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Abstract

Support vector machines (SVM) are widely applied to various classification problems. However, most SVM need lengthy computa-
tion time when faced with a large and complicated dataset. This research develops a clustering algorithm for efficient learning. The
method mainly categorizes data into clusters, and finds critical data in clusters as a substitute for the original data to reduce the com-
putational complexity. The computational experiments presented in this paper show that the clustering algorithm significantly advances
SVM learning efficiency.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

On the basis of statistical learning theory, support vec-
tor machines (SVM) were proposed by Corinna and Vladi-
mir (1995) for classification and regression purposes. They
have been used in a wide range of applications, such as pat-
tern recognition (Shigeo, 2005), test categorization (Edda
& Jörg, 2002), bioinformatics (Komura, Nakamura, Tsutsumi,
& Aburatani, 2005), and most financial forecasting (Shin,
Lee, & Kim, 2005), etc.

Basically, an SVM builds an optimal geometric hyper-
plane to separate the data into classes. To explain this
mathematically, consider x 2 Rk and y 2 {�1,1}, the
hyper-plane function is presented as:

y ¼ f ðxÞ ¼ w � /ðxÞ þ b

where w 2 Rk is the weight vector, b 2 R is the bias. The
function /(x) maps a vector x into a higher dimension
space (feature space) wherein they can be classified linearly.
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The optimal hyper-plane is obtained using the following
optimization model:

minimizen;w;b hw � wi þ C
Xn

i¼1

ni

subject to yi hw � /ðxiÞi þ bð ÞP 1� ni; i ¼ 1; . . . ; n

ni P 0; i ¼ 1; . . . ; n

When facing a large and complicated dataset, the accu-
racy of SVM classification is not as high as expected and
the computation time increases rapidly. Therefore, improv-
ing the efficiency of SVM is one important area of study.

The computational complexity of an SVM depends on
the number of support vectors used in the procedure (Tran,
Zhang, & Li, 2003). The KM-SVM (Marcelo, Antônio, &
João, 2000; Tran et al., 2003; Yang et al., 2003) is a method
proposed to reduce the number of support vectors, and
thus, increase computational efficiency. This method uses
K-means clustering technique to assign the data of each
class to k clusters, and trains the SVM using the new data-
set consisting of only the centrals of clusters. The value of k

is thus, the upper bound of the number of support vectors
in each class. Experimental results demonstrate that the
method improves the computational efficiency for an
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SVM, but there is a trade-off between classifying efficiency
and learning accuracy. In addition, the difficulty that exists
with the KM-SVM method is that one needs to determine
the k value by basically a trial-and-error approach. This
work is time-consuming.

To overcome this shortcoming, this research used den-
sity-based spatial clustering of applications with noise
(DBSCAN) as the base to develop a new algorithm, called
C-SVM algorithm, to cluster the data for an SVM. This
algorithm uses only centrals of clusters as a substitute for
the original data in order to downsize the training dataset.
Similar to most existing cluster algorithms, the DBSCAN
algorithm is designed to cluster data of only one kind
(one-class), and consequently no consideration is given to
data purity for clusters. Uniquely, for the purpose of data
classification, the proposed algorithm in this study creates
two special parameters for enhancing the clustering proce-
dure:Data Purity Level and Data Sufficiency, as explained
in Section 3.

2. A brief introduction of DBSCAN

DBSCAN is suitable for a large amount of data of one
class with high dimensions (Jiawei & Micheline, 2001; Mar-
tin, Kriegel, Jörg, & Xiaowei, 1996). DBSCAN gathers
together high density data as a cluster and the shape of a
cluster is arbitrary. DBSCAN mainly finds the clusters
and deletes the data not belonging to any cluster.
DBSCAN searches for clusters by checking the surround-
ings of each data within a scope called the e-neighborhood.
If the e-neighborhood of a data contains more than a cer-
tain pre-defined number, parameter MinPts, a cluster with
this data (called the core object) is created; otherwise, the
data is treated as noise which will be deleted eventually.
The DBSCAN iteratively collects directly density-reachable

(within the e-neighborhood of a core object) data until no
new data can be added to any cluster, and this may involve
merging some clusters.

