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Abstract

Each mandarin syllable is represented by a sequence of vectors of linear predict coding cepstra (LPCC). Since all
syllables have a simple phonetic structure, in our speech recognition, we partition the sequence of LPCC vectors of all
syllables into equal segments and average the LPCC vectors in each segment. The mean vector of LPCC is used as the
feature of a syllable. Our simple feature does not need any time consuming and complicated nonlinear contraction and
expansion as adopted by the dynamic time-warping. We propose several probability distributions for the feature values.
A simplified Bayes decision rule is used for classification of mandarin syllables. For the speaker-independent mandarin
digits, the recognition rate is 98.6% if a normal distribution is used for feature values and the rate is 98.1% if an exponential
distribution is used for the absolute values of the features. The feature proposed in this paper to represent a syllable is the
simplest one, much easier to be extracted than any other known features. The computation for feature extraction and clas-
sification is much faster and more accurate than using the HMM method or any other known techniques.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

The rapid spread of computer usage by the human being has stimulated the need for automatic speech rec-
ognition (ASR). The ultimate goal of research on ASR is the construction of machines that are indistinguish-
able from humans in their ability to communicate in natural spoken language. The speech recognition has
been investigated about 40 years. The early research in ASR can be found in [1–4]. In the recent years, a
lot of speech recognition devices with limited capabilities are now available commercially. These devices
are usually able to deal only with a small number of acoustically distinct words. The ability to converse freely
with a machine still represents the most challenging topic in speech recognition research. A speech recognition
system basically contains extraction of features and classification of an utterance. The measurements made on
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the speech waveform include energy, zero crossings, extrema count, formants, LPC cepstrum [5–10] and the
Mel frequency cepstrum coefficient (MFCC) [11]. The LPC method provides a robust, reliable and accurate
method for estimating the parameters that characterize the linear, time-varying, system which is recently used
to approximate the nonlinear, time-varying system of the speech waveform. The MFCC method uses the bank
of filters scaled according to the Mel scale to smooth the spectrum, performing a processing that is similar to
that executed by the human ear. For recognition, the performance of the MFCC was better than the LPC
cepstrum [11]. As to classification of an input utterance, the most successful speech recognition methods
are the pattern matching using dynamic time-warping (DTW) [12–22], vector quantization (VQ) [23–30]
and hidden Markov model (HMM) [31–49]. Since the same word uttered by the same speaker may have
different duration of the same phoneme, the DTW process nonlinearly expands or contracts the time axis
to match the same phoneme or landmark positions between the input speech and reference templates. This
process can usually be accomplished by using the dynamic programming (DP) technique as the method for
comparing patterns. This approach has been proved successful, but the computational cost is extremely high.
The VQ is an information theoretic data compression principle introduced by Shannon [23]. When it is applied
to speech compression, a training sequence is used to generate a set of reproduction vectors (codeword), called
the codebook of the speech. In general, the selection of a perceptually meaningful distortion measure in
clustering and the construction of an optimal codebook are difficult. It is also difficult to apply the VQ to
a large vocabulary because the computational cost is still high in clustering. The theory of HMM was
published by Baum et al. [31], but widespread understanding and applications of the theory of HMMs to
speech processing have occurred only within the past 10 years. The HMM technique has significantly reduced
the computational cost and has been used for large vocabulary connected and continuous speech recognition
applications. The mandarin syllable recognition was recently studied by Wagner et al. [41], Chen et al. [42] and
Lee et al. [47–49] and the digit recognition can be found in [1,3,10,40,50].

It seems to us that all existing speech recognition methods are computationally complex and time consum-
ing. In this paper, we present the simplest, fastest and the most accurate speech recognition method for man-
darin syllables. For feature extraction of a syllable, we just partition the whole sequence of LPCC into equal
segments and use the average of LPCC in each segment to represent the syllable, which does not need any time
consuming and complicated nonlinear compression and expansion as processed in the DTW and for speech
recognition, we simply use a simplified Bayes decision rule where each step is a simple calculation and which
has the minimum probability of misclassification. The recognition results are excellent and the computational
cost is very low.

