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Abstract Statistical methods to extract translational equivalents from non-parallel
corpora hold the promise of ensuring the required coverage and domain customisation
of lexicons as well as accelerating their compilation and maintenance. A challenge
for these methods are rare, less common words and expressions, which often have
low corpus frequencies. However, it is rare words such as newly introduced terminol-
ogy and named entities that present the main interest for practical lexical acquisition.
In this article, we study possibilities of improving the extraction of low-frequency
equivalents from bilingual comparable corpora. Our work is carried out in the gen-
eral framework which discovers equivalences between words of different languages
using similarities between their occurrence patterns found in respective monolingual
corpora. We develop a method that aims to compensate for insufficient amounts of
corpus evidence on rare words: prior to measuring cross-language similarities, the
method uses same-language corpus data to model co-occurrence vectors of rare words
by predicting their unseen co-occurrences and smoothing rare, unreliable ones. Our
experimental evaluation demonstrates that the proposed method delivers a consistent
and significant improvement on the conventional approach to this task.
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1 Introduction

Broad-coverage, up-to-date dictionaries are key to multilingual information technol-
ogy. However, as with any sort of hand-encoded linguistic resources, they are extremely
expensive to build and maintain, requiring the effort of specially trained lexicogra-
phers. Parallel corpora (texts in two languages where the original is aligned with its
translation at the sentence level) can be used to extract new dictionary entries with high
accuracy (Dagan and Church 1997; Tiedemann 1998; Melamed 2000). Unfortunately,
such methods themselves suffer from the acquisition bottleneck: a large amount of
parallel text needs to be produced by translators before it can be used for the discovery
of new dictionary entries.

Bilingual comparable corpora are an alternative, which potentially have very attrac-
tive properties such as much greater possibilities for domain- and language-portability
for a lexical acquisition system. Recognising this potential, in recent years researchers
have begun to explore possibilities of using comparable corpora for this purpose (Fung
1995; Tanaka and Iwasaki 1996; Fung and McKeown 1997; Rapp 1999; Déjean et al.
2002; Gaussier et al. 2004; Robitaille et al. 2006; Morin et al. 2007 inter alia). Bilin-
gual comparable corpora are collections of documents that are not translations of each
other, but are characterised by the same topical composition and style of presentation.
In contrast to their parallel counterparts, it is quite easy to obtain comparable corpora
of the required specification (in terms of domain specialisation, discourse type, size,
origin, period, etc.). Especially with the advent of methodologies and tools to auto-
matically build customised corpora from the web (e.g. Baroni and Berdardini 2004;
Fletcher 2004), one can quickly construct a corpus that would serve as an ample source
of usage examples of new terms that are of interest for the lexicographer.

The key assumption behind comparable corpora approaches is that translationally
equivalent expressions exhibit similar occurrence patterns in the respective monolin-
gual corpora. The general procedure begins by collecting co-occurrence data on words
of potential interest and representing them as context vectors. After that context vec-
tors of different languages are mapped onto a single vector space using a bilingual
dictionary. Translation equivalents are then retrieved as pairs of words that have the
greatest similarity in their vectors.

Unfortunately, the accuracy of existing methods is decidedly suboptimal, if they
were to operate in a fully automatic mode. Fung and McKeown (1997) report a preci-
sion of 0.58 when the correct English translation of a source Japanese word is found
anywhere among the top-100 candidates. The best method in Gaussier et al. (2004)
achieves an F1 score of only 0.32, whereby the retrieval of the equivalent was taken
to be successful when it appeared among the 100 highest-ranking candidates. Morin
et al. (2007) report 30 and 42% correct equivalents found in the top-10 and top-20
system-proposed candidates. The accuracy of the approach appears to improve con-
siderably when one introduces a high frequency cut-off on the words being aligned.
Requiring that words among which a translation is sought have a corpus frequency of
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100 or higher, Rapp (1999) obtains very promising results: 72% of correct translations
were the first-ranked candidates; 89% of translations were found among the top-10
candidates. Chiao and Zweigenbaum (2002) used the cut-off of 100 on English words
and 60 on French words and were able to find the correct translation at the very top of
the candidate list in 20% of cases, and among the top-20 candidates in 60% of cases.

The results of such previous work suggest that the extraction of equivalents from
comparable corpora is quite unreliable on all but the most frequent words. As is
known from work on monolingual lexical acquisition, the amount of corpus data is
an important factor for the co-occurrence model of word meaning (Curran 2004). In
the bilingual context, the data sparseness problem appears to be even more severe.
A possible explanation is that the translation between the matrices of different lan-
guages introduces a lot of noise, coming from the many-to-many mapping between
the vocabularies of the languages, and only more frequent words remain relatively
robust against this noise. The fact that the approach depends on the words being very
frequent renders it rather impractical for its intended purpose: it is infrequent words
such as neologisms or narrow-domain terminology that one is primarily interested in
when compiling or updating a bilingual dictionary.

