2t ¹ l Þ;

and

wðtÞ ¼ 21=2
X

l

hlfð2t ¹ l Þ;

The function f(·) is called the scaling function of w (·) is the wavelet function. The low-
pass filter fglg is directly related only to the scaling function, so that coefficients derived
using the low-pass filter, such as in (1), are called scaling coefficients. The high-pass
filter fhlg is related to the wavelet function (and the scaling function), so that
coefficients derived using the high-pass filter, such as in (2), are called wavelet
coefficients.

Display of the wavelet coefficients

The naı̈ve way to display the results of applying the DWT to a sequence, namely the
elements of Z in (3), is shown in Fig. 2b for a particular segment of length N ¼ 25 ¼ 32
extracted from a seismic trace ( Fig. 2a). However, from (3) we can see that each
wavelet coefficient dm;k is associated with a particular scale and thus they are ‘defined’
over different ranges. A suitable way of displaying the coefficients to highlight this is the
so-called ‘scalogram’, an image array where the x-axis references time ( location) and
the y-axis references scale. In Fig. 4, each row corresponds to a particular scale, with
the bottom row being the original sequence. Note that here p ¼ 5 so that the finest scale
is 1 (m ¼ 4) and the coarsest is 8 (m ¼ 1); we do not display the value d0;1 since it is a
constant across the range of the data.

The bottom plot is of the original data X5 ¼ ðx5;1; . . . ; x5;32Þ
T, the next to bottom is of

D4 ¼ ðd4;1; . . . ; d4;16Þ
T, and the top is of D1 ¼ ðd1;1; d1;2Þ

T. To represent the ranges of the
coefficients we plot them as horizontal bars rather than on a grey scale, one benefit of
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Figure 3. Illustration of the steps involved in the DWT. The down-arrow followed by a 2
indicates decimation or down-sampling by 2.



such a display being that coefficients for different series can be plotted on top of one
another (see e.g. Fig. 7 ).

Choice of the wavelet

The elements of the original sequence are related to the wavelet coefficients through

xn ¼
X

p¹1

m¼0

X

2 m

k¼1

dm;kwm;n¹2p¹mk þ x0;1f0;n¹N : ð4Þ

Here the sequences fwm;ng are called wavelet sequences for scale 2p¹m¹1. (These
sequences are defined recursively using the same low- and high-pass filters, fglg and
fhlg. Note that the sequence fwm;n¹2p¹mkg is just the same as the sequence fwm;ng after a
shift of 2p¹mk, and hence has the same ‘shape.’ From (4) we see that a wavelet
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Figure 4. A scalogram. The bottom row shows the same segment of seismic trace as in Fig. 2.
Each row shows the detail coefficients, for scale 1 (m ¼ 4) up to scale 8 (m ¼ 1).



coefficient dm;k will be large if the sequence fx1; . . . ; xNg contains a shape of the form
fwm;n¹2p¹mkg. The sequences fwm;n¹2p¹mkg, m ¼ 0; . . . ; p ¹ 1; k ¼ 1; . . . 2m play the role
of the sines and cosines in Fourier analysis. Together with the scaling sequence
ff0;n¹Ng they are called basis functions. Under an assumed regularity condition, the
wavelet sequences when plotted on an appropriate scale converge, with decreasing m,
to the continuous wavelet w(t). Hence, roughly speaking, the wavelet coefficient at a
particular scale and location will be large whenever the data sequence contains a shape
similar to a scaled version of the wavelet w(t) at that location. This raises the question of
which sort of wavelet filter coefficients to choose in our application.

Clearly, the choice will have an effect on the coefficients of the transform. We have
been investigating the use of Daubechies’ compactly supported wavelets (Daubechies
1992). These are straightforward to implement, and, due to their compact support,
behave well. For example, even a small number of filter coefficients (four or more)
guarantees good octave-band concentration at each scale, and as more coefficients
are used, the wavelet becomes smoother in a predictable way. These form a family
of wavelets with increasing regularities which can locally approximate polynomial
functions of increasing degrees. They are defined and indexed by the number of filter
coefficients used in their construction, which is also related to the local continuity of
functions they can represent, i.e. the wavelet constructed from four coefficients can
represent piecewise linear functions; increasing the number of coefficients by 2 adds
one degree to the local polynomials they can represent. Furthermore, a Daubechies
wavelet corresponding to a filter with L coefficients (L even) has L /2 vanishing
moments; such vanishing moments ensure a fast decay of the wavelet coefficients,
which is desirable for a sparse representation of the seismic trace segment. Figure 5
shows several continuous wavelets w(t) from this family (using long sequences in order
to show sufficient detail in the plot). Recall that these are the shapes to which the
wavelet sequences converge.

