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Abstract. We augment naive Bayes models with statistical n-gram language models to address short-comings
of the standard naive Bayes text classifier. The result is a generalized naive Bayes classifier which allows for a
local Markov dependence among observations; a model we refer to as the Chain Augmented Naive Bayes (CAN)
Bayes classifier. CAN models have two advantages over standard naive Bayes classifiers. First, they relax some
of the independence assumptions of naive Bayes—allowing a local Markov chain dependence in the observed
variables—while still permitting efficient inference and learning. Second, they permit straightforward application
of sophisticated smoothing techniques from statistical language modeling, which allows one to obtain better param-
eter estimates than the standard Laplace smoothing used in naive Bayes classification. In this paper, we introduce
CAN models and apply them to various text classification problems. To demonstrate the language independent
and task independent nature of these classifiers, we present experimental results on several text classification
problems—authorship attribution, text genre classification, and topic detection—in several languages—Greek,
English, Japanese and Chinese. We then systematically study the key factors in the CAN model that can influence
the classification performance, and analyze the strengths and weaknesses of the model.

Keywords: naive Bayes, text classification, n-gram language models, smoothing

1. Introduction

Text classification concerns the problem of automatically assigning given text passages
(paragraphs or documents) into predefined categories. Due to the rapid explosion of texts
in digital form, text classification has become an important area of research, owing to
the need to automatically organize and index large text collections in various ways. Such
techniques are currently being applied in many areas, including spam detection, language
identification (Schmitt 1991), authorship attribution (Stamatatos et al. 2000), text genre
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classification (Kessler et al. 1997, Stamatatos et al. 2000), topic identification (Dumais
et al. 1998, Lewis 1992, McCallum and Nigam 1998, Yang 1999), and subjective sentiment
classification (Pang et al. 2002, Turney 2002).

Many standard machine learning techniques have been applied to automated text cate-
gorization problems, such as naive Bayes classifiers, support vector machines, linear least
square models, neural networks, and K-nearest neighbor classifiers (Sebastiani 2002, Yang
1999). Naive Bayes classifiers have been proven successful in text classification (Lewis
1998, McCallum and Nigam 1998, Robertson and Sparck Jones 1976), despite the simplic-
ity of the model and the restrictiveness of the independence assumptions it makes. Domingos
and Pazzanni (1997) observe that naive Bayes classifiers can obtain near optimal misclas-
sification error even when the independence assumption is strongly violated. Nevertheless,
it is commonly thought that relaxing the independence assumption of naive Bayes ought to
allow for superior text classification (Lewis 1998), and it has been shown in practice that
functionally dependent attributes can indeed improve classification accuracy in some cases
(Friedman et al. 1997, Rish 2001).

A significant amount of research has been conducted on relaxing the naive Bayes in-
dependence assumption in machine learning research. A popular extension is the Tree
Augmented Naive Bayes classifier (TAN) (Friedman et al. 1997) which allows for a tree-
structured dependence among observed variables in addition to the traditional dependence
on the hidden “root” variable. However, learning tree structured Bayesian network is not
trivial (Keogh and Pazzanni 1999, Zhang and Ling 2001), and this model has rarely been
used in text classification applications. In this paper we investigate a convenient alternative
that lies between pure naive Bayes and TAN Bayes models in the strength of its assumptions;
namely, the Chain Augmented Naive Bayes (CAN) model. A CAN Bayes model simplifies
the TAN model by restricting dependencies among observed variables to form a Markov
chain instead of a tree. Interestingly, it turns out that the model that results is closely related
to the n-gram language models that have been widely studied in statistical natural language
modeling and speech recognition (Federico and De Mori 1998, Kneser and Ney 1995). We
augment the naive Bayes text classifier by including observation dependencies that form
a Markov chain, and use techniques from statistical n-gram language modeling to learn
and apply these models. The result is a combination of naive Bayes and statistical n-gram
methods that yields simple yet surprisingly effective classifiers.

An advantage of using the CAN model, which naturally incorporates the use of statistical
language models for classification, is that they also allow the straightforward use of ad-
vanced smoothing techniques from statistical language modeling to obtain better parameter
estimates. In the standard naive Bayes approach, Laplace smoothing is commonly used to
avoid zero probability estimates. However, Laplace smoothing is usually less effective than
many other smoothing techniques from statistical language modeling. We consider four
more advanced smoothing techniques that have been commonly used in n-gram language
modeling to improve naive Bayes classifier, and achieve significant improvements.

In addition to improving the standard naive Bayes model, CAN models also have advan-
tages over other traditional text classifiers. A common aspect of traditional text classifica-
tion approaches is that they treat text categorization as a standard classification problem,
and thereby reduce the learning process to two simple steps: feature engineering, and
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discriminant learning over the feature space. Of these two steps, feature engineering is crit-
ical to achieving good performance in practice. Once good features are identified, almost
any reasonable technique for learning a classifier seems to perform well (Scott and Matwin
1999). However, relying upon an explicit feature selection process has several drawbacks.
First, feature construction is usually language and task dependent. Various techniques such
as stop-word removal or stemming require language specific knowledge to design ade-
quately. Moreover, most traditional text classifiers work on word level features, whereas
identifying words from character sequences is hard in many Asian languages—such as
Chinese or Japanese— and any word-based approach must suffer added complexity in cop-
ing with segmentation errors. Second, feature selection is task dependent. For example, tasks
like authorship attribution or genre classification require attention to linguistic style markers
(Stamatatos et al. 2000), whereas topic detection systems rely more heavily on bag of words
features. Third, there are an enormous number of possible features to consider in text classi-
fication problems, and standard feature selection approaches do not always cope well in such
circumstances. For example, given an enormous number of features, the cumulative effect
of uncommon features can still have an important effect on classification accuracy, even
though infrequent features contribute less information than common features individually.
Consequently, throwing away uncommon features is usually not an appropriate strategy in
this domain (Aizawa 2001). A better approach is to use as many features as possible.

CAN models provide a convenient and effective way to mitigate these difficulties. First,
they deal with the feature explosion problem by employing simple back-off estimators from
statistical language modeling, which avoids explicit feature selection by considering all n-
grams as features and measures their importance implicitly by their contribution to language
models. Thus, CAN models avoid the need for explicit feature selection, which is a critical
but error prone process. Second, character level CAN models can be deployed in order to
avoid the word segmentation issues that arise in Asian languages, and thus provide a simple
avenue toward achieving language independent and task independent text classification.

The remainder of the paper is organized as follows. First in Section 2 we describe the
naive Bayes classifier and then present the basic n-gram language model in Section 3. These
two models form the basis of the chain augmented naive Bayes classifier we propose in
Section 4. We then experimentally evaluate the proposed classifier on various text clas-
sification problems in various languages in Section 5. A detailed discussion and analysis
is presented in Section 6. Finally, we discuss related work in Section 7 and conclude in
Section 8.