In this paper we investigate ways to improve the accuracy of retrieval of translation
equivalents for low-frequency words from comparable corpora. We develop an exten-
sion of the similarity-based method for estimating word co-occurrence probabilities
(Pereira et al. 1993; Dagan et al. 1999; Lee 1999) to the problem of modelling addi-
tional context features of rare words. Prior to translating the vectors of source words
into the vector space of a different language, our method uses same-language corpus
data to predict unseen and smooth unreliable co-occurrences of rare words.

The organisation of the paper is as follows. In Sect. 2, we describe in more detail
the standard procedure for finding equivalents in comparable corpora. In Sect. 3 we
look at possible solutions to deal with the data sparseness problem in the context of
the present task. In Sect. 4 we consider the distance-based averaging method, and in
Sect. 5 describe its two proposed modifications. Sections 6 and 7 are devoted to the
experimental evaluation of our method of dealing with low-frequency words. Section 8
presents a brief overview of related work. Section 9 summarises conclusions from this
study.

2 Translation equivalents in comparable corpora

While quite a broad range of approaches are described in the literature, most of them
follow the same general algorithm, which can be described as follows. Given a source
word n and a set of words from the target language M , the goal is to find a word
m ∈ M that would be translationally equivalent to n.

In the first step, a context vector for n is created by going over all its occurrences in
a corpus and counting words that appear in its context (e.g. words that are syntactically
related to n, such as verbs of which the noun n is a modifier). The value of each feature
v in the vector is the conditional probability p(v|n) estimated from the corpus counts.
The vector for n is represented as follows:
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C(n) = {p(v1|n), p(v2|n), . . . , p(vi |n)} (1)

where v1 . . . vi are all unique occurrence patterns of n found in the corpus. Context
vectors for words in M are prepared in a similar manner.

Second, a bilingual dictionary is used to create a translation matrix D, where rows
correspond to unique features extracted from the source language corpus, columns to
features of the target language corpus, and cells to the translation relation between the
two sets of words provided in the dictionary, with the value in each cell being either
binary or weighted. The matrix is used to map the vector for n into the vector space
of the target language.

Finally, a (dis)similarity measure such as cosine or Euclidean distance is used to
find the word in M whose vector has the greatest similarity to the vector for n. This
word is taken to be the translation of n.

3 Dealing with data sparseness

To verify the effect of word frequency on this algorithm, we ran a pilot experiment on
six pairs of comparable corpora. We extracted a sample of 1,000 pairs of translation
equivalents from each corpus pair and divided it into 10 equal-sized bands according
to their frequency (Sect. 6 contains a detailed description of this experimental setup).
Figure 1 shows the mean rank of the correct equivalent achieved for each language
pair, in each of the frequency bands.

For all the six language pairs, we indeed find large differences in the algorithm’s
performance in relation to words belonging to different frequency ranges. For exam-
ple, for the most frequent words in the sample, the correct equivalent typically ranks
between 20 and 40, while for the least frequent ones, it can be expected to be found
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Fig. 1 The performance of the standard algorithm with respect to words with different corpus frequencies.
The x-axis shows frequency ranks of source words, with the y-axis showing the mean rank of their correct
translations as assigned by the algorithm
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only between ranks 100 and 180. The general shape of the performance function also
appears to be consistent across language pairs.

This observation calls for a certain way of estimating the probability of occurrence
of rare words in contexts where they failed to occur or occurred too few times. Over-
coming data sparseness by smoothing corpus frequencies is a familiar problem in
NLP, with some techniques, such as Good-Turing and Katz back-off, being the stan-
dard approaches. Comparative studies of methods for estimating bigram probabilities
(Dagan et al. 1999; Brockmann and Lapata 2003; Keller and Lapata 2003) suggest
that class-based smoothing, distance-based averaging, and methods for reconstructing
word frequencies from the web are among the best choices. Class-based smooth-
ing (Resnik 1993) relies on a broad-coverage taxonomy of semantic classes. Such
resources may not be readily available for any given language, and dependence on
them would greatly limit the portability of the overall approach. Web-based estima-
tion of bigram counts (Keller and Lapata 2003) appears impractical for a large-scale
smoothing exercise. Therefore in this study, we opt for distance-based averaging tech-
niques.

4 Distance-based averaging

In the distance-based averaging framework (Pereira et al. 1993; Dagan et al. 1999; Lee
1999; Lee and Pereira 1999), the probability of co-occurrence of two words is mod-
elled by analogy with other words that are distributionally similar to the given ones.
In this study we employ the nearest neighbour variety of the approach, where the set
of distributionally similar words is created ad hoc for each bigram, rather than using
fixed sets obtained by clustering. Lee and Pereira (1999) compared the two methods
on a pseudo-word disambiguation task, but could not conclusively demonstrate that
one method serves as a better model of word co-occurrence than the other. We chose
nearest neighbour averaging because of efficiency considerations.