While fglg is a low-pass filter, and fhlg a high-pass filter, so that the amplitude
responses of these filters is clear, there is obvious flexibility in the way the phase
properties of these filters are chosen. Daubechies (1992) examined both minimum-
phase and close to linear-phase choices. The first eight plots of Fig. 5 are wavelets
generated using different numbers of minimum phase filter coefficients; an example
filter is given in Fig. 6a. For convenience we shall call these the MP family.

The last seven functions shown in Fig. 5 are wavelets generated from different
numbers of close to linear phase filter coefficients; an example filter is given in Fig. 6b.
The latter are often called the ‘least asymmetric’ (LA) family. For the same number of
filter coefficients, these wavelets are not as smooth as the MP class, but have better
phase properties, i.e. can be made close to zero phase by a time shift.

Different choices of wavelet shape might be better tuned to particular data or to
capturing particular features of data. A large wavelet coefficient will occur where the
wavelet at that scale matches a similarly shaped waveform present in the trace. Hence,
the asymmetric wavelets might not be a good choice if the seismic traces have been
zero-phased; the least asymmetric wavelet would seem a more natural choice. Figure 7
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shows the transform of the same data sequence for different wavelet filter coefficients;
first column: MP 4 and 6 filter coefficients, second column: MP 4 and 8 filter
coefficients, third column: MP 4 and LA 16 filter coefficients. In each column the
result using MP 4 filter coefficients is shown by the solid line.
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Figure 5. A selection of continuous wavelets w(t). The first eight plots (top to bottom, left to
right) are MP wavelets; the last seven are LA wavelets. Number of coefficients used in generating
are as specified.



We might like to choose the wavelet filter coefficients based upon the accuracy with
which we can reconstruct the data sequence from a fixed number of coefficients, or on
how accurately certain features are reconstructed from fewer coefficients. Figure 8
shows the error sum of squares in reconstruction (the seismic traces have been
normalized to have a sum of squares of unity) when using 16 ( Fig. 8a) and 8 ( Fig. 8b)
of 32 coefficients for reconstruction for different wavelets. Reconstruction of 1000
traces was carried out.

The error over the 1000 cases is represented by box-plots: the middle horizontal bar
marks the median error, the top and bottom of each black ‘box’ marks the top and
bottom of the interquartile range of the error, while the top and bottom bars mark 1.5
times the interquartile range. The odd horizontal bars show a few outlying and atypical
results. To distinguish different choices of wavelet filter coefficients we label each with
‘LA’ or ‘MP’ together with the number of coefficients i. ( Note that MP2 corresponds
to the special Haar wavelet transform.) This plot suggests that MP12 and MP16
provide the best reconstructions for this data set, although not by very much.
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Figure 6. Two examples of generating filters: (a) minimum-phase (MP), and (b) close to linear
phase or ‘least asymmetric’ (LA).



Choice of the wavelet is not completely determined; it may be useful to try several
different wavelets. A benefit could be gained from constructing a suitable wavelet to
match the processing/application, e.g. LA for zero-phased data and MP for minimum-
phase data. This is a potentially valuable research area (see e.g. Pike 1994).
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Figure 7. Scalogram, shown by dashed lines, of same data sequence (bottom) for different
wavelets, using, from left to right, MP 4 and 6 filter coefficients, MP 4 and 8 filter coefficients,
MP 4 and LA 16 filter coefficients. In each column the result using MP 4 filter coefficients is
shown by the solid line. The dashed line for the top-right plot is off-the-scale.



