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Abstract

The performance of present-day automatic speech recognition (ASR) systems is seriously compromised by levels of
acoustic interference (such as additive noise and room reverberation) representative of real-world speaking conditions.
Studies on the perception of speech by human listeners suggest that recognizer robustness might be improved by fo-
cusing on temporal structure in the speech signal that appears as low-frequency (below 16 Hz) amplitude modulations
in subband channels following critical-band frequency analysis. A speech representation that emphasizes this temporal
structure, the “modulation spectrogram”, has been developed. Visual displays of speech produced with the modulation
spectrogram are relatively stable in the presence of high levels of background noise and reverberation. Using the
modulation spectrogram as a front end for ASR provides a significant improvement in performance on highly re-
verberant speech. When the modulation spectrogram is used in combination with log-RASTA-PLP (log RelAtive
SpecTrAl Perceptual Linear Predictive analysis) performance over a range of noisy and reverberant conditions is
significantly improved, suggesting that the use of multiple representations is another promising method for improving
the robustness of ASR systems. © 1998 Elsevier Science B.V. All rights reserved.

Zusammenfassung

Die Performanz heutiger Spracherkennungssysteme wird stark von akustischen Interferenzen (z.B. additivem
Rauschen und Hall) beeintrichtigt, die typisch fiir reelle Sprechbedingungen sind. Untersuchungen zur menschlichen
Sprachwahrnehmung zeigen, dal3 die Robustheit von Spracherkennern moglicherweise durch Konzentration auf die
zeitliche Struktur des Sprachsignals verbessert werden konnte, die als tieffrequente (unter 16 Hz) Amplitudenmodu-
lation in den Frequenzkanalen der kritischen Bandanalyse auftritt. Es wurde eine Sprachsignalrepriasentation, das
sogenannte Modulationsspektrogramm (modulation spectrogram), entwickelt, die diese zeitliche Struktur betont. Vi-
sualisierungen von Modulationsspektrogrammen zeigen eine relativ groBBe Stabilitat auch bei hochgradig verrauschter
Sprache und bei starkem Hall. Die Verwendung des Modulationsspektrogramms als Vorverarbeitungsmethode in ei-
nem automatischen Spracherkenner liefert eine signifikante Verbesserung bei der Erkennung verhallter Sprache. Eine
Kombination des Modulationsspektrogramms mit log-RASTA-PLP (log RelAtive SpecTrAl Perceptual Linear Pre-
dictive analysis) erzielt eine signifikante Verbesserung der Performanz bei einer Reihe von verschiedenen Rausch- und
Hallbedingungen. Dies deutet darauf hin, daBl eine Kombination verschiedener Signalreprasentationen eine vie-
lversprechende Methode zur Verbesserung der Robustheit automatischer Spracherkennungssysteme ist. © 1998
Elsevier Science B.V. All rights reserved.
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Résumé

La performance des systémes actuels de reconnaissance de la parole automatique est considérablement compromise
par des niveaux d’interférence acoustique (telle que du bruit additif et de la réverbération) qui sont représentatifs de
conditions réelles. Des études sur la perception de la parole par des étres humains et une analyse des bandes
fréquencielles critiques suggerent que la robustesse des systemes de reconnaissance pourrait étre améliorée en se fo-
calisant sur la structure temporelle du signal qui apparait comme des modulations d’amplitude de basse fréquence
(moins de 16 Hz) dans les sous-bandes. Une représentation de la parole soulignant cette structure temporelle, appelé
“spectrogramme de modulation” (modulation spectrogram), a été développée. Des visualisations de la parole utilisant
le spectrogramme de modulation sont relativement stables, malgré des niveaux élevés de bruit de fond et de
réverbération. L’utilisation du spectrogramme de modulation apporte une amélioration de performance importante en
présence de beaucoup de réverbération. La combinaison du spectrogramme de modulation avec le codage log-RASTA-
PLP (log RelAtive SpecTrAl Perceptual Linear Predictive analysis) permet d’obtenir des améliorations significatives
pour de nombreuses conditions de bruit et de réverbération. Ceci suggere que I'utilisation de plusieurs représentations
est une méthode prometteuse pour améliorer la robustesse d’un systeme de reconnaissance de la parole automati-

que. © 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

Automatic speech recognition (ASR), which
was once little more than a laboratory curiosity, is
now being deployed in a wide range of tasks, in-
cluding telephony and desktop dictation. As ASR
technology emerges from the laboratory, however,
fundamental shortcomings in the most widely used
recognition algorithms and speech representations
are becoming apparent. While humans are capable
of reliably understanding speech across a broad
range of environmental conditions and speaking
styles, automatic recognition systems are much
more fragile. Recognition methods developed on
corpora of carefully-enunciated speech collected
under laboratory conditions yield impressive re-
sults on “clean” speech, but their results are much
less encouraging on material that contains realistic
levels of acoustic interference such as background
noise, spectral shaping, and room reverberation.
Although research on channel robustness in ASR
has produced techniques that greatly mitigate the
deleterious effects of acoustic distortions on rec-
ognizer accuracy, these techniques generally fail
when different, unanticipated distortions are en-
countered.