If the probability of a word n appearing with a context word v cannot be estimated
because of a zero co-occurrence count, the nearest neighbour method computes the
estimate p∗(v|n) as a weighted average of known probabilities p(v|n′), where each
n′ is a close neighbour of n. The weight with which each neighbour influences the
average is determined by its similarity to n:

w(n, n′) = 10−β·sim(n,n′) (2)

where sim(n, n′) is the distance between the distributional vectors of n and n′, and β

is a parameter that diminishes the effect of distant neighbours (in all our experiments
experimentally set to 0.13). The probability estimate is calculated based on K nearest
neighbours as follows:

p∗(v|n) =
∑

n′∈K

p(v|n′) · w(n, n′)
norm(n)

(3)
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where norm(n) = ∑
n′∈K w(n, n′) is a normalisation factor to ensure probabilistic

context.

5 Constructing smoothed context vectors

We wish not only to predict probabilities for unseen co-occurrences, but also to smooth
known, but unreliable probabilities for low frequency words. In the latter case, the cor-
pus-estimated probability p(v|n) participates in the calculation of the average p∗, with
the weight γ :

p∗(v|n) = γ · p(v|n) + (1 − γ ) ·
∑

n′∈K

p(v|n′) · w(n, n′)
norm(n)

(4)

Here, γ controls the amount by which the corpus-estimated probability is smoothed.
We propose and evaluate two ways to estimate this variable.

The first one is a heuristic based on the idea that γ should be a function of the fre-
quency of n: the less frequent n is, the more its corpus-estimated probabilities should
be smoothed with data from its neighbours. It computes γ as a ratio between the log-
transformed counts of n and the most frequent word in the data. This has the effect
that the most frequent word will not be smoothed at all, while the least frequent ones
will be mainly estimated from the data on their neighbours:

γ = log f (n)

log maxx∈N f (x)
(5)

The motivation for log-transforming the counts is the same as in many versions of
the tf.idf indexing functions: it is meant to downplay differences between high-fre-
quency nouns, which are likely to be less important than the same differences between
low-frequency nouns.

The second method estimates γ based on the performance of the algorithm on a
held-out set of translation equivalents. First, the held-out word pairs divided into a
number of frequency ranges are used to find out the mean rank of the correct trans-
lation for each frequency range. Then, function g(x) is interpolated along the points
corresponding to the mean ranks in order to predict the rank for some new word, given
its frequency. γ is determined from the ratio between the predicted rank of n and the
random rank (RR), which is taken to be the lowest possible bound on the mean rank:

γ = 1 − g(n)

RR
(6)

Figure 2 illustrates the two smoothing methods, showing γ values computed for
the English–French and German–Spanish pairs using these methods. As one can see,
the shape of each function is very similar for the two different language pairs. The
smoothing methods, however, appear to prescribe different amounts of smoothing for
rare words: the performance-based method is more conservative than the heuristic
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Fig. 2 The values of γ computed using the heuristic and the performance-based method, for the English–
French and the German–Spanish datasets

method. For example, for the bottom frequency range the former method will smooth
the words by approximately 25%, while the latter will do so by 75% with data on the
nearest neighbours of the word.

Another modification of the standard algorithm that we introduce aims to reflect the
intuition that infrequent neighbours are likely to decrease the quality of the smoothed
vector, because of their unreliable corpus-estimated probabilities. We study the
effect of discarding those neighbours that have a lower frequency than the word being
smoothed.

6 Experimental setup

6.1 Dictionary

We evaluated the proposed method on translation equivalents for nouns in six language
pairs, all pairwise combinations between English, French, German and Spanish. As
the gold standard, we used pairs of nouns extracted from synsets and the multilingual
synset index in EuroWordNet (EWN).1

In a similar manner we extracted pairs of equivalent verbs from EWN for the six
language pairs. These were used to construct the translation matrix necessary for map-
ping context vectors into different languages. During the translation, if a context word
had multiple equivalents in the target language according to the dictionary, we fol-
lowed the previous practice (e.g. Fung and McKeown 1997) and mapped the source
context word into all its equivalents, with its original probability equally distributed

1 http://www.illc.uva.nl/EuroWordNet/
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among them. The average number of translations for each source verb was approxi-
mately the same across the language pairs, and varied between 3.7 (English–French)
and 4.9 (French–Spanish).

6.2 Corpus data

As comparable corpora, we use newsfeed texts from the Wall Street Journal (1987–
1989) for English, Le Monde (1994–1996) for French, die tageszeitung (1987–1989
and 1994–1998) for German, and EFE (1994–1995) for Spanish. The English and
Spanish corpora were processed with the Connexor FDG parser (Tapanainen and
Järvinen 1997), French with Xelda2 from Xerox, and German with Versley’s parser
(Versley 2005). From the parsed corpora we extracted verb–noun dependencies, where
the noun was the head of the direct object phrase. Because German compound nouns
typically correspond to multiword noun phrases in the other three languages, they
were split using a heuristic based on dictionary look-up and only the main element of
the compound was retained (e.g. Exportwirtschaft ‘export economy’ was transformed
into Wirtschaft ‘economy’).

6.3 Evaluation nouns

To be able to compare experimental results across language pairs, we needed to make
sure that the evaluation samples contained an equal number of nouns from various
frequency ranges and, as far as possible, that the frequency distributions of the nouns
were similar in all the samples.

