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Abstract

Machine-based emotional intelligence is a requirement for more natural interaction between humans and computer interfaces and a
basic level of accurate emotion perception is needed for computer systems to respond adequately to human emotion. Humans convey
emotional information both intentionally and unintentionally via speech patterns. These vocal patterns are perceived and understood
by listeners during conversation. This research aims to improve the automatic perception of vocal emotion in two ways. First, we com-
pare two emotional speech data sources: natural, spontaneous emotional speech and acted or portrayed emotional speech. This compar-
ison demonstrates the advantages and disadvantages of both acquisition methods and how these methods affect the end application of
vocal emotion recognition. Second, we look at two classification methods which have not been applied in this field: stacked generalisation
and unweighted vote. We show how these techniques can yield an improvement over traditional classification methods.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

With the ubiquity of automated systems in today’s soci-
ety comes the burden of interacting with these systems due
to the lack of machine-based emotional intelligence. For
example, the emotional information conveyed through
speech is an important factor in human–human interaction
and communication. Humans feel most natural communi-
cating with other humans because the extra information
represented in their emotional expressions can be recogni-
sed, processed, and reflected. Hence, when humans interact
with computer systems, there is a gap between the informa-
tion conveyed and the information perceived.

Emotional intelligence is defined by Salovey et al. (2004)
as having four branches: the perception of emotion, emo-
tions facilitating thought, understanding emotions, and
managing emotions. The work in this study is dedicated
to the perception of human emotion from the prosodic
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properties of speech. In other words, this study aims to
build a system that can capture and interpret the vocal
expression of emotion in humans. More specifically, we
seek to improve on traditional emotional speech classifica-
tion methods using ensemble or multi-classifier system
(MCS) approaches. We also aim to examine the differences
in perceiving emotion in human speech that is derived from
different methods of acquisition.

In this study we also look at applications of emotionally
intelligent systems in call-centres (see Fig. 1). Call-centres
often have a difficult task of managing customer disputes.
Ineffective resolution of these disputes can often lead to
customer discontent, loss of business and in extreme cases,
general customer unrest where a large amount of customers
move to a competitor. It is therefore important for call-cen-
tres to take note of isolated disputes and effectively train
service representatives to handle disputes in a way that
keeps the customer satisfied (Petrushin, 2000).

Automated telephone systems are another potential
application area that humans find themselves interacting
with more and more. These systems have speech recogni-
tion units that process user requests through spoken
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Fig. 1. Affect recognition in a call-centre environment.
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language. A spoken affect recognition system can help pro-
cess calls according to perceived urgency. If a caller is
detected as being angry or confused in the automated sys-
tem, their call can be switched over to a human operator
for assistance. This could be particularly useful for the
elderly who can often be disoriented when interacting with
automated telephone systems. In (Petrushin, 2000) a sys-
tem was built to monitor voice-mail messages in a call-cen-
tre and prioritise them with respect to emotional content.
Similarly, in (Liscombe et al., 2005), prosodic and contex-
tual features were used to identify emotion in a spoken dia-
log system. Such systems can make interaction with
automated call-centres more efficient and less daunting.

Many machine learning algorithms have been applied to
the problem of automatic emotion detection from speech.
However, very few studies consider hybrid or ensemble
classification methods. In (Petrushin, 2000), ensembles of
neural networks were employed to improve classification
accuracy on a two-class problem. A rate of 75% was
achieved. In (Dellaert et al., 1996), classifiers were grouped
together based on cooperation with others in a set. A
majority vote yielded the final prediction, and for a five-
class problem a classification accuracy rate of 79.5% was
seen. In (Nakatsu et al., 1999), an ensemble of eight neural
networks, one trained for each emotion, was devised. An
accuracy rate of 50–55% was achieved.

We propose two existing ensemble classification meth-
ods which are new to the field. The first, stacked generalisa-
tion, employs several base-level classifiers to get class
predictions which are then used by a meta-learning algo-
rithm during the training phase in an attempt to predict
when the base-level classifiers are incorrect (Wolpert,
1992). The second, a variation on majority voting, is a col-
lection of unique classifiers, each trained on the same data,
Table 1
Summary of the data sets used in this study

Name Description Emotion

NATURAL Collected from a call-centre for
an electricity company

2 (anger,

ESMBS Collected from Burmese and
Mandarin non-professional actors

6 (anger,
disgust, f

The NATURAL data set is collected from a call-centre and the ESMBS data
professional actors and actresses.
with predictions combined in an unweighted voting scheme.
Both approaches are discussed in detail in Section 6.

The rest of the paper is organised as follows. Section 2
first introduces methods of data acquisition and then
presents the data sets used in the study. Relevant speech
features, which have been shown to correlate to emotional
states, are reviewed in Section 3. Next, Section 4 introduces
a set of prosodic features which forms a basis for the
extraction of discriminative emotional information. Several
traditional classification methods and feature selection
techniques are then described in Section 5. Section 6 intro-
duces the two improvements over the traditional classifica-
tion methods: an unweighted voting scheme and stacked
generalisation. Section 7 shows the results of classification
experiments and provides a discussion. Finally, in Section 8
we conclude and offer directions for future research.
2. Data acquisition

There are three methods of data acquisition in emotion
research (Scherer, 2003). The first is natural expression,
where data is collected from a real-world situation where
users are not under obvious observation and are free to
express emotions naturally, as they would in an everyday
situation. The second is induced emotional expression,
where naı̈ve users are presented with scenarios that induce
the required emotional response. Last, speech acquisition
using simulated or portrayed emotional expression makes
use of professional or non-professional actors and actres-
ses. Subjects are instructed to produce emotional expres-
sions for various emotion classes, with varying degrees of
intensity or arousal.

The two data sets used in this study are summarised in
Table 1. The first data set is taken from a natural scenario
and was initially the primary focus of the research. Later, a
second data set was acquired from non-professional actors
and actresses portraying emotional speech for the purpose
of validating the features and algorithms used on the first
data set. The second data set was subsequently integrated
into the study in order to compare useful features and
properties against the first data set.
2.1. Natural data collected from a call-centre

The first database used in this research was provided by
a call-centre that handled customer inquiries for several
classes Speakers No. of utterances

neutral) 11 388

happiness, sadness,
ear, surprise)

12 720

set is obtained from a previous study and consists of utterances by non-
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electricity companies. Customers call and speak directly to
a customer service representative (CSR). The customers
query or provide information about their accounts, billing
information, address, payment methods, etc. Often, cus-
tomers have a dispute to resolve with the company and
subsequently, emotions are expressed.