3. The approach

The clustering algorithm presented in this paper is
designed uniquely for an efficient classification. There are
two key breakthroughs considered in this clustering proce-
dure, as explained below.

3.1. Data Purity Level

It is believed that in the work of clustering data for clas-
sification, the complexity extent of a data set should have a
signiticant effect on the determination of the cluster size.
This research developed an effective index, the Purity Level,
to measure data complexity. The parameters of the index
are defined as follows:
n: the number of data and n P 1,
k: the number of attributes of data and k P 2,
Aij: the value of j-th attribute of i-th data,
xþi ; x
�
i : the data belongs to the positive and negative class,

respectively,

Aþj ;A
�
j : the average value of the j-th attribute of the data in

the positive and negative class, respectively and

Ajmax,Ajmin: the maximum and the minimum value of the
j-th attribute, respectively.

Applying the parameters listed above, a couple of equa-
tions are formed:

Maðxþi Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPk
j¼1

Aij�Aþj
Aj max�Aj min

� �2

k � 1

vuuut
where Maðxþi Þ stands for the concept of within-class dis-
tance of data in the positive class.

Maðx�i Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPk
j¼1

Aij�A�j
Aj max�Aj min

� �2

k � 1

vuuut

where Maðx�i Þ stands for the concept of within-class dis-
tance of data in the negative class.

MaðSÞ ¼
Xn

i¼1

Maðxþi Þ þMaðx�i Þ
� �

where Ma(S) stands for the sum of within-class distance for
the whole data set.

Mbðxþi Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPk
j¼1

Aij�A�j
Aj max�Aj min

� �2

k � 1

vuuut
where Mbðxþi Þ stands for the concept of between-class dis-
tance of data in the positive class to the center of data in
the negative class.

Mbðx�i Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPk
j¼1

Aij�Aþj
Aj max�Aj min

� �2

k � 1

vuuut
where Mbðx�i Þ stands for the concept of between-class dis-
tance of data in the negative class to the center of data in
the positive class.

MbðSÞ ¼
Xn

i¼1

Mbðxþi Þ þMbðx�i Þ
� �

where Mb(S) stands for the sum of between-class distance
for the whole data set.

Finally, the Purity Level is set as:

PurityLevel ¼ MbðSÞ
MaðSÞ

When the value of Ma(S) is large, this means that the
data in the same class are more dispersive, and when
Ma(S) is small, this means that the data in the same class
are condensed; when the value of Mb(S) is large, it means



Fig. 1. The relation between the Purity Level and classification accuracy.
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that the data in the different classes are more separate, and
when Mb(S) is small, it means that the data in the different
classes are closer. Accordingly, the Purity Level has this
relationship with data complexity: the smaller the Purity
Level value, the higher is the data complexity, and vice
versa.

According to our experience, Purity Level has a positive
relationship with the classification accuracy of SVM
(Kernel Function: RBF, C = 1). This is shown in Fig. 1:

When the dataset is not complex (i.e., the Purity Level is
large), it usually means that the data are geometrically sep-
arable or easily classified. So the e parameter (the scope of
cluster) in the C-SVM should be set large in order to
include more data into a cluster to improve the efficiency
of an SVM. On the other hand, when the dataset is com-
plex (the Purity Level is small), it means that the data are
not separated geometrically. In other words, many misclas-
sifications of data may occur in each class. So the parame-
ter of e should be set small in order to exclude noises from
clusters.