We sampled the evaluation nouns in the following manner. For each language pair,
we first created a list of all translation equivalents that were present both in EWN
and in both monolingual corpora with a frequency of at least 5.3 The pairs were then
sorted according to the count of the noun which was the less frequent of the two, on the
assumption that the less frequent word is the better indicator of the difficulty of finding
its equivalent. After that, 1,000 pairs were selected from equidistant locations in the
sorted list, and divided into 10 equal-sized frequency bands, such that the first band
included the top-100 most frequent pairs, the second one contained 100 pairs with
frequency ranks between 101 and 200, and so on. Table 1 presents some descriptive
statistics on the evaluation sets produced by this sampling procedure. As one can see,
the average frequency within each range is very similar across language pairs, with
the exception of the two most frequent ranges.

It should be noted that we did not pre-filter polysemous nouns prior to sampling,
and, on average, each noun had between 1.06 (English, in English–Spanish) and 1.15
(French, in French–German) equivalents in the opposite language within the sample.

2 http://www.xrce.xerox.com/competencies/past-projects/platforms/xelda.html
3 In the following, by “corpus frequency of a noun” we mean the length of the feature vector, i.e. the number
of non-zero distributional features of a noun that we were able to extract from the corpus.
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Table 1 Average number of distributional features within each frequency range, for each of the six evalu-
ation sets (the first column describes the ranges in terms of frequency ranks)

Ranges En–Fr En–Ge En–Sp Fr–Ge Fr–Sp Ge–Sp

1–100 561.2 1114.13 1395.54 644.68 616.31 1591.19

101–200 182.22 257.08 275.54 224.69 211.77 370.64

201–300 95.5 130.92 121.57 125.2 110.83 166.8

301–400 54.21 73.93 61.77 76.34 64.7 90.7

401–500 33.23 45.05 36.28 47.96 39.09 52.35

501–600 21.37 27.43 22.77 29.79 24.97 32.26

601–700 14.52 18.03 15.15 19.33 16.52 20.88

701–800 10.18 12.31 10.32 12.98 11.25 13.82

801–900 7.44 8.53 7.3 8.89 7.9 9.15

901–1000 5.46 5.76 5.4 5.86 5.56 5.9

6.4 Assignment algorithm

To measure the similarity between a source word and a target word we use Jensen–
Shannon Divergence (Rao 1982), which has often been shown to achieve superior
results in comparative studies (e.g. Dagan et al. 1999). Jensen–Shannon Divergence
between words n and m is computed as:

J (n, m) = 1

2
[D(n||avgn,m) + D(m||avgn,m)] (7)

where D(x ||y) is the Kullback–Leibler divergence between two probability distribu-
tions x and y over a set of features V :

D(x ||y) =
∑

v∈V

p(v|x)log
p(v|x)

p(v|y)
(8)

and avgn,m is the average of the distributions x and y.
Once the similarities between the source word and the target words have been

computed, the problem is to select the most likely translation for the source word.
A simple and computationally inexpensive solution is the ‘greedy’ algorithm which
simply assigns the target word with the greatest similarity as the translation for the
source word. However, because in our experiments each source word from a test pair
is assigned to a single target word (either can be present in multiple pairs), the greedy
algorithm does not guarantee optimal assignment for the entire set of source words
and its performance may vary greatly depending on the order in which the words are
processed. Instead, we employ the Hungarian (also known as Kuhn–Munkres) algo-
rithm (Kuhn 1955), which efficiently finds such matching of source and target words
that maximises the sum of similarity scores in the bipartite graph made up of the two
sets of words.
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6.5 Evaluation measure

Following the evaluation procedure adopted in (Utsuro et al. 2003), we note the sys-
tem-assigned rank of the correct translation for each source word and compute a mean
rank over all the pairs in sample.

As was mentioned in Sect. 6.3, the evaluation samples we created contain source
words that have multiple translations among the target words. There is no widely
accepted solution in the literature as to how such cases should be evaluated. For exam-
ple, Rapp (1999) considered the correct translation for a polysemous source word to
be successfully identified if at least one of its translations was discovered. A number
of researchers required that all translations for a source word appear within the top-N
candidates output by the system (Fung and McKeown 1997; Chiao and Zweigenbaum
2002; Gaussier et al. 2004). In our study, since the usage context of a polysemous
source word is not available and it is impossible to decide among its various trans-
lations, each particular translation was taken to have the rank of the highest-ranking
translation of that word.

Additionally, in Sect. 7.6 we evaluate the methods in terms of the proportion of
source words in the evaluation set, for which the correct translation was among the
top-N candidates generated by the system.

7 Results

The baseline in our experiments is the standard algorithm (Sect. 2) without any prior
smoothing of rare words. Its performance achieved on different language pairs with
respect to different frequency bands is shown in Fig. 1. In the following sections, we
report differences to the baseline obtained by different configurations of the extended
algorithm.

7.1 Nearest neighbour smoothing

We first examined how nearest neighbour smoothing affects the performance of the
standard algorithm. The smoothing of the probability in the vector for each noun was
carried out according to Eq. 4, with γ set to 0, and the noun being smoothed was
included into the nearest neighbour set.