2. Bayes decision rules

Let X = (X1, . . . , Xk) be the input feature vector of a speech data, which belongs to one of m categories (syl-
lables) ci, i = 1, . . . , m. Consider the decision problem consisting of determining whether X belongs to ci. Let
f(xjci) be the conditional density function of X given category ci. Let hi be the prior probability of ci such thatPm

i¼1hi ¼ 1, i.e., the hi is the probability for the category ci to occur. Let d be a decision rule. A simple loss
function L(ci, d(x)), i = 1, . . . , m, is used such that the loss L(ci, d(x)) = 1 when d(x) 5 ci makes a wrong deci-
sion and the loss L(ci, d(x)) = 0 when d(x) = ci makes a right decision. Let R(s, d) denote the risk function (the
probability of misclassification) of d. Let Ci, i = 1, . . . , m, be m regions separated by d in the k-dimensional
domain of X, i.e., d decides ci when X 2 Ci. Let s = (h1, . . . , hm). Then
Rðs; dÞ ¼
Xm

i¼1

hi

Z
Lðci; dðxÞÞf ðxjciÞdx ¼

Xm

i¼1

hi

Z
Cc

i

f ðxjciÞdx; ð2:1Þ
where Cc
i is the complement of Ci. Let D be the family of all decision rules which separate m categories. Let the

minimum probability of misclassification be denoted by
RðsÞ ¼ inf
d2D

Rðs; dÞ. ð2:2Þ
A decision rule ds which satisfies (2.2) is called the Bayes decision rule with respect to the prior distribution s
and is given in (2.3) [51]. An easy proof is given in Theorem 2.1.
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Theorem 2.1 [51]. The Bayes decision rule with respect to s is defined by
dsðxÞ ¼ ci if hif ðx j ciÞ > hjf ðx j cjÞ ð2:3Þ
for all j 5 i, i.e., Ci = {xjhi f(xjci) > hj f(xjcj)} for all j 5 i.

Proof. The probability of misclassification can be written as
Rðs; dÞ ¼
Xm

j¼1

hj
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f ðx j cjÞdx

¼ hi
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" #
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X
j 6¼i

Z
Cj

hif ðx j ciÞ � hjf ðx j cjÞ
� �

dx
which is minimum since Cj � {xjhi f(xjci) < hj f(xjcj)} for i 5 j by the definition of Cj. h

Note that if hi = 1/m, i = 1, . . . , m, the Bayes decision rule (2.3) becomes a ML classifier. In speech recog-
nition, a possible probability distribution for the feature Xl, l = 1, . . . , k, is the normal or gamma distribution.
Hence, in our experiments, the conditional density f(xjci) is assumed to have normal distributions with
weighted variances or gamma distribution (on the absolute values of Xl) and in order to reduce computational
time, the components of the feature vector X = (X1, . . . , Xk) are assumed to be stochastically independent.

3. Feature extraction

3.1. Linear predict coding cepstrum (LPCC)

The acoustic wave produced in human speech is represented by a continuously varying (or analog) time
waveform and then is digitized by a A/D converter into a sequence of sampled speech signal. The MFCC
was proved to be better than the LPC cepstrum for recognition by using the DTW method [11], but the com-
putational complexity for the MFCC is much heavier than that of the LPC cepstrum. First of all, for the
MFCC, one has to obtain the DFT of all frames of the signal and after the Mel filter banks smooth the spec-
trum, performs the inverse DFT on the logarithm of the magnitude of filter bank output. Our goal in this
study is to find a simple, fast and accurate classification method to identify all mandarin syllables. Therefore,
in this study we use LPC cepstrum in stead of MFCC for recognition. The LPC coefficients can be easily
obtained by Durbin’s recursive procedure [52] and their cepstra can be quickly found by another recursive
equations [52] without computing the DFT and the inverse DFT, which are computationally complex and
time consuming.