For this data set, the average length of a conversation
between a customer and CSR was 3 min and 40 s. The
median call length was 2 min and 38 s. The longest call
duration was 34 min and 3 s, and the shortest recordings
were around 1 s, but involved no audible speech and were
probably the result of some technical error during the
recording process.

The data consisted mainly of neutral speech, with the sec-
ond largest category being angry speech. Table 2 shows the
distributions for respective emotion classes. Because of the
low distributions of happiness, sadness, fear, disgust, and
surprise, it can be assumed that the probability of these
occurring in the call-centre are quite low, and because of
this it is safe to consider only anger and neutral emotional
states. The small amounts of data collected under the other
emotional states (happiness, sadness, surprise, fear, dis-
gust), were excluded. Similarly, (Devillers et al., 2002) also
used data from a customer service centre. This study also
found low emotion distribution and subsequently retained
two of the basic emotion classes, anger and fear, because
the probabilities of other emotions in that context were very
low. In (Ang et al., 2002), used induction methods for col-
lecting emotional speech data and observed a high amount
(84%) of neutral samples, followed by a low amount (8%) of
annoyance. Due to this they limited their study to include
only annoyance and frustration versus everything else.

Each conversation file was manually segmented into
phrase-level utterances selected from a total of 11 speakers,
2 male and 9 female. The maximum utterance duration is
13.60 s, the minimum is 0.52 s, and the mean duration is
3.25 s. Each utterance was stored in 16 bit PCM WAVE
format sampled at 22,050 Hz.

Initially, the data set comprised 190 angry utterances and
201 neutral utterances, totalling 391. To gain an objective
ground truth, nine listener-judges were instructed to classify
the entire data set according to the predefined class labels.
The listener-judges yielded a mean agreement of 81.95%
and the final data set comprised 155 angry utterances and
233 neutral utterances. In total there were 388 utterances
(three utterances were labelled as ties and were subsequently
discarded). This data set is labelled NATURAL.
Table 2
Distribution of perceived speaker affect from natural corpus (NATURAL)

Number of conversations (%)

93.3
3.1
1.8
0.1
0.0
2.2. Simulated data from the ESMBS database

The ESMBS database (Emotional Speech of Mandarin
and Burmese Speakers) was collected for a previous study
on emotion recognition (Nwe et al., 2003). This data set
was collected to study emotional effects on vocal parameters.

The data set was collected from a set of 12 non-profes-
sional actors and actresses. Six Mandarin and six Burmese
speakers were used, each speaking their native language,
with each of these six consisting of three men and three
women. Each speaker recorded ten different utterances
for each of the six emotions. In total, for the 12 speakers,
there were 720 emotional utterances.

The emotion set represented by this data set are the six
prototypical emotions most often studied in this field:
anger, disgust, fear, joy, sadness, and surprise. The mean
length of the samples in the data set was 1.50 s. All speech
samples were recorded with 16 bits per sample at 22,050 Hz
and stored in PCM WAVE format. The content of each
utterance was a phrase or sentence which also contained
emotion from one of the above six.

Four listeners were used to judge the emotional content
of each utterance. These listeners could not understand the
language of the respective speakers, so vocal characteristics
and not contextual information was the only information
used for classification. Average classification accuracy by
human evaluation was found to be 65.7% (68.3% for Bur-
mese and 63.1% for Mandarin). These figures coincide with
previous studies (Dellaert et al., 1996; Petrushin, 2000; Pol-
zin and Waibel, 2000), as well as previous research on
cross-cultural emotion recognition from speech (Scherer,
2003; Elfenbein and Ambady, 2002) which typically
describe human classification rates between 55% and 70%.
3. Properties of emotional speech

Prosodic parameters have been found to represent the
majority of emotional content in verbal communication
(Murray and Arnott, 1993; Scherer, 2003). Of these, funda-
mental frequency (pitch), energy, and speaking rate are
widely observed to be the most significant characteristics
(Batliner et al., 2003; Lee et al., 2004; Dellaert et al.,
1996; Ang et al., 2002; Huber et al., 2000; McGilloway
et al., 2000; Polzin and Waibel, 2000; Nwe et al., 2003).
The specific correlations between the basic emotions and
these prosodic features are discussed below.
Emotion class

Neutral
Anger
Happiness
Sadness
Surprise, fear,
disgust



Fig. 2. Example pitch contours for anger and neutral utterances from the
NATURAL data set. The contour for angry speech typically has a much
wider range, while neutral speech is narrow and monotonous.
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3.1. Fundamental frequency and emotional speech

The fundamental frequency (F0), often referred to as the
pitch, is one of the most important features for determining
emotion in speech (Nakatsu et al., 1999; Polzin and Wai-
bel, 2000; Petrushin, 2000; Ang et al., 2002; Lee et al.,
2004). The fundamental frequency is defined as the lowest
frequency at which the speech signal repeats itself
(O’Shaughnessy, 2000).

The F0 contour has been shown to vary depending on
the emotional state being expressed. Cowan (xxx) discov-
ered that neutral or unemotional speech has a much
narrower pitch range than that of emotional speech, and
found that as the emotional intensity is increased, the fre-
quency and duration of pauses and stops normally found
during neutral speech are decreased (Murray and Arnott,
1993).

More specifically, angry speech typically has a high med-
ian, wide range, wide mean inflection range, and a high rate
of change (Fairbanks and Pronovost, 1939). Williams and
Stevens (1972) discovered vowels of angry speech to have
the highest F0, and (Fonagy, 1978) found that angry
speech exhibits a sudden rise of F0 in stressed syllables
and the F0 contour has an ‘‘angular’’ curve. Frick (1986)
postulated that frustration, which has similar but less
extreme physiological causes as anger, has a higher funda-
mental frequency than neutral speech. Scherer (1996)
describes anger as having ‘‘an increase in mean pitch and
mean intensity.’’ Downward slopes are also noted on the
pitch contour. Breazeal and Aryananda (2002) found that
prohibitions or warnings directed at infants are spoken
with low pitch and high intensity in ‘‘staccato pitch con-
tours.’’ Cowan (xxx) and Fonagy and Magdics (1963)
found that happiness expressed in speech, like anger, has
an increased pitch mean and pitch range.