The nearest neighbours are determined from the entire set of nouns extracted from
the monolingual corpus, not only from nouns included into the evaluation sample. In
the experiment, we varied k, the number of nearest neighbours, between 1 and 1,000.
Table 2 shows the differences in the mean rank achieved by the most optimal values
of k.

Most of the time, smoothing noun vectors with nearest neighbours actually harmed
the performance. While there are a few ranges for some language pairs where a lower
mean rank was reached in comparison to the baseline, the average over frequency
ranges was worse than that of the baseline (the mean rank increased by 2.9–14%),
with the exception of the German–Spanish pair where the decrease in the mean rank
was hardly noticeable (0.2%). These results indicate that corpus data on the nearest
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Table 2 Changes of the mean rank of the correct translation with respect to the baseline after nearest
neighbour smoothing

En–Fr En–Ge En–Sp Fr–Ge Fr–Sp Ge–Sp

1–100 +14.6 +8.7 +13.4 +6.1 +4.9 +6.6

101–200 +10.5 +11.3 +7.3 +1.9 −3.0 +6.2

201–300 +9.2 +2.3 +18.0 −5.7 −5.7 −7.7

301–400 +14.5 +3.8 +8.7 −2.4 +5.5 −12.2

401–500 +16.3 +14.3 +13.4 +2.7 +10.9 −13.7

501–600 +24.9 +7.5 +9.3 −0.6 +4.4 +1.4

601–700 +9.4 +2.4 +6.6 +14.2 +9.5 +12.2

701–800 +25.9 +12.6 +13.2 +17.2 −4.4 +2.4

801–900 +14.8 +10.8 +14.8 +5.1 −3.8 +4.7

901–1000 +19.2 +2.6 +16.4 +6.8 +6.9 −2.0

Average +15.9 +7.6 +12.1 +4.5 +2.5 −0.2

neighbours cannot completely replace the data on a particular word of interest, which
may possibly be explained by insufficient quality of the data available on the neigh-
bours as well as the fact that for many words, the actual corpus-attested probabilities
constitute the most valuable evidence for building the model of their meanings.

7.2 Removing less frequent neighbours

Our next experiment consisted of smoothing vectors as in the previous experiment, but
excluding those nouns from the set of nearest neighbours that had a corpus frequency
below that of the noun being smoothed. Less frequent neighbours of a word are going
to ‘dilute’ its vector, rather than supply missing corpus data. We therefore chose to use
all neighbours for smoothing that were more frequent than the word being smoothed.
After removing infrequent nearest neighbours, we expanded the set of neighbours
accordingly. Table 3 describes the effect of this modification.

The removal of infrequent neighbours resulted in a noticeably better performance
in lower frequency ranges: for ranges 301–400 and above the reduction was generally
more than 10 points for all language pairs. In the top two ranges, smoothing still often
led to higher mean ranks.

Considering the performance on the entire sample (the last row in the table), dis-
carding infrequent neighbours entailed a modest reduction of the mean rank with
respect to the baseline for all the language pairs (between 0.7 and 15.1 points, 0.9 and
18% in relative mean rank reduction). According to a two-tailed paired t-test,4 the
reduction was significant in three pairs at p < 0.001: French–German (t = 6.78),
French–Spanish (t = 4.73), and German–Spanish (t = 8.08), but in the other three
pairs the test failed to indicate any significance in the improvement.

4 df (degrees of freedom) = 1,000 in all the tests reported below.
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Table 3 Changes of the mean rank with respect to the baseline, after the removal of infrequent neighbours

En–Fr En–Ge En–Sp Fr–Ge Fr–Sp Ge–Sp

1–100 +2.3 +9.1 +10.5 +4.7 +3.7 +5.5

101–200 +1.5 +8.2 +4.2 −7.3 −2.8 −2.4

201–300 −1.4 −4.7 +4.7 −9.5 −10.6 −11.8

301–400 −11.1 −11.3 −10.0 −22.4 −7.6 −20.2

401–500 −18.7 −13.5 −10.2 −20.2 −7.0 −37.1

501–600 −9.1 −14.2 −9.1 −35.3 −16.5 −15.0

601–700 −0.2 −7.5 −25.9 −22.6 −21.1 −23.6

701–800 −5.1 −12.2 −6.4 −17.9 −34.4 −30.0

801–900 −10.4 −9.8 −4.7 −24.8 −25.7 −32.7

901–1000 −13.6 −26.7 −12.1 −15.6 −4.9 −27.4

Average −1.0 −0.7 −1.6 −13.5 −8.9 −15.1

Table 4 Changes of the mean rank for the heuristic estimation of γ with respect to the baseline