Since the LPC method can provide a robust, reliable and accurate method for estimating the parameters
that characterize the linear, time-varying, system, we transform the speech data into the LPC coefficients.
The following is a brief discussion of LPC method. It is assumed [52] that the sampled speech waveform
s(n) can be linearly predicted from the past p samples of s(n). Let
ŝðnÞ ¼
Xp

k¼1

aksðn� kÞ; ð3:1Þ
and let E be the squared difference between s(n) and ŝðnÞ over N samples of s(n), i.e.,
E ¼
XN�1

n¼0

½sðnÞ � ŝðnÞ�2. ð3:2Þ
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The unknown ak, k = 1, . . . , p, are called the LPC coefficients and can be solved by the least square method.
The most efficient method known for obtaining the LPC coefficients is Durbin’s recursive procedure [7,52].
Here in our experiments, p = 16 and N = 200 (the frame size of the Hamming window). In order to apply dis-
tance measures in classification, LPC coefficients are transformed into LPC cepstra (LPCC), which for each
mandarin syllable are represented in a sequence of vectors, each having 16 LPCC. In extracting features,
we only use the first 10 elements of a vector of LPCC because the cepstra in the last few elements are almost
zeros. Here we let p = 10.

3.2. Feature extraction from LPCC

Our method to extract the feature from LPCC is quite simple. Let x(k) = (x(k)1, . . . , x(k)p), k = 1, . . . , n, be
the LPCC vector for the kth frame of a speech waveform in the sequence. Since all mandarin syllables have a
simple phonetic structure (i.e., they need about the same length of time to pronounce), they have about the
same length n of LPCC sequence. We partition the whole sequence of LPCC into r equal segments. Note
the number r of segments is fixed for all mandarin monosyllables. The average value of the LPCC in each seg-
ment is used as the feature value of a speech wave. Since the first 10 elements of a LPCC vector are used, we
obtain r · 10 feature values. Hence the r · 10 matrix is the feature of a syllable. This feature extraction is the
simplest among the existing speech methods.
4. Experimental results

4.1. Speech processing

The database of 10 mandarin digits was created by 21 different persons who pronounced 10 digits (0–9)
once. The speech signal of a mandarin monosyllable is sampled at 8 kHz, and pre-emphasized using a transfer
1 � 0.95z�1. A Hamming window with a width of 25 ms is applied every 12.5 ms for our study.

In our experiments, we use this database to produce the LPCC and obtain a r · 10 matrix for each digit
sample. Among 21 samples of each mandarin digit, pick up any one sample for recognition and the rest of
20 samples is used for training, i.e., the rest of 20 samples is used to estimate the parameters which represent
the mandarin digit. We assume that each element of the r · 10 matrix has (1) normal distribution with
weighted variance c and (2) exponential distribution (the simplest distribution of the gamma case) on the abso-
lute values of each element in the matrix. Since the magnitude of the element in the matrix representing a syl-
lable identifies the syllable itself, we can use the exponential distribution to classify the syllables. We also
assume that k = r · 10 elements in the matrix are stochastically independent in order to reduce the computa-
tional time. In the experiments, the number of segments is r = 2, . . . , 21.

(1) Normal distributions with weighted variances. Since the average value of a random sample tends to have a
normal distribution, let us assume that each element of the feature matrix has the normal distribution. The
conditional normal density with weighted variance for class ci can be represented as
f ðx1; . . . ; xk j ciÞ ¼
Yk

l¼1

1ffiffiffiffiffiffi
2p
p

cril

" #
e
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� �2

; ð4:1Þ
where i = 1, . . . , m, k = r · 10 and c is a weighted factor for the variance. Taking logarithm on both sides of
(4.1), the Bayes decision rule (2.3) with equal prior on each syllable becomes
lðciÞ ¼ �
Xk

l¼1

logðcrilÞ �
1

2

Xk

l¼1

xl � lil

cril

� �2

; i ¼ 1; . . . ;m. ð4:2Þ
The Bayes decision rule (4.2) decides a syllable ci with the largest l(ci) to which the feature matrix
x = (x1, . . . , xk) belongs. For the Bayes decision rule, 20 samples of the syllable ci are used for estimating
its mean lil and variance r2

il. The weighted factor c is selected from 0.5 to 2.5. The recognition rates are in