3.2. The degree of data sufficiency (m/V)

We defined the degree of Data Sufficiency as m/V, where
V ¼

Q
j rangeðxjÞ for j ¼ 1; . . . ; k stands for data range,

and m is the amount of total data. When the dataset is
insufficient, it theorefically means that the density of data
(m/V) is small. Usually data collected in the initial stages
of manufacturing systems are insufficient, meaning that
the characteristic of the data is unripe. So, every additional
data is more important and valuable in these early stages.
In this case, the parameter of e in the C-SVM should be
set large to tolerate more data. In other words, the defini-
tion of a noise is set loosely this time. With this situation,
when the dataset is sufficient, it means that the density of
data (m/V) is large, and the parameter of e in the C-SVM
should be set small for each cluster for a precise represen-
tation of each.
3.3. Cluster radius

For this reason, when circling data into clusters, this
research utilizes both Purity Level and Data Sufficiency
(m/V) to determine radius e, and radius e is the principal
consideration of the area size of a hypersphere. By apply
the theorem of area of the hypersphere, the following is
the formula set for e:

eþ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp=mþÞV þðPurityLevelÞCðk=2þ 1Þffiffiffiffiffi

pk
pk

s
� m

V

� ��1

e� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp=m�ÞV �ðPurityLevelÞCðk=2þ 1Þffiffiffiffiffi

pk
pk

s
� m

V

� ��1

where e+ and e� are the radii used for the positive and neg-
ative class, repectively, k is the dimension of data, p is the
number of MinPts (minimum points), C is the gamma func-
tion, m+ and m- are the amount of data in the positive and
negative class, repectively, V þ ¼

Q
jrangeðxþj Þ, and V � ¼Q

jrangeðx�j Þ for j ¼ 1; . . . ; k are the data range in the posi-
tive and negative class, respectively.

3.4. The proposed procedure

For a binary classification problem, the C-SVM model is
described in steps as follows:

Step 1: Find the Purity Level, Data Sufficiency (m/V),
data range V, and the amount of total data m for the
training data set.
Step 2: Calculate V+, V-, m+, and m- for each class of the
training data set.
Step 3: Set up the number of MinPts p.
Step 4: Use the result of steps 1 to 3 to calculate param-
eters e+ and e- of the C-SVM.
Step 5: Use e+,e- and p to construct the clusters and erase
the noise in the data set (a cluster with fewer elements
than p).
Step 6: Figure out the centers of the clusters and substi-
tute the centers for the original data.
Step 7: Apply SVM to train the critical data (centers)
and test the learned model using the testing data.
4. Numerical experiment

This example is applied here to explain the C-SVM pro-
cedure and also used to compare the accuracies among the
original SVM, KM-SVM, and C-SVM.

4.1. Data generation

The simulation dataset contains 600 data, of which 300
belong to the positive class and 300 to the negative class,
the dataset contains two independent numerical attributes,
and missing datum is assumed to not exist.



Table 2
The experiment results of datasets with 1.5% noise

Datasets with 1.5% noise (average Purity Level: 1.3392)

Method Kernel function Average accuracy Average number
of support vectors

Original SVM Linear 71.41 255.6
Polynomial 70.90 238
RBF 72.42 232.2
Sigmoid 51.01 399.2

KM-SVM Linear 58.98 9.6
Polynomial 58.78 9.4
RBF 61.71 14.6
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The simulated data set has a structure in which each
class has three clusters. The positive class is designed with
normal distribution of center (1, 9) with s.d. (standard devi-
ation) 1, center (1, 6) with s.d. 0.6, and center (1, 4) with
s.d. 0.3. The negative class is designed with normal distri-
bution of center (2, 7) with s.d. 1, center (2, 4) with s.d.
0.6, and center (2, 9) with s.d. 0.3. The noise part contains
1%, 1.5%, 2% and 4% uniformly distributed noise with
range (0,15) for each class.