2. The naive Bayes text classifier

Text classification is the problem of assigning a document D to one of a set of |C | pre-
defined categories C = {c1, c2, . . . , c|C |}. Normally a supervised learning framework is
used to train a text classifier, where a learning algorithm is provided a set of N labeled
training examples {(di , ci ) : i = 1, . . . , N } from which it must produce a classification
function F : D → C that maps documents to categories. Here di denotes the i th training
document and ci is the corresponding category label of di . We use the random variables
D and C to denote the document and category values respectively. A popular learning
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algorithm for text classification is based on a simple application of Bayes’ rule [Duda and
Hart 1973, chapter 10]:1

P(C = c | D = d) = P(C = c) × P(D = d | C = c)

P(D = d)
(1)

where d and c are instances of D and C , P(D = d) = ∑
c∈C P(C = c)P(D = d | C = c).

To simplify the presentation, we re-write Eq. (1) as

P(c | d) = P(c) × P(d | c)

P(d)
(2)

Bayes’ rule decomposes the computation of a posterior probability into the computation of a
likelihood and a prior probability. In text classification, a document d is normally represented
by a vector of K attributes d = (v1, v2, . . . .vK ).2 Computing p(d | c) in this case is not
generally trivial, since the space of possible documents d = (v1, v2, . . . .vK ) is vast. To
simplify this computation, the naive Bayes model introduces an additional assumption that
all of the attribute values, v j , are independent given the category label, c. That is, for i �= j ,
vi and v j are conditionally independent given c. This assumption greatly simplifies the
computation by reducing Eq. (2) to

P(c | d) = P(c) ×
∏K

j=1 P(v j | c)

P(d)
(3)

Based on Eq. (3), maximum a posterior (MAP) classifier can be constructed by seeking
the optimal category which maximizes the posterior P(c | d):

c∗ = arg max
c∈C

{P(c | d)} (4)

= arg max
c∈C

{
P(c) ×

∏K
j=1 P(v j | c)

P(d)

}
(5)

= arg max
c∈C

{
P(c) ×

K∏
j=1

P(v j | c)

}
(6)

Note that the step from Eq. (5) to Eq. (6) is valid because P(d) is a constant for every
category c. A MAP classifier (Eq. (4)) is optimal in the sense of minimizing zero-one loss
(misclassification error) (Duda and Hart 1973). If the independence assumption holds, then
a classifier based on Eq. (6) is also optimal (Duda and Hart 1973). The prior distribution P(c)
can be used to incorporate additional assumptions about the relative frequencies of classes.
Two commonly used prior distributions are the uniform distribution and the empirical
distribution estimated with sample frequencies.

There are several variants of naive Bayes classifiers, including the binary independence
model, the multinomial model, the Poisson model, and the negative binary independence
model (Eyheramendy et al. 2003). It has been shown that for text classification applications,
the multinomial model is most often the best choice (Eyheramendy et al. 2003, McCallum



AUGMENTING NAIVE BAYES CLASSIFIERS 321

Figure 1. Graphical model of a naive Bayes classifier where each leaf node is independent of each other given
its parent.

and Nigam 1998), therefore we will only consider the multinomial naive Bayes model in
this paper. Figure 1 gives a graphical representation of the multinomial naive Bayes model,
showing that each attribute node is independent of the other attributes given the class label C .

The parameters of a multinomial naive Bayes classifier are given by � = {θ c
j = P(v j | c) :

j = 1, . . . , K ; c = 1, . . . , |C |}. The likelihood of a given set of documents Dc for a given
category c is given by

P(Dc | �) = N c!∏
j N c

j !

∏
j

(
θ c

j

)N c
j (7)

where N c
j is the frequency of attribute j occurring in Dc and N c = ∑

j N c
j . A maximum

likelihood estimate yields the parameter estimates

θ c
j = N c

j

N c
(8)

Note that Eq. (8) puts zero probability on attribute values that do not actually occur in
Dc (i.e., N c

j = 0). Unfortunately, a zero estimate can create significant problems when we
classify a new document, for example, when we encounter a new attribute value that has
not been observed in the training corpus Dc. To overcome this problem, Laplace smoothing
is usually used to avoid zero probability estimates in practice:

θ c
j = N c

j + a j

N c + a
(9)

where a j is some constant and a = ∑
j a j . A special case of Laplace smoothing is add

one smoothing [Manning and Schütze 1999, chapter 6] obtained by setting a j = 1. How-
ever, Laplace smoothing is not as effective in language modeling as some other smoothing
techniques (Chen and Goodman 1998, Jelinek 1990). We will show that more advanced
smoothing techniques can be used to improve naive Bayes classifiers, and therefore play an
important role in developing effective text classifiers using naive Bayes models.

We now describe the next main component of our models—statistical n-gram language
models—which we will use to later augment naive Bayes classifiers.
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3. Statistical n-gram language modeling

Although the dominant motivation for language modeling has come from speech recog-
nition, statistical language models have recently become more widely used in many other
application areas, including information retrieval (Hiemstra 2001, Ponte and Croft 1998).

The goal of language modeling is to predict the probability of natural word sequences;
or more simply, to put high probability on word sequences that actually occur (and low
probability on word sequences that never occur). Given a word sequence w1w2 . . . wT to
be used as a test corpus, the quality of a language model can be measured by the empirical
perplexity (or entropy) on this corpus

Perplexity = T

√
1

P(w1 . . . wT )
(10)

Entropy = log2 Perplexity (11)

The goal of language modeling is to obtain a small perplexity. The simplest and most
successful basis for language modeling is the n-gram model: Note that by the chain rule of
probability we can write the probability of any sequence as

P(w1w2 . . . wT ) =
T∏

i=1

P(wi | w1 . . . wi−1) (12)

An n-gram model approximates this probability by assuming that the only words relevant to
predicting P(wi | w1 . . . wi−1) are the previous n − 1 words; that is, it assumes the Markov
n-gram independence assumption

P(wi | w1 . . . wi−1) = P(wi | wi−n+1 . . . wi−1)

A straightforward maximum likelihood estimate of n-gram probabilities from a corpus is
given by the observed frequency

P(wi | wi−n+1 . . . wi−1) = #(wi−n+1 . . . wi )

#(wi−n+1 . . . wi−1)
(13)

where #(.) is the number of occurrences of a specified gram in the training corpus. Unfortu-
nately, using grams of length up to n entails estimating the probability of W n events, where
W is the size of the word vocabulary. This quickly overwhelms modern computational and
data resources for even modest choices of n (beyond 3 to 6). Also, because of the heavy
tailed nature of language (i.e. Zipf’s law) one is likely to encounter novel n-grams that
were never witnessed during training. Therefore, some mechanism for assigning non-zero
probability to novel n-grams is a central and unavoidable issue. One standard approach
to smoothing probability estimates to cope with sparse data problems (and to cope with
potentially missing n-grams) is to use some sort of linear interpolation or back-off esti-
mator. Linear interpolation models involves an EM procedure to optimize the weight for
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each component (Chen and Goodman 1998, Jelinek 1990) and back-off model is relatively
simple. To keep the simplicity of naive Bayes model, we use back-off models.