Fear was discovered to have a high pitch median, wide
range, medium inflection range, and a moderate rate of
change (variation) (Fairbanks and Pronovost, 1939; Wil-
liams and Stevens, 1972), and increased pitch level is also
apparent (Fonagy, 1978). Conversely to fear exhibiting a
wide range, there are reports that fear instead has a narrow
F0 range (Fonagy and Magdics, 1963).

Contrasting these more excited emotions are sadness
and disgust which typically have lower physiological acti-
vation levels. Sadness is shown to yield lower pitch mean
and narrow range (Skinner, 1935; Davitz, 1964; Fonagy,
1981; Oster and Risberg, 1986; Johnson et al., 1986). Fair-
banks and Pronovost (1939) report that disgust generally
has a low pitch median, wide range, lower inflectional
range, lower rate of pitch change during inflection. As with
fear, there are contrasting findings with (Fonagy and Mag-
dics, 1963) noting disgust having a narrow pitch range.

Fig. 2 shows the pitch contours of two example utter-
ances from the NATURAL data set. It can be seen that
the angry sample has downward slopes, concurring with
(Scherer, 1996), and a greater range. The neutral sample
has a monotonous contour with a shallow range.
3.2. Formant frequencies and emotional speech

The resonant frequencies produced in the vocal tract are
referred to as formant frequencies or formants (Rabiner
and Schafer, 1978). Although some studies in automatic
recognition have looked at the first two formant frequen-
cies (F1 and F2) (Petrushin, 2000; Lee et al., 2004), the
formants have not been extensively researched.

Williams and Stevens (1972) found that anger produced
vowels ‘‘with a more open vocal tract’’ and from that
inferred that the first formant frequency would have a
greater mean than that of neutral speech. It was also
noticed that the amplitudes of F2 and F3 were higher with
respect to that of F1 for anger and fear compared with neu-
tral speech. Neutral speech typically displays a ‘‘uniform
formant structure and glottal vibration patterns,’’ contrast-
ing the ‘‘irregular’’ formant contours of fear, sadness, and
anger.

Scherer (2003) lists predictions of the formant frequen-
cies along with several emotion classes. For happiness, it
is noted that the F1 mean is decreased while the F1 band-
width is increased. For anger, fear, and sadness, the F1
mean is increased while the F1 bandwidth is decreased.
F2 mean is decreased for sadness, anger, fear, disgust.

3.3. The use of energy as an emotional marker

Energy, often referred to as the volume or intensity of
the speech, is also known to contain valuable information
(Huber et al., 1998; Nakatsu et al., 1999; Polzin and Wai-
bel, 2000; McGilloway et al., 2000). The intensity contour
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provides information that can be used to differentiate sets
of emotions.

In their research, (Fonagy, 1981) found that angry
speech had a noticeably increased energy envelope. Happi-
ness showed similar characteristics, as reported by Davitz
(1964); Skinner (1935). Sadness was associated with
decreased intensity (Fonagy, 1981; Davitz, 1964) and dis-
gust had reduced loudness (Fonagy and Magdics, 1963).
Scherer (2003) notes that in fear, joy, and anger there is
an increase in high frequency energy, whereas sadness has
a decrease in high frequency energy.

These characteristics follow with what is expected of the
emotional state. Those with high activation levels such as
anger, surprise, and happiness generally have a higher
intensity, while fear, sadness, and disgust have lower inten-
sity (Nwe, 2003).
3.4. Rhythm-based characteristics

Properties of rhythm-based characteristics include
pauses between voiced sounds, lengths of voiced segments,
and rate of speech (articulation). The rate of speech is usu-
ally calculated by measuring the number of syllables per
second.

Speaking rate has been used in previous research (Della-
ert et al., 1996; Huber et al., 1998; Petrushin, 2000; Ang
et al., 2002). It has been noted that fear, disgust, anger,
and happiness often have a higher speaking rate, while sur-
prise has a normal tempo and sadness a reduced articula-
tion rate (Nwe, 2003).

Fairbanks and Hoaglin (1941) and Fonagy (1981) found
that anger has an increased speech rate, and ‘‘pauses form-
ing 32% of total speaking time.’’ Happiness has been
shown to have anywhere from a slower tempo (Oster and
Risberg, 1986), to a ‘‘regular’’ rate (Davitz, 1964), to even
an increased rate (Fonagy, 1981). For sadness, on the other
hand, it has been generally agreed that the tempo is slower
(Skinner, 1935; Davitz, 1964; Fonagy, 1981; Oster and Ris-
berg, 1986; Johnson et al., 1986) and the speech contains
‘‘irregular pauses’’ (Davitz, 1964).

Williams and Stevens (1972) stated that fear exhibited a
reduced speech rate, while (Fairbanks and Hoaglin, 1941)
Table 3
Speech correlations of the basic emotions

F0 mean F0 range Energy

Anger Increased Wider Increased

Happiness Increased Wider Increased
Sadness Decreased Narrower Decreased

Surprise Normal or increased Wider –
Disgust Decreased Wider or

narrower
Decreased or
normal

Fear Increased or
decreased

Wider or
narrower

Normal
contrasts this by noting a high speech rate, and ‘‘pauses
forming 31%.’’ Disgust has a very low speech rate, increased
pause length, with pauses typically comprising 33% of
speaking time (Fairbanks and Hoaglin, 1941). The correla-
tions mentioned above are summarised in Table 3.
4. Prosodic features

Based on the acoustic correlates described in the previ-
ous section and the literature relating to automatic emotion
detection from speech, we selected features based on four
prosodic groups: the fundamental frequency, energy,

rhythm, and the formant frequencies. The fundamental fre-
quency, energy, and formant frequencies are represented as
contours. From these contours, we selected seven statistics:
the mean, minimum, maximum, standard deviation, value at

the first voiced segment, value at the last voiced segment,
and the range. For the rhythm-based features, we selected
three: the speaking (articulation) rate, average length of

unvoiced segments (pause), and the average length of voiced

segments.
In total, we selected 38 prosodic features which are used

as a starting point for describing the variation between
angry and neutral speech. These are listed in Table 4.

For the extraction of the pitch contour, we used the
Robust Algorithm for Pitch Tracking (RAPT) (Talkin,
1995). This algorithm uses the cross-correlation function
to identify pitch candidates and then attempts to select
the ‘‘best fit’’ at each frame by dynamic programming.
One of the benefits of using the cross-correlation function
is that it does not suffer the windowing dilemma of the
autocorrelation function while maintaining resolution for
high pitch values and the ability to detect low pitch values
(Rabiner and Schafer, 1978).