Wavelet properties

We consider the effect on the transform of a linear transformation of the input
sequence. If we rescale the input signal so that X0

p ¼ aXp, then WX 0
p ¼ aWXp ¼ a Z and

all coefficients simply get rescaled. Thus, once we have extracted the original energy of

Characterizing seismic time series 195

q 1997 European Association of Geoscientists & Engineers, Geophysical Prospecting, 45, 183–205

Figure 8. Figure 8. The error sum of squares in reconstruction of seismic traces using the DWT
when using (a) 16 and (b) 8 of 32 coefficients for reconstruction for different choices of wavelet
filter coefficients. Reconstruction of 1000 traces was carried out. The error over the 1000 cases is
represented by box plots (see text for details on interpretation). To distinguish different choices
of wavelet filter coefficients, each case is marked by ‘MP’ or ‘LA’ together with the number i of
coefficients used in the transform. (Note MP 2 corresponds to the special Haar wavelet
transform.)



the data sequence, SN
i¼1x2

i , we work with normalized sequences. Note that since the
transformation is orthogonal,

ðWXpÞ
TWXp ¼ XT

p WTWXp ¼ XT
p W¹1WXp ¼ XT

p Xp ¼
X

N

i¼1

x2
i ;

so that energy is preserved.
If X0

p ¼ Xp þ e, where e ¼ ðe1;...;eN ÞT

then WX 0
p ¼ WðXpþeÞ ¼ WXp þ We ¼ Z þ We:

To see the properties of such changes we can look at the transform of the change, We.
If e is a constant vector, i.e. we shift the signal up by a certain amount, then the only
non-zero wavelet coefficient of We is the overall smooth value e0;1 (the transform is
such that the row sums SN

j¼1Wi;j are zero for i Þ 1). This should not be an issue for
seismic signals which are usually zero mean.

To demonstrate the time-frequency localization we display the transform of a single
spike ðe ¼ ð0; . . . ; 0; 1; 0; . . . 0ÞTÞ at sample number 77 (dashes) in a sequence of length
256 ¼ 28 Fig. 9. A MP 4 wavelet was used. The spike produces an effect on
the coefficients at each scale which is confined to a location close to the original
spike, becoming less localized at larger scales. The transform for a spike at sample
number 78 (solid line) is also plotted. The difference between these transforms
highlights a potential weakness of the DWT, which is a lack of translation invariance:
the coefficients are dependent upon the location of the signal. We could capture and
remove the effect of alignment in another ‘attribute’ or variable, using for example,
maximum semblance, thus working with aligned signals before calculating their wavelet
transform.

In the case of attributes derived from the seismic data set, translation can be thought
of as extracting the trace beginning at a different place. For random shifts, as could
occur from mispicking, some ‘bleeding’ of the identified cluster across boundary lines
takes place and the change in structure is not usually too great. However, the
magnitude of this effect will depend upon the scale of the attributes chosen; if we
consider coefficients at higher levels in the DWT, these will be less sensitive to shifts of
the data. The lack of translation invariance, demonstrated by Fig. 9, is an active
research area (see e.g. Simoncelli et al. 1992).

Sequence length

Another issue in this context is that of data sequence length, since we may not always
be able to extract lengths which are convenient powers of two. How we deal with
this depends upon the nature of the data: if the interval defining the segment is of
varying thickness due to, say, erosion, we might expect the signal to be effectively
truncated. In this case we could pad it with zeros to make the length a suitable power
of 2. Alternatively, the waveform may be compressed, or stretched, between two
events, in which case it might be better to capture this in some form of frequency
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variable and resample the trace to a suitable length. In the case when the trace segment
is truncated from 32 to 30 samples, Figure 10 shows the effect on the wavelet transform
of padding with two zeros (first column) and resampling (second column) using a sinc
function. We see that padding with zeros has an effect on the coefficients, particularly
at higher scales, while resampling is clearly wrong and has a large effect on all of
the coefficients. When the trace is compressed, the third column of Fig. 10 shows the
effect of padding with zeros, while the fourth column shows the effect of resampling,
which is virtually indistinguishable from the original data when using a sinc function. In
each case the solid line gives the wavelet coefficients for the original data sequence. It is
clearly important to carry out the most suitable manipulation; geological knowledge
will be important here.

Selection of attributes from the discrete wavelet transform

The wavelet transform of a sequence contains the same number of coefficients as the
original sequence, all of which are necessary to reconstruct the sequence exactly. There
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Figure 9. DWT of a spike, displayed as a scalogram with solid lines, and the DWT of another
spike at the next sample point, displayed as a scalogram with dashed lines.



is however a potential redundancy in parametrization, so that we may hope to reconstruct
the signal reasonably accurately from only a few coefficients of the transform. This is
equivalent to hoping that a few coefficients summarize the main features of the data.
These can then be used for attribute analysis/clustering.
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Figure 10. DWTof a seismic trace segment, displayed as a scalogram with solid lines, and of the
same after some data manipulation. From left to right: after truncation from 32 to 30 points and
padding with zeros to 32 points; after truncation from 32 to 30 points and resampling to 32
points; after compression from 32 to 30 points, and padding with zeros to 32 points, and finally
after compression from 32 to 30 points and resampling to 32 points.