P(wi | wi−n+1 . . . wi−1) =




P̂(wi | wi−n+1 . . . wi−1),

if #(wi−n+1 . . . wi ) > 0

β(wi−n+1 . . . wi−1) × P(wi | wi−n+2 . . . wi−1),

otherwise

(14)

where

P̂(wi | wi−n+1 . . . wi−1) = discount #(wi−n+1 . . . wi )

#(wi−n+1 . . . wi−1)
(15)

is the discounted probability, and β(wi−n+1 . . . wi−1) is a normalization constant calculated
to be

β(wi−n+1 . . . wi−1) = 1 − ∑
x :#(wi−n+1...wi−1x)>0 P̂(x | wi−n+1 . . . wi−1)

1 − ∑
x :#(wi−n+1...wi−1x)>0 P̂(x | wi−n+2 . . . wi−1)

(16)

An n-gram is first matched against the language model to see if it has been observed in
the training corpus. If that fails, the n-gram is then reduced to an n − 1-gram by shortening
the context by one word. The discounted probability (15) can then be computed using
different smoothing approaches. The standard smoothing approaches we consider in this
paper include linear smoothing (Ney et al. 1994, Witten and Bell 1991), absolute smoothing
(Ney et al. 1994), Good-Turing smoothing (Katz 1987) and Witten–Bell smoothing (Witten
and Bell 1991).

To describe the smoothing techniques, let ni denote the number of events which occur
exactly i times in training data (Ney et al. 1994).

Absolute smoothing. Here the frequency of a word is subtracted by a constant b so that the
discounted probability (Eq. (15)) is calculated as

P̂(wi | wi−n+1 . . . wi−1) = #(wi−n+1 . . . wi ) − b

#(wi−n+1 . . . wi−1)

where b is often defined as b = n1
n1+2n2

.
Linear smoothing. Here the discounted probability is calculated as

P̂(wi | wi−n+1 . . . wi−1) =
(

1 − n1

T

)
× #(wi−n+1 . . . wi )

#(wi−n+1 . . . wi−1)

where T is the number of uni-grams, which corresponds to the number of words in the
training data (Ney et al. 1994).
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Good-Turing smoothing. Good-Turing smoothing discounts the frequency of r by GTr =
(r + 1) nr+1

nr
and the discounted probability is calculated as (Katz 1987):

P̂(wi | wi−n+1 . . . wi−1) = GT#(wi−n+1...wi )

#(wi−n+1 . . . wi−1)

There are different variants of this standard Good-Turing smoothing. These include Katz’s
variant (Katz 1987) and Church & Gale’s variant (Church and Gale 1991). We imple-
mented Katz’s variant.

Witten–Bell smoothing. Witten–Bell smoothing is very similar to Laplace smoothing, ex-
cept it reserves probability mass for out of vocabulary (OOV) values, whereas Laplace
smoothing does not.3 Here the discounted probability is calculated as

P̂(wi | wi−n+1 . . . wi−1) = #(wi−n+1 . . . wi )

#(wi−n+1 . . . wi−1) + D(wi−n+1 . . . wi−1)

where D(wi−n+1 . . . wi−1) is the number of distinct words that can follow wi−n+1 . . . wi−1

in the training data (Witten and Bell 1991). In the uni-gram model, this corresponds to
the size of vocabulary.

We now show how the naive Bayes and statistical n-gram language models can be com-
bined to form the chain augmented naive Bayes classifier.

4. Applying n-gram language models as text classifiers

Text classifiers attempt to identify attributes which distinguish documents in different cate-
gories. Such attributes may include vocabulary terms, word average length, local n-grams,
or global syntactic and semantic properties. Language models also attempt capture such
regularities, and hence provide another natural avenue to constructing text classifiers. An
n-gram language model can be applied to text classification in a similar manner to a naive
Bayes model. That is, we categorize a document according to

c∗ = arg max
c∈C

{P(c | d)} (17)

Using Bayes rule, this can be rewritten as

c∗ = arg max
c∈C

{P(c)P(d | c)} (18)

= arg max
c∈C

{
P(c)

T∏
i=1

P(wi | wi−n+1 . . . wi−1, c)

}
(19)

= arg max
c∈C

{
P(c)

T∏
i=1

Pc(wi | wi−n+1 . . . wi−1)

}
(20)
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Here, P(d | c) is the likelihood of d under category c, which can be computed by an n-
gram language model. Likelihood is related to perplexity and entropy by Eqs. (10) and
(11). The prior P(c) can be estimated from training data or can be used to incorporate more
assumptions, similar to the standard naive Bayes model. In our case, Pc(wi | wi−n+1 . . . wi−1)
is computed using a back-off model introduced in previous section.

Thus our approach overall is to learn a separate back-off language model for each category
by training on a data set from that category. Then, to categorize a new text d, we supply
d to each language model, evaluate the likelihood (or entropy) of d under the model, and
pick the winning category according to Eq. (20).

Note that n-gram classifiers are in fact a straightforward generalization of naive Bayes:
a uni-gram classifier with Laplace smoothing corresponds exactly to the traditional naive
Bayes classifier. However, n-gram language models, for larger n, possess many advantages
over naive Bayes classifiers, including modeling longer context and exploiting superior
smoothing techniques in the presence of sparse data. For naive Bayes text classifiers, at-
tributes (words) are considered independent of each other given the category. However, in a
language modeling based approach, this is enhanced by considering a Markov dependence
between adjacent words. Due to this similarity, we refer the n-gram augmented naive Bayes
classifier as a Chain Augmented Naive Bayes classifier (CAN).

Another notable advantage of the language modeling based approach is that it does not
incorporate an explicit feature selection procedure. That is, instead, it considers all possible
n-grams as features. Their importance is implicitly considered by their contribution to the
quality of language modeling (in sense of perplexity in Eq. (10)). The back-off smoothing
technique effectively deals with feature explosion. The over-fitting problems associated
with the subsequent feature explosion are nicely handled by applying the backoff smoothing
techniques outlined above.

Note that the basic unit used in the language models described above is the word. However,
we can also consider text as a concatenated sequence of characters instead of words. The
formulation of a character based language model is the same as above, except that the
size of the vocabulary is much smaller, which greatly reduces the sparse data problem.
Character level models also avoid the word segmentation problems that occur in many
Asian languages such as Chinese and Japanese, and thus allows constructing language
independent classifiers. We also explore this alternative below.

5. Experimental comparison

To systematically evaluate the CAN model, we investigate several different text classifi-
cation tasks on various languages. Specifically, we consider Greek authorship attribution,
Greek genre classification, and topic detection in English, Japanese, and Chinese.

5.1. Classification performance and experimental paradigm

In many cases, classification can be carried out directly based on Eq. (17). However some
classifiers, such as SVMs, are specifically designed only for binary classification problems.
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For these classifiers, given a |C | category classification problem, we have to convert it to a
set of binary classification problems.