The first three formant frequencies were extracted using
linear predictive coding (LPC) and dynamic programming
to select optimal candidates based on their scores in
relation to previous candidates. The candidates are then
ranked according to their relative location, bandwidth,
and relation to the previous formant candidates. The best
candidates are selected for each formant using dynamic
Speaking rate Formants

High F1 mean increased; F2 mean higher or lower,
F3 mean higher

High F1 mean decreased; F1 bandwidth increased
Low F1 mean increased; F1 bandwidth decreased;

F2 mean lower
Normal –
Higher F1 mean increased; F1 bandwidth decreased;

F2 mean lower
High or low F1 mean increased; F1 bandwidth decreased;

F2 mean lower



Table 4
Feature groups and statistics used for measuring differences between angry or neutral speech

Feature group Statistics
Fundamental frequency (F0) (1) mean, (2) minimum, (3) maximum, (4) standard deviation, (5) value at first voiced segment,

(6) value at last voiced segment, (7) range
Formant frequencies

(F1, F2, F3)
(8, 15, 22) mean, (9, 16, 23) minimum, (10, 17, 24) maximum, (11, 18, 25) standard deviation, (12, 19, 26) value
at first voiced segment, (13, 20, 27) value at last voiced segment, (14, 21, 28) range

Short-time energy (29) mean, (30) minimum, (31) maximum, (32) standard deviation, (33) value at first voiced segment,
(34) value at last voiced segment, (35) range

Rhythm (36) speaking rate, (37) average length of unvoiced segments (pause), (38) average length of voiced segments

Features are numbered in parentheses.

Table 5
Initial ranking of base classification algorithms on the NATURAL data
set

Algorithm Accuracy (%)

SVM (RBF) 76.93
KNN (K = 5) 75.85
Multi-layer perceptron 74.25
Random forest 71.98
K* 70.67
Naive Bayes 69.56
SVM (polynomial) 69.50
C4.5 decision tree 67.47
Random tree 60.05
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programming similar to that used for the RAPT (Rabiner
and Schafer, 1978).

The energy envelope consists of the magnitude of the
signal calculated over a frame or window in order to aver-
age or smooth the contour. The energy frame size should
be long enough to smooth the contour appropriately but
short enough to retain the fast energy changes which are
common in speech signals and it is suggested that a frame
size of 10–20 ms would be adequate (Rabiner and Schafer,
1978). In this paper we used a frame size of 10 ms.

The rhythm-based statistics are all based on the voiced
and unvoiced segment durations. The rate of speech (artic-
ulation) is measured as the number of syllables normalised
by the utterance duration. A syllable can be roughly
defined as the transition from a voiced to unvoiced segment
(one or more consecutive frames), or vice versa. A segment
is deemed to be voiced if it is periodic, in other words if it
has a value greater than zero for the fundamental fre-
quency. A segment is unvoiced if it is aperiodic, or has
no fundamental frequency.
5. Classification techniques

Classification was performed using WEKA (Waikato
Environment for Knowledge Analysis).1 WEKA is a data
mining workbench that allows comparison between many
different machine learning algorithms. In addition, it also
has functionality for feature selection, data pre-processing,
and data visualisation.

The selection of base-level classifiers was done by evalu-
ating several algorithms over the NATURAL data set and
selecting the top performers. As noted in Section 1, the
NATURAL data set was used to determine the top base-
level classifiers and the ESMBS data set was used to validate
the choice of features and classifiers, as well as to compare
important features against the NATURAL data set. It is
this distinction that affords the selection of certain parame-
ters to be obtained using only the NATURAL data set.

Table 5 shows the classification accuracies for the algo-
rithms initially selected. In order to retain some degree of
simplicity, only the top five algorithms are retained. As
can be seen, the top performers are the support vector
machine (SVM) with the radial basis function (RBF) ker-
1 http://www.cs.waikato.ac.nz/�ml/weka/.
nel, the random forest, the multi-layer perceptron (artificial
neural network), K*, and K-nearest neighbour with K = 5.
For the SVM, the use of the RBF kernel showed a signifi-
cant improvement over the use of the polynomial kernel.

5.1. Support vector machines

Support vector machines (SVMs) are a relatively new
machine learning algorithm introduced by Vapnik (1995).
They are based on the statistical learning theory of struc-
tural risk management (SRM) which aims to limit the
empirical risk on the training data and on the capacity of
the decision function. Support vector machines are built
by mapping the training patterns into a higher dimensional
feature space where the points can be separated using a
hyperplane.

In WEKA, SVMs are implemented as the sequential
minimal optimisation (SMO) algorithm (Platt, 1998).
There are two kernels available: polynomial, and radial
basis function (RBF). As shown in Table 5, RBF per-
formed better on our data set. The RBF kernel is defined as

Kðxi; yjÞ ¼ expð�ckxi � yjk
2Þ; c > 0 ð1Þ

Optimal values for the width of the RBF function, c, and
the cost parameter C, can be found by performing a grid
search on the training data. For our experiments, a grid
search of the training data yielded optimal values c = 0.7
and C = 8.0.

5.2. Random forests

Random forests, invented by Breiman (2001), consist of
ensembles of tree predictors. These tree ensembles are a

http://www.cs.waikato.ac.nz
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method of growing a ‘‘forest’’ of decision trees by selecting
features for each node randomly and independently of
every other tree but with the same distribution. When a
random forest has been grown, classification requires that
the predictions of each tree are combined by voting to
determine the overall prediction.

In (Breiman, 2001), the authors state that if we let
h1(x),h2(x), . . . ,hk(x) be an ensemble of classification trees
with random training vector Y, X, then the margin is
defined as

mgðX ; Y Þ ¼ avkIðhkðX Þ ¼ Y Þ �max
j 6¼Y

avkIðhkðX Þ ¼ jÞ ð2Þ

where I is the indicator function. The generalisation error
of a random forest is determined by

PE� ¼ P X ;Y ðmgðX ; Y Þ < 0Þ ð3Þ
where PX,Y is the probability over the X, Y feature space
(Breiman, 2001).

5.3. Artificial neural networks

Artificial neural networks, specifically multi-layer per-
ceptrons (MLPs), have proved useful for research in
emotion recognition from speech (Huber et al., 2000;
Petrushin, 2000).

In the WEKA toolkit, ANNs are implemented as the
multi-layer perceptron. Experiments with different network
architectures led us to find highest accuracy using a one-
hidden layer MLP with 38 input units, 60 hidden units,
and two output units. An early stopping criteria based on
a validation set consisting of 10% of the training set is used
in all classification experiments involving the MLP. This
ensures that the training process stops when the mean-
squared error (MSE) begins to increase on the validation
set and reduces overfitting (Haykin, 1999). The learning
rate was set to 0.2 which is the default setting in WEKA.