Table 1
Digit recognition rates using normal distributions with weighted variance and exponential distribution

Segmental numbers Normal Exponential

r c

0.50 0.90 1.10 1.25 1.37 1.50 1.75 2.00 2.50 Average

2 .929 .957 .971 .971 .967 .967 .967 .957 .914 .956 .900
3 .957 .971 .971 .974 .976 .976 .976 .967 .933 .967 .938
4 .943 .976 .976 .978 .977 .981 .981 .967 .948 .970 .952
5 .957 .981 .981 .986 .986 .981 .976 .967 .948 .974 .971
6 .952 .976 .976 .976 .976 .976 .971 .967 .943 .968 .974
7 .957 .981 .986 .981 .981 .981 .976 .971 .948 .974 .976
8 .962 .976 .976 .976 .981 .986 .976 .967 .948 .972 .981
9 .957 .967 .971 .976 .981 .981 .976 .962 .943 .968 .961

10 .967 .971 .981 .981 .986 .986 .981 .967 .952 .975 .967
11 .967 .981 .981 .986 .986 .981 .976 .967 .943 .974 .967
12 .957 .976 .976 .976 .976 .986 .981 .971 .952 .972 .971
13 .962 .976 .981 .981 .976 .976 .971 .971 .948 .971 .962
14 .957 .981 .986 .986 .986 .986 .981 .976 .948 .976 .967
15 .962 .976 .976 .981 .981 .986 .981 .971 .957 .975 .967
16 .962 .976 .976 .976 .976 .976 .981 .957 .948 .970 .971
17 .962 .971 .971 .981 .981 .976 .971 .967 .948 .970 .971
18 .957 .967 .976 .976 .976 .981 .967 .967 .943 .968 .967
19 .952 .971 .976 .981 .981 .981 .971 .967 .952 .970 .972
20 .967 .976 .981 .981 .981 .981 .976 .971 .943 .973 .971
21 .967 .976 .976 .981 .981 .976 .971 .957 .938 .969 .971

Average .956 .974 .977 .979 .980 .980 .975 .971 .944 .970 .965

c is a weighted factor for the variance and r is the number of segments.
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Table 1. From Table 1, the best recognition rate is 98.6% and the higher rates scatter in weighted factors
c = 1.1–1.5 and in the segment numbers r = 5–14.

(2) Exponential distributions. Since the magnitude of the LPCC of a syllable identifies the syllable itself, we
let the absolute value of each element in the matrix representing a syllable to have an exponential distribution,
which is the simplest probability distribution for a positive random variable. Let Yl = jXlj, l = 1, . . . , k. The
conditional density of Y = (Y1, . . . , Yk), where k = r · 10, of an exponential distribution can be written as
f ðy1; . . . ; yk j ciÞ ¼
Yk

l¼1

1

kil

 !
exp �

Xk

l¼1

yl

kil

 !
; ð4:3Þ
where kil = E[Yl j ci], i.e., the mean of the absolute value of feature value in the matrix. Taking logarithm on
both sides of (4.3), the Bayes decision rule (2.3) with equal prior on each syllable can simplify to
lðciÞ ¼ �
Xk

l¼1

log kil �
Xk

l¼1

yl

kil
; ð4:4Þ
where ci, i = 1, . . ., m, is the ith syllable. The Bayes decision rule (4.4) decides a syllable ci with the largest l(ci)
to which the feature matrix x = (x1, . . . , xk) belongs. For the Bayes decision rule, 20 samples of the syllable ci

are used to estimate the meankil. The recognition rates are listed in the last column of Table 1. From Table 1,
the best recognition rate is 98.1% which occurs at the segment number r = 8. Although the rate obtained by
using exponential distributions is not quite different from the rate obtained by using normal distributions, we
think that the negative values from normal distributions still contribute a little recognition rate. However, the
computational time from exponential distribution is much less than that from normal distributions. Our
speech recognition method using exponential distributions on feature values is the simplest and fastest classi-
fier. Note that the calculation of logkil in (4.4) is part of training time, not recognition time.
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5. Discussions and conclusion