Different performance measures can be used to assess these two different unique clas-
sification approaches. For the sake of consistency with previous research, we experiment
with both approaches in different data. In the Chinese topic detection experiments, there
are 6 classes, so we formulate 6 binary classification problems. In Reuters topic detection
experiments, there are 10 classes, so we formulate 10 binary classification problems. In
both of these cases, we measure classification performance by micro-averaged F-measure.
To calculate the micro-averaged score, we formed an aggregate confusion matrix by adding
up the individual confusion matrices from each category. The micro-averaged precision,
recall, and F-measure can then be computed based on the aggregated confusion matrix.

In other experiments, we measured overall accuracy and macro-averaged F-measure.
(Micro-averaged values are not available in these cases.) Here the precision, recall, and
F-measures of each individual category can be computed based on a |C | × |C | confusion
matrix. Macro-averaged scores can be computed by averaging the individual scores. The
overall accuracy is computed by dividing the number of correctly identified documents
(summing the numbers across the diagonal) by the total number of test documents. In most
experiments, we use numeric precision to 4 digits. However in some experiments (Greek
authorship attribution, Japanese topic detection, Chinese topic detection), we can not obtain
higher numeric precision due to the size of the used test sets.

In all our experiments, we first report results of character level CAN models which
consider text as a sequence of characters. However, for western languages such as English
and Greek, we also report results of using word level CAN models which consider text as
a sequence of words.

5.2. Authorship attribution

The first text categorization problem we examined was author attribution. A famous example
is the case of the Federalist Papers, of which twelve instances are claimed to have been
written both by Alexander Hamilton and James Madison (Holmes and Forsyth 1995). We
considered a data set used by Stamatatos et al. (2000) consisting of 20 texts written by
10 different modern Greek authors (totaling 200 documents). In each case, 10 texts from
each author were used for training and the remaining 10 for testing (using the same split as
(Stamatatos et al. 2000)). The specific authors that appear are shown in Table 1.

The results of using character level models are shown in Table 2. In our experiments,
we obtained the best performance by using a tri-gram model with absolute smoothing. The
best accuracy we obtained is 90%. This compares favorably to the best accuracy reported
in Stamatatos et al. (2000) of 72%.4 The 18% accuracy improvement is surprising given
the relative simplicity of our method.

As a typical western language, Greek words are separated by white space, so we can also
apply word level models to this data. Table 3 shows the results of the word level model. Here
the performance increases to 96%, which is better than character level models. However,
such a significant improvement is not always observed in other experiments, as we will see
Table 3.
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Table 1. Authors in the Greek authorship attribution data set.

Code Author name Train size (characters)

B0 S. Alaxiotis 77295

B1 G. Babiniotis 75965

B2 G. Dertilis 66810

B3 C. Kiosse 102204

B4 A. Liakos 89519

B5 D. Maronitis 36665

B6 M. Ploritis 72469

B7 T. Tasios 80267

B8 K. Tsoukalas 104065

B9 G. Vokos 64479

Table 2. Results on Greek authorship attribution using character level models.

Absolute Laplace Good-Turing Linear Witten–Bell

n Acc. F-Mac Acc. F-Mac Acc. F-Mac Acc. F-Mac Acc. F-Mac

1 0.57 0.53 0.56 0.51 0.55 0.49 0.55 0.49 0.55 0.49

2 0.85 0.84 0.82 0.79 0.80 0.75 0.84 0.83 0.84 0.82

3 0.90 0.89 0.70 0.64 0.79 0.72 0.89 0.88 0.89 0.87

4 0.87 0.85 0.47 0.39 0.79 0.72 0.85 0.82 0.88 0.86

5 0.86 0.85 0.35 0.29 0.79 0.72 0.87 0.85 0.86 0.83

6 0.86 0.83 0.16 0.10 0.79 0.73 0.87 0.85 0.86 0.83

Table 3. Results on Greek authorship attribution using word level models.

Absolute Laplace Good-Turing Linear Witten–Bell

n Acc. F-Mac Acc. F-Mac Acc. F-Mac Acc. F-Mac Acc. F-Mac

1 0.96 0.95 0.76 0.72 0.93 0.92 0.96 0.95 0.61 0.57

2 0.96 0.95 0.60 0.56 0.95 0.94 0.95 0.94 0.83 0.78

3 0.96 0.95 0.54 0.51 0.95 0.94 0.95 0.94 0.83 0.78

4 0.96 0.95 0.56 0.53 0.95 0.94 0.95 0.94 0.84 0.80

5.3. Text genre classification

The second problem we examined was text genre classification, which is an important
application in natural language processing (Kessler et al. 1997) and information retrieval
(Lee and Myaeng 2002). We considered a Greek data set used by Stamatatos et al. (2000)
consisting of 20 texts of 10 different styles extracted from various sources (200 documents
in total). For each style, we used 10 texts as training data and the remaining 10 as testing
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Table 4. 10 different text genres.

Code Genre Source

0 Press editorial Newspaper TO BHMA

1 Press reportage Newspaper TO BHMA

2 Academic prose Journal of archives of hellonic pathology

3 Official documents High court decisions, ministerial decisions

4 Literature Various pages

5 Recipes Magazine NETLIFE

6 Curriculum vitae Various pages

7 Interviews Newspaper TO BHMA

8 Planned speeches Ministry of defense

9 Broadcast news, scripted Radio station, FLASH 9.61

Table 5. Results on Greek text genre classification using character level models.

Absolute Laplace Good-Turing Linear Witten–Bell

n Acc. F-Mac Acc. F-Mac Acc. F-Mac Acc. F-Mac Acc. F-Mac

1 0.31 0.55 0.30 0.54 0.30 0.54 0.30 0.54 0.30 0.54

2 0.86 0.86 0.72 0.69 0.60 0.52 0.82 0.81 0.86 0.86

3 0.77 0.75 0.50 0.41 0.65 0.59 0.79 0.77 0.85 0.85

4 0.69 0.65 0.38 0.29 0.58 0.50 0.74 0.69 0.76 0.74

5 0.66 0.61 0.38 0.29 0.56 0.49 0.69 0.66 0.73 0.70

6 0.62 0.57 0.38 0.29 0.49 0.53 0.67 0.63 0.71 0.68

7 0.63 0.58 0.33 0.21 0.49 0.53 0.66 0.62 0.70 0.68

data (using the same split as in Stamatatos et al. (2000). The 10 different text genres and
their original sources are shown in Table 4.

The results of the character level model are shown in Table 5. The 86% accuracy obtained
with bi-gram models compares favorably to the 82% reported in Stamatatos et al. (2000),
which again is based on a much deeper NLP analysis.

As before, we can again apply word level models to Greek text genre classification. The
results are shown in Table 6. Here we obtain 81% accuracy using absolute smoothing and
uni-grams (n = 1). The standard naive Bayes model (n=1 and Laplace smoothing) achieves
only 56% performance in this case. Here word level models perform worse than character
level models.

5.4. Topic detection

The third problem we examined was topic detection in text, which is a heavily researched
text categorization problem (Dumais et al. 1998, Lewis 1992, McCallum and Nigam 1998,



AUGMENTING NAIVE BAYES CLASSIFIERS 329

Table 6. Results on Greek text genre classification using word level models.