5.4. K-nearest neighbours

K-nearest neighbours is another instance-based classifi-
cation method introduced by Cover and Hart (1967). This
algorithm has proved popular with vocal emotion recogni-
tion (Dellaert et al., 1996; Yacoub et al., 2003) due to its
relative simplicity and performance comparable to other
methods.

As with the K* algorithm, the assumption for instance-
based classifiers is that new instances will have the same
class as pre-classified instances if they are close in feature
space. For the K-nearest neighbour classifier, the nearest
K neighbours of the current instance are retrieved (from
some database of training instances) and the target class
which the majority share is used as the class for the current
instance (Cleary et al., 1995).

In our experiments, setting K = 5 performed best on the
NATURAL data set. More information can be found in
(Aha and Kibler, 1991).
5.5. K* instance-based classifier

K* is an instance-based learning algorithm based on the
work of (Cleary et al., 1995). It uses a similarity function to
classify test cases based on training cases which have a high
similarity. In this way, it is much like the K-nearest neigh-
bour method (described above), however, the distance
measure used by K* is based on entropy. Further detail
on K* can be found in the paper by Cleary et al. (1995).

5.6. Feature selection techniques

In order to optimise the classification time and accuracy,
three feature selection algorithms were applied to each data
set. The first was a step-wise forward selection, which is a
well known technique for data reduction (Blum and Lang-
ley, 1997). Beginning with an initially empty set, a single fea-
ture is added at each step. Each unique feature set is tested
with a subset evaluator. Each feature set is then ranked by
classification accuracy and recorded. When the process is
finished, the highest ranked feature set is retained.

The second feature selection algorithm employed was
principal components analysis (PCA), another well known
technique for data reduction and compression (Anton, 2000).

The third algorithm used was a genetic search which has
been popular in recent research (Dieterle, 2003; Emmanou-
ilidis et al., 1999; Vafaie and De Jong, 1992). A genetic
search of the feature space mimicks biological evolution
by ‘‘mutating’’ chromosomes (feature sets). Genes (individ-
ual features) make up the chromosomes which are initially
randomly turned on or off (set to ‘‘0’’ = off or ‘‘1’’ = on).

Beginning with an initial population of randomly gener-
ated chromosomes, each chromosome is passed through a
fitness function (for example, a classification model is gen-
erated and tested with the current chromosome) which
ranks each member of the current generation according
to its fitness (classification accuracy). Those chromosomes
with the greatest fitness are ‘‘selected’’ and mated, with a
mutation probability that introduces or removes one or
more genes. When a stopping criteria has been met, such
as a maximum number of generations, the process stops
and ideally an optimal feature set is produced. A full
description of genetic algorithms with examples can be
found in (Goldberg, 1989).

6. Ensemble classification methods

Ensembles of classifiers generally combine several base
classification schemes into a larger meta classifier. For
ensemble classifiers to improve over the best performing
base classifier, they must comprise accurate base classifiers.
However, the base classifiers must also have high disagree-
ment between one another in order to maintain diversity
(Dietterich, 2002). For example, if a voting scheme is made
up of several highly accurate base classifiers that cast the
same prediction, then there is little improvement over
simply using one of the base classifiers. The complexity
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involved in building the meta classifier must be outweighed
by the improvement in classification accuracy.

6.1. Unweighted vote

The voting scheme we use is built by combining the
aforementioned base classifiers: SVM with RBF kernel,
random forest, K* instance-based learner, KNN with
K = 5, and multi-layer perceptron. Under this ensemble
scheme, each classifier is trained with the same data. To
measure performance, a test set is presented to each base
classifier. The class predictions from each base classifier
are then counted and the target class with the most votes
is selected as the final prediction.

With unweighted voting, the class predictions of the
base-level classifiers are summed and the class with
the highest number of votes determines the prediction for
the ensemble (Shipp and Kuncheva, 2002). For a voting
ensemble with n classifiers, the output prediction (Vp) is
determined by the following equation:

V p ¼
X when

Pn
i¼0X i >

Pn
j¼0Y j;

Y when
Pn

i¼0X i <
Pn

j¼0Y j;

tie when
Pn

i¼0X i ¼
Pn

j¼0Y j;

8><
>:

ð4Þ
Fig. 3. Illustration of Stacking and StackingC on a three-class data set (a, b,
prediction from classifier i for class j on example k (from Seewald, 2002). (a) or
class a, Stacking with MLR and (d) meta training set for class a, StackingC w
where X and Y denote the predictions of the base classifiers
for a two-class problem. In cases where an even number of
base classifiers is used, there is potential for a tie when half
of the classifiers vote for one class, and the other half vote
for the opposition class. To avoid this problem, we use an
odd number of base classifiers.

Because the confidence information contained in the
prediction of each base level classifier is not taken into con-
sideration, the resulting vote is unweighted, with all base
level classifiers having equal input to the vote.
6.2. Stacked generalisation

Stacked generalisation, or stacking, is an approach to
combining predictions from multiple classifiers. Introduced
by (Wolpert, 1992), this method takes the predicted target
classes of several different (or similar) base or level-0 clas-
sifiers and uses those to train a meta-learner or level-1 clas-
sifier. The meta-learner, typically a series (one for each
target class) of linear models such as multi-response linear
regression (MLR), uses the level-0 predictions and the
target classes to determine which classifiers are correct or
incorrect and generates a higher level prediction based on
this.
c) with n training examples and N base classifiers. Pi,jk denotes the class
iginal training set (b) class probability distribution (c) meta training set for
ith MLR.



Table 6
Confusion matrices for the base classifiers on the NATURAL data set

Anger Neutral

(a) SVM (RBF)
Anger 67.94 32.06
Neutral 17.08 82.92

Correctly classified (%): 76.93

(b) MLP
Anger 67.16 32.84
Neutral 22.19 77.81

Correctly classified (%): 74.25

(c) KNN (K = 5)
Anger 64.26 35.74
Neutral 16.44 83.56

Correctly classified (%): 75.85

(d) K*

Anger 62.90 37.10
Neutral 24.16 75.84

Correctly classified (%): 70.67

(e) RF
Anger 66.58 33.42
Neutral 22.62 77.38

Correctly classified (%): 73.07
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StackingC, introduced by Seewald (2002), is an
improvement over the original algorithm. It works by using
only target predictions which are associated with the target
class during training and testing. This has the effect of
reducing the dimensionality of the meta-learning phase.
The learning process is substantially faster by the encoding
of meta-data in the level-1 feature space and uses predic-
tion probabilities rather than actual target classes, which
improves performance on multi-classed data. These predic-
tion probabilities carry confidence information, which,
when combined with a multi-response linear regression
meta-learner, offers a modest improvement in classification
accuracy for some multi-class problems (Seewald, 2002).