En–Fr En–Ge En–Sp Fr–Ge Fr–Sp Ge–Sp

1–100 +1.1 +1.8 +11.2 −0.3 −0.1 +3.9

101–200 −4.2 −2.0 −3.1 −10.6 −6.6 −5.5

201–300 −13.4 −17.9 −6.9 −20.1 −15.0 −15.8

301–400 −24.0 −22.6 −23.4 −29.0 −15.9 −30.2

401–500 −36.9 −31.7 −25.0 −35.9 −17.0 −45.0

501–600 −38.7 −41.4 −30.2 −49.1 −29.6 −30.9

601–700 −36.0 −39.5 −39.5 −40.3 −33.3 −33.5

701–800 −39.2 −47.2 −30.1 −37.8 −41.3 −38.2

801–900 −39.4 −34.8 −20.4 −41.8 −31.3 −45.9

901–1000 −32.3 −47.8 −33.1 −32 −15.8 −34.6

Average −23.3 −26.0 −16.9 −27.7 −18.4 −25.3

In all the following experiments, less frequent neighbours were excluded from the
set of nearest neighbours.

7.3 Heuristic estimation of γ

We next examined the performance of the algorithm when the gamma in Eq. 4 was set
to be a function of the frequency of the noun being smoothed. Table 4 describes the
mean ranks achieved when γ was calculated heuristically according to Eq. 5.

We see that conditioning γ on the frequency of the word being smoothed leads to
even better results. With the exception of the most frequent band, all frequency ranges
for all language pairs demonstrate lower mean ranks compared with the baseline. In
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Table 5 Changes of the mean rank for the performance-based estimation of γ with respect to the baseline

En–Fr En–Ge En–Sp Fr–Ge Fr–Sp Ge–Sp

1–100 +5.1 +2.0 +12.7 −2.8 +0.2 +3.4

101–200 −2.6 +1.4 −2.2 −9.9 −6.5 −5.7

201–300 −11.6 −16.6 −5.0 −20.3 −15.3 −14.5

301–400 −24.2 −22.2 −23.1 −29.8 −14.9 −29.0

401–500 −38.2 −32.7 −24.6 −37.7 −17.3 −45.4

501–600 −37.7 −45.2 −29.7 −55.7 −29.2 −31.0

601–700 −33.0 −39.9 −40.4 −43.2 −34.3 −33.2

701–800 −32.6 −49.3 −25.8 −33.5 −40.1 −37.7

801–900 −31.4 −33.6 −13.6 −36.3 −29.8 −43.2

901–1000 −18.8 −46.7 −30.6 −27.7 −10.4 −35.9

Average −17.2 −23.5 −14.2 −26.3 −16.7 −24.5

general, it seems that better improvements are achieved on words with lower frequen-
cies: while for the 101–200 range the improvement is under 10 points, for the 201–300
range, it is between 10 and 20 points, and for ranges above 301 it is often over 30
points.

Comparing the mean rank on the entire sample against the one achieved with the
baseline, we see improvements for all language pairs; the mean rank is reduced by
between 13.7 and 25.5%. The improvement is statistically significant at p < 0.001
across the board: English–French (t = 14.92), English–German (t = 17.34), English–
Spanish (t = 10.09), French–German (t = 18.95), French–Spanish (t = 13.41),
German–Spanish (t = 17.32).

7.4 Performance-based estimation of γ

We then examined an alternative method of computing γ , based on a function esti-
mated from the performance of the method on a held-out set of words (Eq. 6). Table 5
describes the results of this experiment. We observe results similar to those obtained
with the heuristic computation of γ : infrequent nouns tend to benefit more from this
smoothing technique, and only in the topmost range does the performance exhibit a
slight degradation.

Considering the mean rank for the entire sample, it is also substantially lower than
the baseline, the mean rank reduction being between 11.8 and 24.5%. The differ-
ences are significant at p < 0.001 for all language pairs: English–French (t = 8.89),
English–German (t = 12.89), English–Spanish (t = 7.73), French–German (t =
15.34), French–Spanish (t = 10.5), German–Spanish (t = 16.09).

Comparing the two ways of computing γ , we find that the heuristic approach
delivers consistently lower mean ranks. The difference is significant for all language
pairs: at p < 0.001 for English–French (t = 6.83), English–German (t = 3.6), and
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Fig. 3 The relationship between the number of nearest neighbours used for smoothing (k), the mean rank
of the correct equivalent and the frequency rank, illustrated on the English–French data when using the
heuristic method for estimating γ

French–Spanish (t = 3.56); at p < 0.01 for English–Spanish (t = 2.57) and at p <

0.025 for French–German (t = 2.31).

7.5 Number of nearest neighbours

Figures 3 and 4 depict the relationships between the mean rank, the frequency range
of the noun, and the number of nearest neighbours used for smoothing.5 For both the
heuristic and the performance-based smoothing techniques, we see that the highest
mean ranks are achieved for the least frequent words when no smoothing is performed
or where very few neighbours are used for smoothing. The mean ranks for low-fre-
quency words decrease steeply with an increase in k and they generally plateau at k
between 40 and 100. The more frequent the words, the less they benefit from smooth-
ing: the mean rank for the most frequent words does not appear to change much with
alterations of k. Although infrequent words demonstrate the greatest reduction of the
mean rank, they still perform worse than the frequent words.