Energy at different scales

A useful summary of dm;k, k ¼ 1; . . . ; 2m is the energy. This provides a decomposition
of the total energy of a signal into that present at different scales, i.e.

X

N

n¼1

x2
n ¼ x2

0;1 þ
X

p¹1

m¼0

X

2m

k¼1

d2
m;k ¼ x2

0;1 þ
X

p¹1

m¼0

Em;

where Em is the energy at scale 2p¹m¹1. The ‘variance’ at each scale, i.e. the energy
normalized by the number of coefficients at that scale, is used by Bradshaw and Spies
(1992), and will have the same properties as the energy. For the sequence shown in
Fig. 4, we display the decomposition of energy for different choices of wavelet filter
coefficients shown in Table 1. Each column contains the energy at increasing scales for
a particular choice, indexed by the number of coefficients; the lower part of the
table refers to the least asymmetric family, which is not defined for less than eight
coefficients. This demonstrates the dependence of energy decomposition on the wavelet
used. However, for a fixed wavelet, different sequences will give different energy-by-scale
decompositions, which can be used as attributes.

The energy decomposition for the different locations of the spike of Fig. 9 (77 and 78 in
a signal of length 256) given in Table 2, shows quite a large change at fine scales (6 and 7),
although the change is mainly confined to these scales, as is also evidenced in Fig. 9.

For the case of the series of length 32 ( Fig. 10) to which various data manipulations
were applied (truncation and padding with zeros or resampling; compression and
padding with zeros or resampling) the energy decomposition is as shown in Table 3.
By comparing this with the energy decomposition of the original trace, also shown in
Table 3, we conclude that, for this example, truncating/padding and compression/
resampling give the most accurate energy decompositions (the latter gives extremely
good reconstruction). Another recent example of the use of zero padding is given by
Wang (1995). Also, resampling is a natural way to ‘undo’ compression of a signal.
Clearly the choice of data manipulation is important in determining an appropriate
energy decomposition.

Using selected coefficients at fine or coarse scales

It is possible that a particular scale or certain locations may be important in
characterizing lateral changes over segments of seismic traces. Let us look again at Fig.
4 for which N ¼ 32 ¼ 25. Suppose we choose as attributes the coefficients (d2;1; d2;2).
These detail coefficients cover the first half of the trace sequence at scale
2p¹m¹1 ¼ 25¹3 ¼ 4. Suppose we choose instead (d3;1; d3;2); these detail coefficients
cover the first quarter of the trace sequence at scale 2. Hence by choosing appropriate
coefficients we can look at different sub-intervals of the trace sequence.

Figure 1 uses d3;1 and d3;2. To see the effect which these appear to be capturing, we
consider a single line from Fig. 1 (Line 1) and examine the stacked seismic section
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Table 2. Energies Em ¼
P2 m

k¼1 d2
m;k for the two spikes shown in Fig. 9 at locations 77 and 78. MP 4

wavelet filter coefficients were used.

m
locn 0 1 2 3 4 5 6 7

77 0.007 0.001 0.014 0.074 0.046 0.028 0.547 0.284
78 0.007 0.001 0.012 0.064 0.030 0.028 0.141 0.717

Table 1. Energies Em ¼ S2m

k¼1d2
m;k for the data sequence shown in Fig. 4. Nine different choices of

wavelet filter coefficients of MP type (top) and seven of LA type (bottom) were investigated.

MP
m 4 6 8 10 12 14 16 18 20

0 0.004 0.000 0.003 0.006 0.003 0.000 0.007 0.008 0.001
1 0.082 0.127 0.022 0.093 0.170 0.014 0.107 0.151 0.013
2 0.285 0.067 0.308 0.156 0.093 0.282 0.122 0.157 0.218
3 0.211 0.423 0.642 0.313 0.474 0.623 0.317 0.537 0.593
4 0.418 0.383 0.025 0.433 0.259 0.080 0.448 0.148 0.176

LA
m 4 6 8 10 12 14 16 18 20

0 0.004 0.002 0.003 0.009 0.002 0.009 0.002
1 0.119 0.097 0.143 0.002 0.159 0.004 0.163
2 0.230 0.126 0.192 0.216 0.149 0.210 0.152
3 0.262 0.750 0.297 0.416 0.350 0.735 0.344
4 0.384 0.025 0.364 0.357 0.340 0.042 0.339