A comparison of the meta training sets used for Stack-
ing and StackingC is shown in Fig. 3. Fig. 3a shows the ori-
ginal training set with the associated target class. Fig. 3b
lists the probability distribution for each example. Fig. 3c
shows the meta training set for Stacking. It can be seen that
the training set includes the probabililities for each class
whereas for StackingC, only the probabilities for the target
class are used (see Fig. 3d).

In this study, StackingC is designed with the same five
algorithms described in Section 5. The model is built by
training each classifier individually on the same training
set. The multi-response linear regression classifier is trained
on the output predictions of the base classifiers. Perfor-
mance is then measured by presenting the model with
examples from the test set. The base classifiers output pre-
dictions which are then used by the MLR classifier to deter-
mine whether each base classifier will predict correctly.

7. Results and discussion

In this section we compare the classification accuracies
on the NATURAL and ESMBS data sets using the classi-
fication methods introduced in the previous section. The
methodology for acquiring the results below is as follows.
Using the full NATURAL and ESMBS data sets, we per-
form feature selection using the three methods described in
Section 5.6. First, the principal components are calculated
for both data sets. Next, the other two feature selection
methods, forward selection and genetic search, are
employed using the SVM with RBF kernel as the subset
evaluator. The choice is made to use the SVM with RBF
kernel for the subset evaluator because it was the highest
performer in the initial base classifier selection experiment
and can be relied upon to describe the most relevant feature
set. Next, we build the classifier ensembles and perform
classification experiments on these using the original data
sets as well as the subsets produced from feature selection.

For all classification experiments we employed 10 · 10-
fold stratified cross-validations over the data sets. In other
words, each classification model is trained on nine tenths of
the total data and tested on the remaining tenth. This pro-
cess is repeated ten times, each with a different partitioning
seed, in order to account for variance between the
partitions.
7.1. Performance of base classifiers

In Tables 6 and 7 we list the confusion matrices for the
different base classifiers on the NATURAL and ESMBS
data sets. It can be seen that for the NATURAL data
set, the classification accuracy for neutral is much higher
than that of anger. This is due to the unbalanced data
(155 anger/233 neutral) in this set.

For the ESMBS data set, it is easily seen that anger and
sadness are classified with high accuracy (generally >90%),
where other emotions such as happiness and fear have
much lower accuracies (sometimes <50%). This inter-class
confusion is also common in human listeners (Scherer,
2003; Nwe, 2003). Emotion classes which oppose each
other such as anger and sadness are much more easily sep-
arated than those classes with similar characteristics such
as happiness and surprise.

For both data sets, the SVM with RBF kernel shows the
highest performance. The random forest is the second best
for the ESMBS data set, but is outperformed by the KNN
on the NATURAL data set.

These results show that the ESMBS data set, while
having six classes, is almost as accurately classified as the
NATURAL data set, which only has two classes. Ran-
domly classifying the ESMBS data set would show an aver-
age rate of about 16.67% whereas a randomly classifying the
NATURAL data set would show an average rate of 50%.

This highlights the difficulties involved in using data
collected from natural environments. The emotion repre-
sented is subtle and highly varied due to the uncontrolled
nature of the method. Even two class problems such as this
show quite low classification accuracies. Conversely, the



Table 7
Confusion matrices for the base classifiers on the ESMBS data set

Anger Disgust Fear Happiness Sadness Surprise

(a) SVM (RBF)
Anger 91.24 0.00 0.00 1.86 0.00 6.90
Disgust 0.08 67.36 15.27 11.78 1.63 3.88
Fear 0.23 16.67 59.69 13.64 4.81 4.96
Happiness 1.71 17.67 16.12 49.61 1.55 13.33
Sadness 0.00 3.10 4.03 1.24 91.63 0.00
Surprise 7.21 3.02 5.27 12.95 0.00 71.55

Correctly classified (%): 71.85

(b) MLP
Anger 90.54 0.00 0.08 2.02 0.00 7.36
Disgust 0.00 56.59 20.31 14.88 2.48 5.74
Fear 0.31 19.30 46.67 16.12 8.45 9.15
Happiness 5.35 14.19 18.06 42.40 1.86 18.14
Sadness 0.00 3.41 4.81 1.63 90.16 0.00
Surprise 9.61 4.81 6.28 13.41 0.00 65.89

Correctly classified (%): 65.37

(c) KNN (K = 5)
Anger 93.41 0.00 0.39 1.40 0.00 4.81
Disgust 0.93 60.23 20.00 12.40 1.47 4.96
Fear 0.08 23.33 53.18 12.17 4.81 6.43
Happiness 7.29 27.44 18.76 31.78 2.25 12.48
Sadness 0.00 7.21 9.84 2.87 79.92 0.16
Surprise 20.39 9.15 8.29 9.69 0.00 52.48

Correctly classified (%): 61.83

(d) K*

Anger 91.32 0.00 0.78 0.85 0.00 7.05
Disgust 0.70 57.75 20.47 11.63 4.57 4.88
Fear 1.55 25.81 45.12 16.36 3.64 7.52
Happiness 5.43 18.91 22.71 37.21 1.01 14.73
Sadness 0.00 5.04 14.57 3.64 76.12 0.62
Surprise 12.64 4.65 9.22 18.99 0.00 54.50

Correctly classified (%): 60.34

(e) RF
Anger 94.88 0.00 0.54 0.39 0.00 4.19
Disgust 0.08 65.81 19.38 11.63 0.62 2.48
Fear 1.40 23.88 47.60 11.71 7.13 8.29
Happiness 5.12 22.79 18.68 36.51 0.54 16.36
Sadness 0.00 4.50 3.57 0.78 91.01 0.16
Surprise 6.98 7.60 4.65 12.40 0.00 68.37