We randomly select 400 data from the dataset as the
training data and use the other 200 data as the testing data.
Sigmoid 50.50 14
C-SVM Linear 67.16 8.4

Polynomial 62.83 6.6
RBF 62.93 9
Sigmoid 50.00 14

Table 3
The experiment results of datasets with 2% noise

Datasets with 2% noise (average Purity Level: 1.04101)

Method Kernel function Average accuracy Average number
of support vectors

Original SVM Linear 69.59 242.2
Polynomial 69.79 223.4
RBF 72.42 214.6
Sigmoid 48.38 399.6

KM-SVM Linear 52.12 9
Polynomial 61.81 10.6
RBF 65.95 15.4
Sigmoid 48.28 12.4

C-SVM Linear 70.51 6.8
Polynomial 65.16 7.2
RBF 67.38 8.6
Sigmoid 55.06 14.4

Table 4
The experiment results of datasets with 4% noise

Datasets with 1% noise (average Purity Level: 1.04101)

Method Kernel function Average accuracy Average number
of support vectors
4.2. Experiment results

This research conducts five experiments for each noise
level dataset and sets MinPts = 4 (a number used in the
computer program which will be discussed in the conclu-
sions). It records the average Purity Level, different kernel
functions (linear, polynomial, RBF, sigmoid), the average
accuracy of the original SVM, KM-SVM, and C-SVM,
while the LIBSVM2.6 software (Chang & Lin, 2001; Hsu,
Chang, & Lin, 2003) is used for the SVM model. The
results are summarized in Tables 1–4.

In the four kinds of noise datasets, we simply set the k

value of KM-SVM equal to the number of clusters found
in C-SVM analysis (note that setting k values in the
KM-SVM is usually time-consuming).

With regard to the training time, the number of training
data of the original SVM is 400, and the number of training
data in C-SVM is 10 to 20, so the process can improve the
training time of SVM in C-SVM.

With regard to the prediction time, which is propor-
tional to the number of support vectors, the original
SVM is between 200 and 400. The number of support vec-
tors of C-SVM and KM-SVM is between 5 and 20. The
prediction time for C-SVM and KM-SVM are less than
that for the original SVM by 10–40 times.

Though the learning accuracy is not the research target,
it may also be worth noting that the accuracy of C-SVM is
Table 1
The experiment results of datasets with 1% noise

Datasets with 1% noise (average Purity Level: 1.04101)

Method Kernel function Average accuracy Average number
of support vectors

Original SVM Linear 72.02 241.2
Polynomial 71.81 221.6
RBF 74.94 208.4
Sigmoid 49.59 399.2

KM-SVM Linear 56.06 10.6
Polynomial 60.31 9.8
RBF 62.92 14.4
Sigmoid 44.46 13.2

C-SVM Linear 63.56 8.4
Polynomial 61.64 8.8
RBF 62.75 9.6
Sigmoid 50.91 15.2

Original SVM Linear 69.59 276.4
Polynomial 69.79 251
RBF 72.42 237.8
Sigmoid 48.38 399.6

KM-SVM Linear 56.06 9
Polynomial 64.24 8.4
RBF 66.06 13
Sigmoid 54.14 10.8

C-SVM Linear 67.08 7.8
Polynomial 66.07 6.6
RBF 67.08 9
Sigmoid 52.03 12
better then KM-SVM in all conditions, and is also better
then the original SVM when the kernel function is sigmoid.
However, when the kernel functions are linear, polynomial
and RBF, the accuracies of C-SVM is inferior to the origi-
nal the SVM.



Table 5
The experiment results of data from the Pima database

Pima database (average Purity Level: 1.12676)

Method Kernel function Average accuracy Average number
of support vectors

Original SVM Linear 76.96 359.4
Polynomial 65.10 429.4
RBF 75.91 412.2
Sigmoid 70.70 430.8

KM-SVM Linear 70.58 30.4
Polynomial 70.19 40.2
RBF 69.93 42.2
Sigmoid 68.49 30.6

C-SVM Linear 74.25 17.2
Polynomial 70.99 21
RBF 71.51 23
Sigmoid 74.51 15.8
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4.3. Case example

Pima Indians Diabetes Database (Available at: http://
www.ics.uci.edu/~mlearn/MLSummary.html) has a total
of 768 data, and each data has 8 attributes. There is no
missing value in all the data. Because the units of the attri-
butes are different, the data is normalized before analyzing.
This experiment sets MinPts = 2 and records the average
Purity Level, different kernel functions, the average accu-
racy of the original SVM, KM-SVM and C-SVM. All
experiments are under five-fold cross validation and Table
5 describes the results of this case analysis.