Table 3. Energies Em ¼ S2m

k¼1d2
m;k for the sequence shown in Fig. 10. The rows

of the table are, respectively, for the original sequence, for the sequence
truncated by two with two zeros added, for the sequence truncated by two and
resampled to the original length, for the sequence compressed by two points
with two zeros added, and finally for the sequence compressed by two points
and resampled to the original length.

m
data manipulation 0 1 2 3 4

original 0.001 0.017 0.316 0.379 0.287

trunc./pad 0.008 0.007 0.299 0.385 0.302

trunc./resam. 0.004 0.004 0.253 0.486 0.253
comp./pad 0.003 0.012 0.261 0.502 0.222

comp./resam. 0.001 0.017 0.317 0.378 0.287



(Fig. 11) for this line. Notice that instead of ‘time’ on the y-axis of the section, we have
split our 32 points into fractions of 32, so that e.g. 1/2 corresponds to the 16th point in
the segment of 32 values; this gives a more intuitive correspondence with the idea of the
wavelet coefficients covering different fractions of the sequence, as discussed above.
Plotted in Fig. 11 are some conventional attributes (see the Introduction), along with
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Figure 11. Traces from Line 1 in Fig. 1, together with various attributes plotted above. The
region between shotpoints 380 and 410 corresponds to the cluster of crosses on this line.



d3;1 which covers only the first eighth of each trace (d3;2 of course, covers the second
eighth of each trace). The cluster of crosses shown in Line 1 of Fig. 1 corresponds to
shotpoints 380–410 (the middle panel in Fig. 11). Looking at the section in Fig. 11, we
see that the strong event at the top is hardly present in the interval between 380–410,
while another strong event moves into the top quarter of the segment and then out
again back into the second quarter as we go from left to right. How does this behaviour
manifest itself in terms of our chosen attributes? From Fig. 1 we see that in terms of the
coefficients, d3;1 is relatively low in 380–410 (crosses), while d3;2 is relatively high.

None of the conventional attributes appear to capture this localized behaviour in the
section so clearly. They all work with the entire trace segments. The autoregressive
coefficients (AR 1 and AR 3) from an order-5 autoregressive model are seen to be
highly correlated, and energy and half-time are features describing the entire traces.
Other attributes can certainly be useful for trace characterization. However those
derived from the DWT give us the flexibility to look locally and at different scales.

Figure 12 now shows the same region as Fig. 1, clustered according to high values
(crosses) of the first wavelet coefficient d0;1. The major break between crosses and dots
on Line 2 of Fig. 12 occurs near shotpoint 330 marked in Fig. 13. Crosses are at lower
shotpoints, and dots at higher ones. Shotpoints 300–303 in Fig. 13 also correspond to
dots on Line 2 in Fig. 12. The coefficient d0;1 is a constant across the whole segment,
and in the sense that it ‘represents’ the whole segment, it is more like a conventional
attribute. The behaviours of d0;1 and of the conventional attribute half-time are
remarkably similar in many parts of Fig. 13. We should not be surprised. Half-time is the
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Figure 12. Clustering of survey lines according to high values of first wavelet detail coefficient.



proportion of the trace segment length required to build-up half the total energy in the
trace segment: it is a low-frequency measure. Similarly, d0;1 represents a very low-
frequency octave band, and is hence also a low-frequency measure.

The results shown in Figs 11 and 13 illustrate the flexibility of the DWT coefficients
as attributes: they can be used to give local information on trace differences, or can be
used in a similar way to conventional attributes as a measure of a whole trace segment.

Conclusions

The discrete wavelet transform can parsimoniously represent localized changes in
sequences such as segments of seismic traces. Certain coefficients or functions of
coefficients from the transform might thus capture the effect of changes and can be
used to cluster or discriminate among traces. We have demonstrated the application of
the transform to derive attributes from small segments of seismic traces, which can
be used for trace characterization. Further work is required to understand fully the
features which the transform captures in various combinations of the coefficients.
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Figure 13. Traces from Line 2 in Fig. 12, together with the two attributes, half-time and d0;1.



We have shown that the choice of the type of wavelet filter coefficients needs
consideration, as do uncertainties in picking events and treatment of truncations,
resampling, etc. However, as the algorithm is refined and improved (as was the fast
Fourier transform), the discrete wavelet transform should prove increasingly useful.
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