Correctly classified (%): 67.36

Table 8
Confusion matrices for the ensemble classifiers on the NATURAL data
set

Anger Neutral

(a) StackingC
Anger 66.52 33.48
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results from the ESMBS data set show several important
points. First, the classification accuracies are very similar
to that from human listeners, as we saw in Section 2. Sec-
ond, due to the high classification rates (which are much
greater than chance, as mentioned above), we can see that
the methods (features used, extraction methods, and classi-
fication algorithms) followed in this research are sound.
Therefore, we can be confident in the results from the
NATURAL data set.
Neutral 15.28 84.72

Correctly classified (%): 77.45

(b) Unweighted vote
Anger 69.03 30.97
Neutral 15.97 84.03

Correctly classified (%): 78.04
7.2. Performance of ensemble classifiers

Next we present the performance statistics for the Stack-
ingC and vote ensembles. For stacked generalisation, the
final prediction is based on a meta-classifier which is
trained on the class probabilities and targets for each train-
ing example. Stacked generalisation attempts to predict



Table 9
Confusion matrices for the ensemble classifiers on the ESMBS data set

Anger Disgust Fear Happiness Sadness Surprise

(a) StackingC
Anger 94.81 0.00 0.00 0.70 0.00 4.50
Disgust 0.08 67.05 16.98 10.08 2.25 3.57
Fear 0.08 19.15 52.95 10.70 7.75 9.38
Happiness 4.50 15.66 15.19 44.73 1.32 18.60
Sadness 0.00 1.94 2.64 0.70 94.73 0.00
Surprise 5.43 3.88 3.33 8.53 0.00 78.84

Correctly classified (%): 72.18

(b) Unweighted vote
Anger 95.89 0.00 0.08 0.00 0.00 4.03
Disgust 0.39 65.35 17.75 10.93 0.62 4.96
Fear 0.31 20.93 53.02 12.64 4.96 8.14
Happiness 4.34 16.51 17.13 45.12 1.55 15.35
Sadness 0.00 1.78 3.95 1.16 93.10 0.00
Surprise 9.46 4.65 4.26 10.85 0.00 70.78

Correctly classified (%): 70.54

2 For classification, the principal components are not transformed back
into the original feature space.
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when the base classifiers will be incorrect. The unweighted
vote simply sums the predictions of each class from the
base classifiers and picks the most popular class.

The confusion matrices for the ensemble classifiers on
the NATURAL data set are presented in Tables 8 and 9
shows the confusion matrices for the same ensembles on
the ESMBS data set. On the NATURAL data set, both
StackingC and the unweighted vote show improvement
over the base classifiers in Table 6. Interestingly, anger is
predicted more accurately for the vote while neutral speech
is predicted less accurately.

For the ESMBS data set, StackingC performs better than
all base classifiers, while the unweighted vote performs
better than all but the support vector machine. Anger and
sadness are both accurately classified, while the accuracies
for happiness and fear are much lower. Anger shows a
higher rate than that of StackingC, but sadness shows a
lower classification rate. The vote is significantly less accu-
rate for surprise than StackingC, with 70.78% and 78.84%
respectively. Like the results on the base classifiers pre-
sented above, these predictions are in line with the accura-
cies for human classification.

7.3. Performance after feature selection

As mentioned above, because the SVM with RBF kernel
is the most accurate, it is used for feature selection where a
subset evaluator is required. A subset evaluator is required
for the forward selection and the genetic search, since there
must be a way of measuring the performance of the newly
generated data set at each stage in the process. For princi-
pal components analysis, no subset evaluator is needed.

Feature selection is performed on both the NATURAL
and ESMBS databases independently, meaning the process
yields different feature subsets for each database. Table 10
shows the resulting feature subsets for each database.

Principal components analysis yields exactly the same
feature sets for each database. To aid in the labelling of
PCA selected features, we transform the principal compo-
nents back into the original feature space and kept only
the top 25 principal components.2 Every attribute from
the pitch and first formant frequency (F1) contour is
retained. The majority of attributes from the F2 contour
are retained, with the exception of the value at the last
voiced segment and the range. No attributes for F3 are
retained, hinting that this entire feature group may not
add any variance to the data set. All energy attributes are
kept, save the range and mean.

The feature sets resulting from forward selection do not
seem to show much correlation between the NATURAL
and ESMBS data sets. The F0 attributes are shared except
that the value at the last voiced segment and the range are
retained for the ESMBS data set.

The F1 features mean, minimum, maximum, and stan-
dard deviation are favoured for NATURAL, while maxi-
mum is discarded for ESMBS. F2 attributes compare
similarly for each data set when compared with F1 attri-
butes, except the value at the last voiced segment for F1/
NATURAL is retained and the F2 standard deviation is
discarded for ESMBS. F3 attributes are very different
between data sets. They are sparsely retained for NATU-
RAL but densely retained for ESMBS. This may be due
to the subtlety of emotion in the NATURAL data set and
the clear, concise nature of emotion in ESMBS due to the
different data collection methods described in Section 2.

Mean energy is valued for both data sets, while the
values at the first and last voiced segments seem important
only for ESMBS. Forward selection on both data sets
retain all of the rhythm-based statistics. Of interest is the
fact that forward selection for the NATURAL data set
resulted in 23 features retained, where for the ESMBS data
set, 30 features are retained.
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For the search using the genetic algorithm, features for
F0, F1, and F2 are almost identical with a high number
of attributes retained. For F1, the maximum is discarded
for ESMBS and for F2, the value at the first voiced
segment is discarded for NATURAL but retained for
ESMBS. It is the opposite case for the value at the last
voiced segment: retained in NATURAL but discarded in
ESMBS. The F3 attributes seem quite useful for both data
sets in comparison to the other selection techniques, but
Table 10
Resulting feature subsets after feature selection

No. Description Dataset

NATURAL

PCA FW

1 F0 mean • •
2 F0 minimum • •
3 F0 maximum • •
4 F0 standard deviation • •
5 First F0 value •
6 Last F0 value •
7 F0 range •

8 F1 mean • •
9 F1 minimum • •

10 F1 maximum • •
11 F1 standard deviation • •
12 First F1 value •
13 Last F1 value • •
14 F1 range •

15 F2 mean • •
16 F2 minimum • •
17 F2 maximum • •
18 F2 standard deviation • •
19 First F2 value •
20 Last F2 value
21 F2 range

22 F3 mean
23 F3 minimum •
24 F3 maximum •
25 F3 standard deviation
26 First F3 value
27 Last F3 value •
28 F3 range

29 Energy mean •
30 Energy minimum • •
31 Energy maximum • •
32 Energy standard deviation •
33 First energy value •
34 Last energy value •
35 Energy range •

36 Speaking rate •
37 Average length of

unvoiced segments
• •

38 Average length of
voiced segments

•

Count 25 23

PCA = principal components analysis; FW = forward selection; GA = genetic
feature space for labelling purposes and have the top 25 principal component
more so for NATURAL. All energy features are kept for
NATURAL, whereas all except the minimum and value
at the first voiced segment for ESMBS. All features relating
to rhythm are retained. Interestingly, the genetic search
retains the highest number of features for both data sets,
compared to forward selection.