Absolute Laplace Good-Turing Linear Witten–Bell

n Acc. F-Mac Acc. F-Mac Acc. F-Mac Acc. F-Mac Acc. F-Mac

1 0.81 0.78 0.56 0.48 0.76 0.73 0.77 0.76 0.50 0.42

2 0.80 0.77 0.59 0.61 0.79 0.76 0.77 0.74 0.61 0.56

3 0.80 0.77 0.61 0.62 0.78 0.75 0.77 0.74 0.60 0.56

Sebastiani 2002, Yang 1999). Here we demonstrate the language independence of the char-
acter based language modeling approach by considering experiments on English, Japanese
and Chinese data.

5.4.1. English 20 newsgroup data. The English 20 Newsgroup data was originally col-
lected and used for text categorization by Lang (1995) and has been widely used in topic
detection research (McCallum and Nigam 1998, Rennie 2001).5 This collection consists
of 19,974 non-empty documents distributed evenly across 20 newsgroups. We use the
newsgroups to form categories, and randomly select 80% of the documents to be used for
training and the remaining 20% for testing. Table 7 shows the 20 categories appearing in
the newsgroup data.

We first considered text to be a sequence of characters, and learned character level n-
gram models. The resulting classification accuracies are reported in in Table 8. All results
are averaged across 5 random runs. In the character model, with tri-gram (or higher order)
models, we consistently obtain accurate performance, peaking at 89.23 ± 0.33% accuracy
in the case of 5-gram models with Witten-Bell smoothing. These results compare favorably
to the state of the art result of 87.5% accuracy reported in Rennie (2001), which was based
on a combination of SVMs with error correcting output coding (ECOC).

As before, we can also consider English text as a sequence of words and therefore also
apply word models in this case. The results are shown in Table 9. Word level models

Table 7. English 20 newsgroup data.

Code Newsgroup Code Newsgroup

0 alt.atheism 10 rec.sport.hockey

1 comp.graphics 11 sci.crypt

2 comp.os.ms-windows.misc 12 sci.electronics

3 comp.sys.ibm.pc.hardware 13 sci.med

4 comp.sys.mac.hardware 14 sci.space

5 comp.windows.x 15 soc.religion.christian

6 misc.forsale 16 talk.politics.guns

7 rec.autos 17 talk.politics.mideast

8 rec.motorcycles 18 talk.politics.misc

9 rec.sport.baseball 19 talk.religion.misc
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Table 8. Topic detection results on English 20 newsgroup data using character models.

Absolute Laplace Good-Turing Linear Witten–Bell

n Acc. F-Mac Acc. F-Mac Acc. F-Mac Acc. F-Mac Acc. F-Mac

1 0.2128 0.2034 0.2128 0.2033 0.2126 0.2032 0.2126 0.2032 0.2126 0.2032

2 0.6691 0.6505 0.6646 0.6451 0.6760 0.6569 0.6772 0.6584 0.6628 0.6437

3 0.8680 0.8635 0.8458 0.8385 0.8617 0.8571 0.8629 0.8596 0.8673 0.8621

4 0.8879 0.8849 0.8279 0.8197 0.8803 0.8775 0.8783 0.8760 0.8903 0.8870

5 0.8895 0.8867 0.7384 0.7267 0.8803 0.8764 0.8824 0.8806 0.8923 0.8896

6 0.8876 0.8852 0.6517 0.6453 0.8787 0.8759 0.8810 0.8794 0.8913 0.8883

7 0.8862 0.8831 0.5800 0.5759 0.8771 0.8742 0.8838 0.8821 0.8909 0.8875

Table 9. Topic detection results on English 20 newsgroup data using word models.

Absolute Laplace Good-Turing Linear Witten–Bell

n Acc. F-Mac Acc. F-Mac Acc. F-Mac Acc. F-Mac Acc. F-Mac

1 0.8735 0.8694 0.8493 0.8412 0.8653 0.8612 0.8757 0.8717 0.8423 0.8343

2 0.8818 0.8781 0.4730 0.4718 0.8733 0.8686 0.8822 0.8790 0.8749 0.8711

3 0.8800 0.8766 0.3381 0.3416 0.8713 0.8668 0.8798 0.8769 0.8726 0.8693

4 0.8808 0.8774 0.3234 0.3274 0.8712 0.8667 0.8795 0.8766 0.8730 0.8699

were able to achieve 88.22 ± 0.35% accuracy in this case. (Using the t-test, we find that
the difference between the results of character level models and word level models are
statistically significant to the α = 0.01 significance level. The resulted p-value is 0.0027
and t-score is 4.2818.) Note that the word level model with Laplace smoothing and n = 1
is exactly equivalent to the traditional Naive Bayes classifier, which only achieves 84.93%
accuracy in this case—consistent with previous findings (McCallum and Nigam 1998).

5.4.2. Japanese data. Japanese topic detection is often thought to be more challenging
than in English, because words are not white-space delimited in Japanese text. This fact
seems to require word segmentation to be performed as a pre-processing step before further
classification (Aizawa 2001). However, we avoid the need for explicit segmentation by
simply using a character level (byte level) n-gram classifier.

We consider the Japanese topic detection data investigated by Aizawa (2001). This data
set was converted from the NTCIR-J1 data set originally created for Japanese text retrieval
research. The data has 24 categories. The testing set contains 10,000 documents distributed
unevenly between categories. We have obtained the experimental results shown in Table 10,
which still show an 84% accuracy rate on this problem (for 6-gram or higher order models).
This is the same level of performance as that reported in Aizawa (2001), which uses an
SVM approach with word segmentation, morphology analysis and feature selection.
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Table 10. Japanese topic detection results.

Absolute Good-Turing Linear Witten–Bell

n Acc. F-Mac Acc. F-Mac Acc. F-Mac Acc. F-Mac

1 0.33 0.29 0.34 0.29 0.34 0.29 0.34 0.29

2 0.66 0.62 0.66 0.61 0.66 0.63 0.66 0.62

3 0.75 0.72 0.75 0.72 0.76 0.73 0.75 0.72

4 0.81 0.77 0.81 0.76 0.82 0.76 0.81 0.77

5 0.83 0.77 0.83 0.76 0.83 0.76 0.83 0.77

6 0.84 0.76 0.83 0.75 0.83 0.75 0.84 0.77

7 0.84 0.75 0.83 0.74 0.83 0.74 0.84 0.76

8 0.83 0.74 0.83 0.73 0.83 0.73 0.84 0.76

5.4.3. Chinese data. Chinese poses the same word segmentation issues as Japanese. Word
segmentation is also thought to be necessary for Chinese text categorization (He et al. 2000),
but we avoid the need again by considering character level language models.