In the Pima case, we also set the k value of KM-SVM
equal to the number of clusters in the C-SVM analysis.

With regard to the training time, the number of training
data of the original SVM is 614 and the average number of
training data in C-SVM is 89.6, so training time is
improved with SVM in C-SVM.

With regard to the prediction time, the number of sup-
port vectors of the original SVM is between 350 and 450.
The number of support vectors of C-SVM is between 15
and 25, and the number of support vectors of C-SVM is
smaller than that of KM-SVM. The predicted time for C-
SVM is less than the original SVM by 15 to 30 times, so
it can obviously improve the prediction time of SVM.

With regard to the accuracy, when the kernel functions
are linear and RBF, the accuracies of the original SVM are
better than C-SVM and KM-SVM. When the kernel func-
tions are polynomial and sigmoid, the accuracies of C-
SVM are better than the original SVM.
5. Conclusions and suggestions

This research proposed an improved method of cluster-
ing for classification called C-SVM. Facing a large and
complicated dataset, the original SVM has lengthy compu-
tation time, whether for training or predicting. C-SVM is
developed to decrease the number of data required, thus
improving the training time of SVM. The number of sup-
port vectors is also reduced, and this reduces the prediction
time by 10 to 40 times in the experiments.

The prediction time of SVM is affected by the number of
support vectors. The number of data after applying C-
SVM is small, so the number of support vectors is less
and the prediction time is shorter. Mathematically, in the
calculation of the computational complexity of the training
time, let the original number of data be n1 and the number
of data after C-SVM be n2, and n1 P n2. The time complex-
ity C-SVM can be fomulated as Oðn1 log n1Þþ
Oððn2Þ5 log n2=en2

Þ, where the time complexity of DBSCAN
is O(n1logn1) (Martin et al., 1996), and the time complexity
of SVM is Oððn2Þ5 log n2=en2

Þ (Don & Clint, 2003). There-
fore, we can form the computational complexity as:

Oðn1 log n1Þ þ Oððn2Þ5 log n2=en2
Þ

¼ Oðn1 log n1Þ þ Oððn2Þ5 log n
1=en2
2 Þ

6 Oðn1 log n1Þ þ Oððn1Þ5 log n
1=en1
1 Þ

¼ max Oðn1 log n1Þ;Oððn1Þ5 log n
1=en1
1 Þ

n o
¼ Oððn1Þ5 log n

1=en1
1 Þ ¼ Oððn1Þ5 log n1=en1

Þ

from the above equation, C-SVM is theoritically faster
than the original SVM.

The research also investigated the accuracies of the ori-
ginal SVM, KM-SVM, and C-SVM. Based on the results,
the performance of C-SVM is better than KM-SVM. Fur-
thermore, the difficulty of determining k value, the draw-
back of KM-SVM, is eliminated by C-SVM. In addition,
another drawback of KM-SVM is that the results become
unstable due to the variation of the chosen initial centers.
Through the proposed procedure, the results that C-SVM
attains are much more stable from the change of radius
e+ and e�.

In our experience, the setting of MinPts in C-SVM
affects the classified performance. We set MinPts = 2,
because using a large MinPts may yield results similar to
that using small e in performance of C-SVM. Therefore,
it seems advisable to fix MinPts = 2 and concentrate atten-
tion on the control of the value of parameter e. However,
analysis on MinPts and e are considered for further
research in future.

There is still a difficulty when applying nominal attri-
butes to a problem, thus C-SVM for nominal attributes
can also be a new focus of future research.
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