Table 11 shows a summary of results with feature selec-
tion on both the NATURAL and ESMBS data sets. Figs. 4
and 5 show the results in graphical form for easier
ESMBS

GA PCA FW GA

• • • •
• • • •
• • • •
• • • •
• • •
• • • •
• • • •

• • • •
• •

• •
• • • •
• • • •
• • • •
• • • •

• • • •
• • •
• • • •
• • •

• • •
• •
• • •

• •
• • •
• •
• • •

• •
• • •
• •

• • •
• •
• • • •
• • •
• • •
• • • •
• •

• • •
• • • •

• •

34 25 30 31

algorithm. PCA data sets have been transformed back into the original
s retained.



Table 11
Average percentages of correctly classified instances from the NATURAL and ESMBS data sets for all classification methods

Dataset

NATURAL ESMBS

ORIG PCA FW GA ORIG PCA FW GA

SVM (RBF) 76.93 75.98 79.20 75.95 71.85 63.94 70.72 72.05

MLP 74.25 72.06 75.15 73.99 65.37 61.12 66.71 66.86
K* 70.67 66.55 71.19 71.68 60.34 44.32 58.13 61.43
RF 73.07 66.73 73.99 72.47 67.36 53.85 66.77 69.04
StackingC 77.45 75.49 79.28 77.73 72.18 63.59 72.44 73.29

Vote 78.04 75.57 79.43 77.83 70.54 59.97 69.38 72.30

For acronyms in the data set column, ORIG = original feature set; PCA = principal components analysis; FW = forward selection; GA = genetic
algorithm.

Fig. 4. Average percentages of correctly classified instances from the NATURAL data set for all classification methods. ORIG = original feature set;
PCA = principal components analysis; FW = forward selection; GA = genetic algorithm. Unweighted vote combined with forward selection performs
best.

Fig. 5. Average percentages of correctly classified instances from the ESMBS data set for all classification methods. ORIG = original feature set;
PCA = principal components analysis; FW = forward selection; GA = genetic algorithm. StackingC combined with the genetic search performs best.
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comprehension. Forward selection proves to be the most
accurate feature selection method for the NATURAL data
set, proving more accurate for every classifier except K*,
where the genetic search yields a better feature set. The
genetic search proves more accurate than forward selection
and PCA on the ESMBS data set. PCA is always worse
than even the original feature set, which is surprising, as
PCA often has success for accurate feature reduction in
other studies (Lee and Narayanan, xxx).

Observing the results more closely, we can see that for-
ward selection on ESMBS actually worsens classification.
This is likely due to the fact that the subset evaluation
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for the forward selection search is done using the SVM.
Had each classifier evaluated its own intermediate subsets
during selection, the resulting feature sets would likely have
been better adapted to those classifiers.

With respect to the performance of the classifiers, there
is a clear improvement with using the ensemble methods.
For the NATURAL data set, we can see that the voting
scheme and StackingC perform slightly better than the base
classifiers using the original feature set, and marginally bet-
ter than the SVM using the forward selection set. The
improvement is more significant when we look at the
results for the genetic search.

For the ESMBS data set, the ensemble methods perform
significantly better on the original data sets compared to the
base classifiers. Here, however, it is StackingC which shows
the best performance by almost 2% over the voting scheme.
7.4. Summary of results

In summary, forward selection and the voting scheme
performed best on the NATURAL data set, while the
genetic search and StackingC performed best on the
ESMBS data set. In general, the accuracies of between
the different emotion classes remained constant over all
classification methods.

In the ESMBS data set, anger and sadness were most
accurately classified, followed by surprise, disgust, fear,
and happiness. For the NATURAL data set, neutral speech
was always classified more accurately than angry speech.
The likely reason for this is that the data set was slightly
unbalanced (60% neutral versus 40% angry). Overall, classi-
fication rates on the NATURAL data set were lower than
expected. The main problem in using spontaneous emo-
tional speech is the lack of control that the researcher has
over the experiment. Lack of control can lead to unbal-
anced data, often having some background noise and levels
of specific emotions that are difficult to quantify.

However, because automatic classification on the
ESMBS data set showed success comparable to human lis-
teners, we can be confident that the features utilised for
describing the variation between emotional classes are very
good.

The results also show us the inherent differences between
the two data collection methods. Acted data may lead to
inflated results, while data from real-world situations yields
much lower classification rates, but paints a more realistic
picture of applied automatic emotion recognition.

8. Conclusion and future work

In this paper we explored the performance of two ensem-
ble speech classification schemes in comparison to several
traditional base-level classifiers. Ensemble methods for clas-
sification have generally been overlooked for studies in emo-
tion recognition. As seen in this paper, even simple methods
such as combining predictions of base classifiers with a vot-
ing scheme can show a modest improvement in prediction
accuracy. Further improvement could be gained by experi-
menting with different combinations of base-level classifiers.

This paper also explored the differences between por-
trayed and natural emotional speech. Portrayed speech
yields the researcher a high amount of control over the
emotion expressed, but fails to accurately model the subtle
nature of real-world emotion. This leads to inflated classi-
fication accuracy when compared to natural emotion.
Emotion collected from natural situations, on the other
hand, offers the researcher virtually no control over the
emotions expressed, and variance throughout the emotion
classes is high. However, using portrayed emotional
speech, while not necessarily useful in real-world situations,
can provide a basis for investigating the acoustic differences
between the different emotion classes.

We succeeded in building a speech database for spoken
affect classification. The database is used in the framework
for automatic emotion classification from speech. This
framework is to be deployed in a call-centre where customers
are interacting with human and/or machine representatives
and will help with the management of customer disputes.

Future work includes processing more speech data from
the call-centre environment which will be useful in deter-
mining recognition rates for a broader range of emotion.
In addition, we hope to compare other methods of combin-
ing base-level classifiers. An important aspect relating to the
application of this system is that it must constantly be
updated as new speech data passes through it. Therefore,
incremental learning and efficient retraining approaches will
be considered as part of the ongoing research.
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