For Chinese topic detection we considered a data set investigated in He et al. (2000).
The corpus in this case is a subset of the TREC-5 data set created for research on Chinese
text retrieval. To make the data set suitable for text categorization, documents were first
clustered into 101 groups that shared the same headline (as indicated by an SGML tag) and
the six most frequent groups were selected to make a Chinese text categorization data set, as
shown in Table 11. Following He et al. (2000, 2001), we converted the problem into 6 binary
classification problems. In each case, we randomly selected 500 positive examples and then
selected 500 negative examples evenly from among the remaining negative categories to
form the training data. The testing set contains 100 positive documents and 100 negative
documents generated in the same way. The training set and testing set do no overlap and
do not contain repeated documents.

Table 12 shows the results of the character level language modeling classifiers. Table 13
shows the results of using an SVM classifier, where the first column is the number of
selected features based on frequency ranking. (We use the SVMlight (Joachims 1998) toolkit
with linear kernels.) The entries are micro-average F-measure. We observe a performance

Table 11. Chinese topics.

Code Topic

0 Politics, Law and Society

1 Literature and Arts

2 Education, Science and Culture

3 Sports

4 Theory and Academy

5 Economics
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Table 12. Results on Chinese topic detection data using character level models.

Absolute Laplace Good-Turing Linear Witten–Bell

1 0.855 0.857 0.858 0.859 0.859

2 0.867 0.798 0.862 0.860 0.859

3 0.864 0.794 0.859 0.859 0.862

4 0.866 0.801 0.860 0.863 0.862

Table 13. Results of the character level SVM classifier on Chinese data.

Feature # Micro-F1

100 0.811

200 0.813

300 0.817

400 0.816

500 0.817

1000 0.817

1500 0.815

2000 0.816

of over 86.7% for this task, using bi-gram (2 Chinese characters) or higher order models.
Standard naive Bayes model (n = 1 and Laplace smoothing) achieves 85.7% performance.
SVM achieves stable performance of about 81.5%. He et al. (2000) reported a performance
of about 82% using SVM based on word segmentation and feature selection.

5.4.4. Reuters-21578 data. Unlike other data sets, the Reuters-21578 data is used for multi-
way classification, where each document is allowed to belong to more than one category.
The data set contains 12902 Reuters news wire articles. 6 The documents are assigned to 135
topic categories. However, some categories are empty and thus there are only non-empty
118 categories, among which the 10 most frequent categories contain about 75% of the
documents. There are several ways to split the documents into training and testing sets:
‘ModLewis’ split, ‘ModApte’ split, and ‘ModHayes’ split. The ‘ModApte’ train/test split is
widely used in text classification research. Using the ‘ModApte’ split, the 10 most frequent
categories and the numbers of documents used for training, testing and reserved unused in
each category are listed in Table 14.

The results of micro-averaged F-measure are shown in Tables 15 and 16 for character
level models and word level models respectively.

Word level models marginally outperform character level models. Bi-gram or tri-gram
word level models are better than uni-gram models, which means that relaxing the inde-
pendence assumption in naive Bayes models also helps in this case. However, in previous
research, an SVM classifier obtained up to 92% accuracy (Dumais et al. 1998),7 which was
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Table 14. Reuters 10 most frequent categories.

Category Training Test Unused

Earn 2877 1087 22

Acq 1650 719 79

Money-fx 538 179 82

Grain 433 149 45

Crude 389 189 54

Trade 369 118 65

Interest 347 131 33

Wheat 212 71 23

Ship 197 89 18

Corn 182 56 15

Table 15. Results on Reuters data using character level models.

n Absolute Laplace Good-Turing Linear Witten–Bell

1 0.4213 0.4207 0.4207 0.4207 0.4207

2 0.6607 0.6731 0.6790 0.6651 0.6651

3 0.7816 0.8032 0.7873 0.7883 0.7805

4 0.8010 0.7229 0.8024 0.7969 0.8023

5 0.7964 0.6448 0.7932 0.7855 0.7996

6 0.7832 0.6156 0.7839 0.7765 0.7884

7 0.7701 0.6131 0.7782 0.7697 0.7813

Table 16. Results on Reuters data using word level models.

n Absolute Laplace Good-Turing Linear Witten–Bell

1 0.7850 0.7973 0.7900 0.7880 0.7959

2 0.8152 0.7069 0.8124 0.8114 0.7935

3 0.8137 0.6353 0.8135 0.8105 0.7952

based on feature selection and optimizing prior P(c) for each individual category. We did
not optimize the prior information and merely used a uniform prior (that is, we put equal
weight for positive and negative category).

6. Analysis and discussion

The perplexity of a test document under a language model depends on several factors. The
three most influential factors are the order, n, of the n-gram model, the smoothing technique
used, and the number of training documents. These factors significantly influence the quality
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of a language model and thus may influence classification performance. We will first discuss
the relationship between language modeling quality and classification performance. Then
we will further analyze the influence of each individual factor. We will also discuss other
factors such as the influence of prior information P(c) in Eq. (20), whether character or
word level models should be applied, and analyze the success and failure of the model.

6.1. Relationship between accuracy and perplexity

Figure 2 shows the relationship between classification performance and language modeling
quality on the Greek authorship attribution task. (The other data sets have similar curves.)
The upper part of the figure shows classification performance and the lower part shows
language modeling quality measured by average entropy across all testing documents (bits
per character). We can see that classification performance is almost monotonically related
to language modeling quality. However, this is not absolutely true. Since our goal is to make
a final decision based on the ranking of perplexities, not just their absolute values, a slightly
superior language model in the sense of perplexity reduction (i.e. from the perspective
of classical language modeling) does not necessarily lead to a better decision from the
perspective of categorization accuracy.
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Figure 2. Relationship between classification performance and language modeling quality.
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6.2. Effects of n-gram order

Relaxing the naive Bayes independence assumption to consider local context dependencies
is one of the main motivations of the CAN Bayes model. The order n is a key factor in
determining the quality of n-gram language models. If n is too small then the model will not
capture enough context. However, if n is too large then this will create severe sparse data
problems. Both extremes result in a larger perplexity than the optimal context length and
decrease classification performance. Figure 3 illustrates the influence of order n on classi-
fication performance in the previous five experiments (Greek authorship attribution, Greek
text genre classification, English topic detection, Japanese topic detection and Chinese
topic detection) using absolute smoothing. From the curves, one can see that as the order
increases, classification accuracy increases, presumably because the longer context better
captures the regularities of the text. However, at some point accuracy begins to decrease
and entropy begins to increase as sparse data problems begin to set in. Interestingly, the
effect is more pronounced in some experiments (Greek genre classification) but less so in
other experiments (topic detection under any language). The sensitivity demonstrated in the
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Figure 3. Influence of the order n on classification performance.
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Greek genre case could still be attributed to the sparse data problem (over-fitting in genre
classification could be more serious than other problems). Data sparseness also explains
why the context information does not help in the Chinese data beyond 2-grams. The perfor-
mance increases 3 to 4% from 1-gram to 2-gram models, but does not increase any more.
There are 3573 most commonly used characters in Chinese compared to 100 (upper case,
lower case, and punctuation) in English. Data sparseness is much more serious in Chinese
than in English. Also, most Chinese words consist of 1 to 2 characters. Bi-grams have been
found very effective in Chinese IR (Kwok 1999). However, longer context information does
not help significantly improve classification accuracies in Greek and English at the word
level (except for Witten-Bell smoothing, which may be due to its poor performance on
uni-gram models). Bi-gram models generally outperform uni-gram models. However, the
over-fitting problem in word level models set in earlier because the sparse data problem at
the word level is much more serious than at the character level.