In this paper, we have presented the simplest speech recognition method with low computational cost. In
our method, we partition a speech data (a sequence of LPCC vectors) into equal segments and take the aver-
age of the LPCC in each segment as a feature. Our feature extraction does not use any nonlinear compression
and expansion as processed by the DTW. In order to reduce the computation for classification, we use a sim-
plified Bayes decision rule which is simpler than the simplest distance measure.

Among the existing speech recognition methods, the HMM system is the most efficient method for classi-
fication. As compared with the HMM system, our recognition system is, more or less, similar to a simplified
HMM method (with left–right state model and without state durations). In our method, we partition a
sequence of LPCC vectors into r equal segments. Each segment corresponds to a state in a degenerate
HMM in that every state j, j = 1, . . . , r � 1, has stationary transition probability pj,j+1 = 1 and that the initial
distribution on state 1 is p(1) = 1 Hence, the states represented by segments in our method are not hidden and
have known transition probabilities. The average value of the LPCC in each segment is the observation which
is assumed to have a normal distribution Nðlil; r

2
ilÞ since the observation (average value) tends to have a sim-

ple normal distribution or which is assumed to have a much simpler exponential distribution. We only use the
parameters ðlil; r

2
ilÞ or only one parameter k il to represent one syllable and the parameters can be easily esti-

mated by their sample means and sample variances. To represent a syllable, the HMM system uses the param-
eters, which include the initial distribution, the transition probabilities and the probability of the observation
Ot in each state, denoted by (p, pij, bj(Ot)). The number of parameters in the HMM is much more than that of
our system. The estimation of these parameters is not easy. First, one has to choose initial estimates of the
HMM parameters so that the forward-backward reestimation algorithm [31,53,54], which is special case of
the EM algorithm [53–55], modifies the parameters to increase the probability of the training data until a local
maximum has been reached. The key question is that the local maximum may not be the global maximum of
the likelihood function [54,55]. Furthermore, the probability bj(Ot) of an observation Ot in each state is dif-
ficult to estimate, since it does not have a simple normal distribution like a sample mean. For a syllable,
the HMM method uses various probability distributions including Gaussian mixtures to find the probability
bj(Ot) of the observation Ot. The computational cost for the convergence of the iterative reestimation algo-
rithm and the clustering of training data into states for Gaussian mixtures is extremely high. In our method,
we only estimate the individual mean in each equal segment for a syllable. In this study, we use a simplified
Bayes rule for classification, which is the best classifier ((4.2) and (4.4)) with the minimum probability of mis-
classification and which is fast in computation. Every step in the simplified Bayes decision rule is a simple cal-
culation except the logarithm of sample variance in (4.2) or the logarithm of sample mean in (4.4), which is
part of training time, not recognition time. If each mandarin syllable has an equal probability to occur, then
the Bayes rule becomes a ML classifier. However, each syllable does not occur equally likely. The classification
in the HMM is to compute the probability of a sequence of observations (O1, . . . , OT) which is the sum of the
probabilities of the sequence of observations in all possible state sequences. For the large vocabulary classi-
fication, it is time consuming. Hence, our speech recognition system for feature extraction (mean of LPCC)
and classification (simplified Bayes rule) is much faster and more accurate than any other known techniques.
Since our recognition method has a low computation cost, it can be widely used for speech recognition in the
large vocabulary.

It is possible to extend our method to polysyllable or continuous speech. A Mandarin sentence is parti-
tioned into a set of monosyllables which can be recognized by our method. Since a sentence can provide more
information than a monosyllable, it may raise its recognition rate. In the English language, a word is parti-
tioned into a set of basic phonemes which can be also recognized by our method.
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