5 We show the figures only for two language pairs, English–French and German–Spanish, which illustrate
the relationships between the three parameters that were found to be similar across all language pairs.
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Fig. 4 The relationship between the number of nearest neighbours used for smoothing (k), the mean rank
of the correct equivalent and the frequency rank, illustrated on the German–Spanish data when using the
performance-based method for estimating γ

7.6 Top-N candidates

Following a number of previous studies (e.g. Fung and McKeown 1997; Chiao and
Zweigenbaum 2002; Gaussier et al. 2004), we additionally evaluated the smoothing
methods in terms of accuracy, measuring the proportion of source words in the sam-
ple, for which the correct translation was among top-N candidates generated by the
system. Table 6 shows the accuracy scores achieved by the baseline method and the
two smoothing methods (for both, 40 nearest neighbours) for different values of N ,
for different language pairs.

We see that when considering only the top-most candidate proposed by the system,
there is almost no difference between the accuracy scores of the baseline and those
of the smoothing methods. On different language pairs, all three methods retrieve the
correct equivalent for about 10% of all source words. However, as one increases the
candidate list, the positive effect of smoothing begins to be seen: at greater values of
N , both smoothing methods gain by up to 15 points over the baseline. These results
seem to suggest that cases when the highest-ranked candidate is the correct translation
involve the most frequent words, for which smoothing does not help much. Trans-
lations for less frequent words, however, are very seldom found at the very top of
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Table 6 Accuracy scores for the heuristic and the performance-based smoothing methods, together with
the baseline method, considering the top-N candidate translations

1 5 10 25 50 75 100 150 200

English–French

Baseline 0.078 0.145 0.209 0.303 0.394 0.480 0.538 0.685 0.841

Heuristic 0.084 0.180 0.233 0.342 0.468 0.578 0.650 0.805 1.00

Performance 0.084 0.164 0.239 0.324 0.453 0.544 0.621 0.776 0.949

English–German

Baseline 0.090 0.194 0.258 0.359 0.467 0.546 0.611 0.741 0.864

Heuristic 0.110 0.247 0.324 0.437 0.562 0.632 0.715 0.840 1.00

Performance 0.093 0.226 0.301 0.421 0.550 0.628 0.695 0.836 1.00

English–Spanish

Baseline 0.072 0.163 0.201 0.300 0.380 0.450 0.519 0.658 0.772

Heuristic 0.071 0.183 0.239 0.334 0.431 0.510 0.573 0.712 0.862

Performance 0.070 0.177 0.237 0.324 0.417 0.496 0.579 0.707 0.835

French–German

Baseline 0.096 0.186 0.257 0.363 0.483 0.551 0.615 0.752 0.906

Heuristic 0.103 0.245 0.329 0.462 0.592 0.696 0.758 0.918 1.00

Performance 0.100 0.248 0.326 0.464 0.599 0.685 0.754 0.913 1.00

French–Spanish

Baseline 0.088 0.194 0.250 0.359 0.472 0.546 0.613 0.730 0.889

Heuristic 0.099 0.212 0.293 0.406 0.529 0.626 0.699 0.835 1.00

Performance 0.099 0.208 0.296 0.404 0.520 0.616 0.690 0.834 1.00

German–Spanish

Baseline 0.084 0.188 0.250 0.359 0.468 0.550 0.624 0.765 0.911

Heuristic 0.105 0.239 0.311 0.436 0.591 0.688 0.757 0.904 1.00

Performance 0.108 0.223 0.306 0.435 0.578 0.685 0.753 0.896 1.00

the candidate list, with or without smoothing, but smoothing does help to bring their
correct translations higher up the ranking list.

8 Related work

The main focus of many previous studies on the topic has been the problem of deter-
mining the similarity between co-occurrence vectors of words belonging to different
languages. Rapp (1995) represents one of the first attempts to use co-occurrence analy-
sis for translation pair discovery. The approach first constructs two words-by-contexts
matrices for the two languages and then, in order to create a mapping between them,
permutes the order of words in the source language matrix until the patterns in the two
languages correspond. The method of Fung (1995) establishes similarities between
vectors belonging to different languages exploiting the principle of context hetero-
geneity, the idea that translation pairs can be captured by their similarity in terms of
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the heterogeneity of their context vectors. Fung and Yee (1998) describe an IR-like
approach where a lexicon of seed words is employed to detect the environment of an
unknown word, for subsequent coupling to the most similar one in the target language.

Most approaches, however, employ a translation matrix, which makes it possible to
associate each component of a vector in one language with components of the vector
space of the other language. To create a translation matrix, these approaches use an
existing, possibly general bilingual dictionary (e.g. Tanaka and Iwasaki 1996; Fung
and McKeown 1997; Chiao and Zweigenbaum 2002; Gaussier et al. 2004). To custom-
ise the translation matrix to the domain at hand, Rapp (1999) starts with only a small
number of seed translation pairs and augments this translation matrix with more dimen-
sions as the algorithm finds more equivalent terms in the corpus. Déjean et al. (2002)
enriched the translation matrix prepared from an available dictionary with a hierarchi-
cal multilingual thesaurus. A number of studies (Daille and Morin 2005; Robitaille
et al. 2006) augmented this approach with techniques for multi-word recognition and
alignment to extract equivalents for multi-word expressions from comparable corpora.