Overall, relaxing independence assumptions can help in cases where there is sufficient
training data to reduce the sparse data problem, such as with character level models. How-
ever, when one does not have sufficient training data, it becomes important to use short
context models that avoid sparse data problems. These results may offer another explana-
tion of why the naive Bayes classifier is preferred in practice, because normally one can not
get sufficient labeled training data to train a large-context model.

The optimal order n of n-gram models depends on language and task, which in practice
can be determined by cross validation.

6.3. Effects of smoothing technique

Another key factor affecting the performance of a language model is the smoothing tech-
nique used. We illustrate the results on the 20 Newsgroup data sets with character level and
word level models in figures 4 and 5 respectively (other data sets have similar curves).

Here we find that Laplace smoothing over-fits very quickly. Overall, Laplace smoothing is
not a good choice for smoothing naive Bayes models. Other smoothing techniques perform
similarly on character models but vary significantly on word level models. On word level
models, absolute smoothing and linear smoothing outperform other smoothing techniques.
However, in character based models, for the most part, one can use any standard smoothing
technique (except Laplace smoothing) and obtain comparable performance. One reason that
the smoothing technique does not make a big difference for character based models is that
character based models have a very small vocabulary.

6.4. Influence of training size

Clearly, the size of the training corpus can affect the quality of a language model. Normally
with a larger training corpus more reliable statistics can be obtained which leads to better
prediction accuracy on test data. To test the effect of training set size we obtained an
additional 10 documents from each author in the Greek data set. In fact, this same additional
data has been used in Stamatatos et al. (2001) to improve the accuracy of their method from
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Figure 4. Results on 20 newsgroup data using character level models.

72% to 87%. Here we find that the extra training data also improves the accuracy of our
method, although not so dramatically.

Figure 6 shows the improvement obtained for n-gram language models using absolute
smoothing. Here we can see that indeed extra training data uniformly improves attribution
accuracy. On the augmented training data the best model (tri-gram) now obtains a 92%
attribution accuracy, compared to the 90% we obtained originally. Moreover, this improves
the best result obtained in Stamatatos et al. (2001) of 87%. However, our improvement
(90% to 92%) is not nearly as great as that obtained by Stamatatos et al. (2001) (71% to
87%). However, this could be due to the fact that it is harder to reduce a small prediction
error. A similar phenomenon also occurs with other smoothing techniques.

6.5. Choice of priors

The prior P(c) in Eq. (20) can be empirically computed from training data, or sometimes
can be assumed to be uniform if we do not know its true distribution. In the Japanese
topic detection experiments, the data had 24 categories and documents were distributed
unevenly between categories (with a minimum of 1747 and maximum of 53975 documents
per category). This imbalanced distribution could cause some difficulty if one assumed a
uniform prior over categories. However, with an empirical prior distribution learned from
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Figure 5. Results on 20 newsgroup data using word level models (Laplace smoothing omitted for clarity).

training data, we observe that the results do not change significantly from simply using a
uniform prior. The comparison of using a uniform prior versus an empirical prior is shown
in Table 17 (with absolute smoothing). There is a significant improvement for uni-gram
models when using an empirical instead of uniform prior. However, the difference becomes
smaller and eventually can be ignored as higher order models are used. Basically, the direct
empirical distribution computed from training data is not very helpful in text classification
tasks. However, optimizing the priors based on held out data sets are helpful (Dumais et al.
1998, Teahan and Harper 2003).

6.6. Character level versus word level

For many Asian languages such as Chinese and Japanese, where word segmentation is hard,
character level CAN Bayes models are well suited for text classification because they avoid
the need for word segmentation. For Western languages such as Greek and English, one
can work at both the word and character levels. Table 18 compares character and word level
results on the Greek and English experiments.

In the Greek authorship attribution task word level models significantly outperform char-
acter level models. However, in other experiments, character level models outperform word
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Figure 6. Influence of training size on accuracy.

level models. It seems that for informal texts, such as Newsgroup data and other on-line
data, character models have an advantage since that they can capture some regularities
that word level models miss in this case, such as spelling errors. By relaxing the context,
character level models can also capture regularities at the word level, and even phrase level
regularities. However, it is not clear whether a character or word model should be used
for a specific text. Perhaps combining the two levels could result in more robust and more
accurate results.

Table 17. Uniform prior versus empirical prior on Japanese topic detection results.

n Uniform prior Empirical prior

1 0.33 0.38

2 0.66 0.67

3 0.75 0.76

4 0.81 0.81

5 0.83 0.83

6 0.84 0.84

7 0.84 0.84

8 0.83 0.83
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Table 18. Character level versus word level results.

Task Character level (%) Word level (%)

Greek authorship attribution 0.90 0.96

Greek genre detection 0.86 0.81

English topic detection (20 news) 0.891 0.88

6.7. Overall assessment

Most of the results we have reported here are comparable to (or much better than) the
start of the art results on the same data sets. For example, our 90% accuracy for Greek
authorship attribution is much better than the 72% reported in Stamatatos et al. (2000). Our
86% Greek genre classification accuracy is better than the 82% reported in Stamatatos et al.
(2001) which is based on a much more complicated analysis. Our 89.13% accuracy on the
20 Newsgroups data set is better than the best result, 87.5%, reported in Rennie (2001)
which is based on a combination of SVMs and error correcting output coding (ECOC). Our
86.7% accuracy on the Chinese TREC data is better than the 81.7% achieved by SVMs.
Overall, the chain augmented naive Bayes classifier works very well, even though it is a
much simpler technique than these other methods and it is not specialized to any particular
data set.

The success of this simple method, we think, is due to the effectiveness of well known sta-
tistical language modeling techniques, which surprisingly have had little significant impact
on the learning algorithms normally applied to text categorization. Nevertheless, statistical
language modeling is also concerned with modeling the semantic, syntactic, lexicograph-
ical and phonological regularities of natural language—and would seem to provide a nat-
ural foundation for text categorization problems. One interesting difference, however, is
that instead of explicitly pre-computing features and selecting a subset based on arbitrary
decisions, the language modeling approach simply considers all character (or word) subse-
quences occurring in the text as candidate features, and implicitly considers the contribution
of every feature in the final model. Thus, the language modeling approach completely avoids
a potentially error-prone feature selection process.

However, language modeling based approach does not win in all cases. We also found that
in the Reuters-21578 data set, SVMs still significantly outperformed our language modeling
based classifiers. In this case, the reason appears to be that the sparse data problem in this data
set is very severe in some categories (such as corn, ship, and wheat). Here, a traditional SVM
classifier with an explicit feature selection procedure may have an advantage since the feature
selection procedure may be able to select a few words which are sufficient to distinguish the
categories, whereas the language modeling approach does not have enough data to obtain
reliable probability estimates. This suggests that straightforwardly applying language model
based classifiers to multi-way classification might be problematic. However, in Teahan
and Harper (2003) a compression based language modeling approach was applied to the
same data set and comparable performance was achieved by optimizing the parameters.
Nevertheless, language modeling based classifiers still improve plain naive Bayes classifiers
in this case.
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We found that the performance of a classifier depends both on the language and the task.
For example, SVMs achieve state of the art performance on Reuters data. However, they do
not perform well on Chinese and Japanese classification tasks (see our experiments, also
see He et al. (2000)). SVMs do not perform significantly better than naive Bayes on the 20
Newsgroup data either (Rennie 2001) Overall, our findings suggest that different classifiers
are superior for different languages and tasks, although character level n-gram models are
general and robust.

7. Relation to previous research

7.1. Relaxing the naive Bayes independence assumption

Relaxing the independence assumption of the Naive Bayes model is a much researched idea
in machine learning, and other researchers have considered learning tree augmented naive
Bayes classifiers from data (Friedman et al. 1997, Keogh and Pazzanni 1999). However,
learning the hidden tree structure is problematic, and our chain augmented naive Bayes
model, being a special case of TAN Bayes, better preserves the simplicity of the naive
Bayes classifier while introducing some of the additional dependencies of TAN Bayes. The
extra complexity introduced by the CAN model is mainly on extracting the n-grams and
their frequencies from the training corpus, which can be done efficiently in a single pass.
Work on considering context information for learning text classifiers also include context
sensitive rule learning and on-line learning (Cohen and Singer 1999).

7.2. N-gram models in information retrieval

N-gram models have been extensively used in text retrieval, particularly in Asian language
text retrieval, such as Chinese and Japanese (Kwok 1997). N -gram models are also used in
English information retrieval for phrase weighting in IR (Turpin and Moffat 1999). In text
classification, n-gram models have also been previously investigated (Cavnar and Trenkle
1994, Damashek 1995, Huffman 1995). However, they have typically used n-grams as
features for a traditional feature selection process, and then deployed classifiers based on
calculating feature vector similarities. In our CAN Bayes models, we do not perform explicit
feature selection at all (although of course we have to choose a few factors, such as the order
n, smoothing technique and vocabulary size). Thus, in our case, all n-grams remain in the
model, and their importance is implicitly considered by their contribution to perplexity.

7.3. Language models for text classification

In principle, any language model can be used to perform text classification based on Eq. (18).
However, n-gram models are extremely simple and have been found to be effective in many
applications. Interestingly, language modeling research has been conducted in parallel and
mostly independently in the speech recognition and text compression communities. In text
compression, character level n-gram models are widely used, e.g., the PPM (predication by
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partial matching) model (Bell et al. 1990). The PPM model has been a benchmark in text
compression for decades. However, in speech recognition, research has focused on word
level n-gram models.

These different tasks have motivated different strategies for smoothing. For example, the
PPM model deals with out of vocabulary words with an escape method, which works in a
fashion similar to the back-off model although essentially a weighted linear interpolation
n-gram models (Bell et al. 1990, Teahan 1998).8 However, in statistical language mod-
eling research, many other different smoothing strategies have been proposed, as briefly
discussed in Section 3. It has been found that “Witten-Bell smoothing” (or PPMC) does
not perform well on word level language modeling (although we also find that it performs
well at character level) and other smoothing techniques such as Good-Turing and absolute
smoothing perform better. (An interesting question is how these smoothing techniques will
perform in text compression, although this is irrelevant to this paper.)

PPM model have recently been found to be effective in text mining (Witten et al. 1999)
and promising results were also obtained in text classification (Teahan and Harper 2001). A
PPM model is trained incrementally as text is read in. Building such an adaptive PPM model
is expensive however (Bell et al. 1990), and our back-off models are relatively much simpler.
Using compression techniques for text classification has also been investigated in Benedetto
et al. (2002), where the authors seek a model that yields the minimum compression rate in-
crease when a new test document is introduced. However, this method is found not to be gen-
erally effective nor efficient (Goodman 2002). In our approach, we evaluate the perplexity (or
entropy) directly on test documents, and find the outcome to be both effective and efficient.

8. Conclusion and future work

We have presented a chain augmented naive Bayes classifier (CAN) based on statistical
n-gram language modeling. Our CAN Bayes model captures dependence between adjacent
attributes as a Markov chain. By using better smoothing techniques than Laplace smoothing
we obtain further performance improvements. Our CAN Bayes modeling approach avoids
explicit feature selection by considering every feature in the model and measure their
importance implicitly. The CAN model is able to work at either the character level or the
word level, which provides language independent abilities to handle Eastern languages like
Chinese and Japanese just as easily as Western languages like English or Greek.

The approach is evaluated on four different languages and three different text classification
problems. Surprisingly, we obtain state of the art or better performance in most cases. We
have experimentally analyzed the influence of different factors that can affect the accuracy
of this approach, and found that for the most part the results are robust to perturbations of
the basic method. We have also analyzed the successes and failures of the model. To us,
these results suggest that basic statistical language modeling ideas might be more relevant
to other areas of natural language processing than commonly perceived.

We are currently extending the CAN model in many aspects. In particular, the current
model is trained in a supervised fashion, which requires enough labeled training docu-
ments to obtain good performance. However, labeled training data is not easy to obtain.
An important issue is how to extend it to incorporate unlabeled data. Since the character
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level CAN model avoids word segmentation problems in Asian languages such as Chinese
and Japanese, it is worthwhile to further investigate its performance on these languages
compared to other machine learning techniques.
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Notes

1. Other popular learning algorithms for text classification include decision tree learning, support vector machines,
regression methods, neural network, rule learning methods, and on-line learning (Sebastiani 2002).

2. Attributes are also called features in many papers.
3. Witten-Bell smoothing is a misnomer since it was actually invented by Moffat (1990), and is called method C

in PPM text compression. We thank William Teahan for pointing this out (personal communication).
4. Note that Stamatatos et al.’s (2000) measures of identification error and average error correspond to our recall

and overall accuracy measures respectively.
5. http://www.ai.mit.edu/˜ jrennie/20Newsgroups/
6. The data set is publicly available at http://www.research.att.com/˜ lewis.
7. They measured the performance with break even point (BEP). BEP is special case of F1 measure where recall

equals precision. However, since normally it’s not possible to have such a point in practice, BEP often has to
be calculated using interpolation. When recall and precision values are far apart, BEP may not reflect the true
behavior of the system (He et al. 2001, Yang 1999).

8. The smoothing method “C” used in Witten and Bell (1991), namely PPMC, has often been mistakenly referred
to as “Witten-Bell smoothing”, although it was originally invented by Alistair Moffat (1990). It has been found
that PPMC and its variants PPMD Howard (1993), PPM* Teahan (1998), perform well in text compression.
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