There have been only a few attempts to explicitly counter the problem of polysemy
and synonymy of context words that are used for constructing the translation matrix.
Tanaka and Iwasaki (1996) disambiguated the senses of the context expression using
its local context and a bilingual dictionary. Fung and McKeown (1997) remove from
the translation matrix those context words that have multiple translations, which them-
selves translate into more than one word. In order to diminish the effects of the poly-
semy and synonymy of context words, Gaussier et al. (2004) incorporate probabilistic
latent semantic analysis (PLSA) into the standard approach to retrieve translational
equivalents. Morin et al. (2007) demonstrated that the quality of co-occurrence vectors
can be substantially improved by ensuring domain and discourse comparability of the
corpora from which co-occurrences are obtained.

Since these studies all used different experimental tasks and data, they cannot be
directly compared with the results of our study. The experimental settings in Gaussier
et al. (2004), however, do appear to be close to ours: they used French–English com-
parable corpora and 1,250 test pairs of words, measuring F1 score on N top-ranking
candidates generated by the system. For 100 top-ranking candidates, they found that
PLSA helps to raise the F1 score by 4 points (from 0.24 to 0.28) and their newly
proposed method for transforming the co-occurrence matrix, also inspired by LSA,
increases the F1 score by 8 points (to 0.32) in comparison with the standard approach.
Applying the smoothing techniques we studied in this paper, we obtain an 11 point
increase in accuracy (from 0.538 to 0.65) for the top-100 candidates, on the same lan-
guage pair (French–English) and similar improvements are obtained on other pairs.
This comparison indicates that the smoothing techniques lead to similar or even greater
improvements than the two LSA-inspired matrix transformation methods.

9 Conclusions

In this paper we addressed the problem of automatic acquisition of pairs of transla-
tionally equivalent words from comparable corpora. Our study was carried out in a
framework which models equivalence between words of different languages via simi-
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larity of their occurrence patterns found in the respective corpora. Our specific goal was
to improve the accuracy of retrieval of equivalents for low-frequency words, which are
particularly vulnerable to noise introduced during translation of co-occurrence vectors
from one language to another.

To address this goal, we develop a method which predicts occurrence patterns
for rare words on analogy with words that are distributionally similar to them. The
method is an extension of the distance-based averaging technique and aims to predict
not only probabilities for unseen word co-occurrences, but also to obtain more reliable
probability estimates for rare corpus-attested bigrams.

Our main results are that smoothing co-occurrence vectors with data supplied by
nearest neighbours harms performance, unless the degree to which a word is smoothed
is conditioned on the frequency of the word being smoothed. We studied two ways to
assess the required amount of smoothing for a given word, a heuristic one and one that
learns the smoothing function from a held-out set of words. Both techniques yield a
significant improvement over the performance of the conventional approach: on aver-
age, the system-assigned rank for the correct equivalent of a low-frequency word was
reduced by up to 47.8 positions (from 146.9 to 99.1, a 32.5% relative improvement) in
comparison with the baseline. This also had a significant positive effect on the overall
performance of the method across different frequency ranges: for all language pairs,
the average rank of the correct equivalent fell by up to 26.3 positions (from 81.0 to
54.7, a 32.4% relative improvement).

Because infrequent words are typically the most interesting ones from a lexico-
graphic perspective, we believe that these results will open up possibilities for a broader
exploitation of comparable corpora by lexicographers. Although the accuracy of the
method is still far short of what would be needed if it were to be directly integrated
into fully automatic applications, it offers considerable practical advantages if used
within a tool to assist a lexicographer to create bilingual lexicon entries. Presented with
an improved ranking of candidate translations for rare source words, lexicographers
would need to spend significantly less time scanning through the list of target words
in order to define the correct translation. While the method was evaluated on single
words, the results we obtained are of direct relevance to the practical task of acquisi-
tion of translations for multi-word domain terminology: multi-word terms tend to have
low corpus frequencies and algorithms for acquisition of translation from comparable
corpora have already been extended to multi-word terms (e.g. Déjean et al. 2002).

Furthermore, the results of this study have a bearing on various multilingual tasks
which previously have been shown to profit from translation equivalents mined from
comparable corpora, including construction of probabilistic translation lexicons for
statistical machine translation (Koehn and Knight 2000), acquisition of equivalent
text fragments from comparable corpora (Munteanu and Marcu 2006), cross-lingual
document retrieval (Utsuro et al. 2003), and cross-lingual text categorisation (Gliozzo
and Strapparava 2006).

While the amount of co-occurrence data on a word is an important factor for meth-
ods seeking to find its equivalents in a comparable corpus, other factors, such as the
degree of comparability of corpora, the size and domain customisation of the lexicon
used to create the translation matrix, and the choice of methods for feature weight-
ing and selection, are likely to have a significant effect on the performance of the
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method in relation to low-frequency words. Future work may focus on these factors
and interaction between them.
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