While it is likely that ASR systems will always
work best on data similar to that on which they
have been trained, considerable progress can still

be made towards reducing the sensitivity of ASR
systems to mismatches between training data and
speech data received during actual operation. We
believe that a key to progress in this area is the
development of speech representations and recog-
nition algorithms that better use information
based on specific temporal properties of speech.
These representations and recognition methods
should be more robust because the temporal
characteristics of speech appear to be less variable
than static characteristics in the presence of
acoustic interference. In this paper, we focus on
the development of a speech representation, the
modulation spectrogram, ' that emphasizes the
temporal structure in speech. We begin with a re-
view of current ASR technology, and next describe
characteristics of human speech perception that
point to the importance of temporal information.
Then, we discuss the implementation of a tempo-
rally-oriented speech representation and its use as

! It should be noted that, while the representation described

here and the speech representation described in Kollmeier and
Koch (1994), share the name “modulation spectrogram”, they
are quite distinct in the details of their signal processing and
overall motivations.
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a stable visual display of speech. Finally, we des-
cribe ASR experiments comparing its utility to
that of the RASTA-PLP representations for rec-
ognizing clean, reverberant, and noisy speech.

2. Speech recognition by machines

Although the details of their implementations
differ, most ASR systems employ the same basic
approach to recognize speech. First, an incoming
signal is analyzed to produce feature vectors that
describe its short-time spectral envelope. Usually,
the spectral analysis is based on a segment of
roughly 20 ms, and the feature vectors are pro-
duced at a rate of around one every 10 ms. The
feature vectors are then classified, with the output
of the classifier being a set of distances between the
feature vector and a set of phone classes. This
classification is often made on the basis of features
from a single frame, possibly augmented with
differential features derived from three to five
frames. Finally, a search based on dynamic pro-
gramming or best-first search is used to find the
most likely sequence of words, given the sequence
of phone distances, a set of hidden Markov models
characterizing the words in the recognizer’s vo-
cabulary, and a grammar that describes the
structure of the word sequences that the recognizer
is expected to process.

This framework is powerful and flexible, en-
abling the development of a broad array of rec-
ognizers, from digit recognizers that work over
telephone lines to desktop dictation systems ca-
pable of recognizing tens of thousands of different
words. However, recognizers based on this
framework, including our own, still fall well short
of human performance in natural conditions, in-
cluding moderate to high levels of background
noise, moderate or greater levels of room rever-
beration, and spontaneous speech. While this gap
between human and machine performance has
many causes, an especially important one is that
the automatic systems do not take full advantage
of the relatively invariant temporal encoding of
phonetic information in speech because they focus
almost exclusively on short segments of the
acoustic signal.

3. Speech recognition by humans

A central result from the study of human speech
perception is the importance of slow changes in the
speech spectrum for speech intelligibility. These
changes appear as low-frequency amplitude mod-
ulations with rates of below 16 Hz in subband
signals following spectral analysis. The first evi-
dence for this perspective emerged from the de-
velopment of the channel vocoder in the early
1930s (Dudley, 1939), when Homer Dudley and
his colleagues at Bell Labs found that they could
synthesize high quality speech from spectral shape
estimates that were lowpass filtered at 25 Hz. Since
then, studies on speech intelligibility in noisy and
reverberant rooms (Houtgast and Steeneken,
1973, 1985) and over communication channels
that may impose nonlinear distortions (Steeneken
and Houtgast, 1980) have demonstrated the link
between intelligibility and the fidelity with which
these slow modulations are transmitted. Direct
perceptual experiments have shown that modula-
tions at rates above 16 Hz are not required, and
that significant intelligibility remains even if
modulations at rates of 6 Hz and below are the
only ones preserved (Drullman et al., 1994).

A second key to human speech recognition is
the integration of phonetic information over rela-
tively long intervals of time. In recognizing speech
with inserted gaps of silence, listeners appear to be
capable of associating sounds where onsets are
separated by as much as 200 ms (Huggins, 1975).
When speech is temporally decorrelated by ana-
lyzing it into critical bands, randomly time-shifting
the bands with respect to one another, and re-
synthesizing the speech from the shifted bands, it is
found that listeners are remarkably tolerant to the
distortion. While the quality of the speech is
clearly affected, the intelligibility of the speech is
90% for shifts of 100 ms and nearly 70% for shifts
of 160 ms (Arai and Greenberg, 1998; Greenberg
and Arai, 1998).

This focus on long time segments in human
speech recognition may explain much of its ro-
bustness to acoustic interference. Basing speech
recognition on modulations — changes in the signal
— reduces sensitivity to relatively stationary forms
of interference such as spectral coloration and
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some forms of noise. The use of relatively slow
modulations and the integration of phonetic in-
formation over hundreds of milliseconds reduces
the sensitivity of listeners to transient interference.
It has also been shown that the slower modula-
tions in speech are the least influenced by rever-
beration (Houtgast and Steeneken, 1973).

4. Incorporating temporal information into auto-
matic speech recognition

It seems likely, then, that the robustness of ASR
systems could be enhanced by using longer-time
information, both at the level of the front-end
speech representation, and at the level of phonetic
classification. Indeed, many improvements in rec-
ognizer robustness have already been attained by
using temporal information. Biphones, triphones,
and other context-dependent phonetic units pro-
vide one means for modeling coarticulation and
integrating information over longer periods of
time. Many robust front-end processing methods
such as delta features (Furui, 1986), RASTA and
other modulation filtering methods (Langhans
and Strube, 1982; Hirsch, 1988; Hermansky and
Morgan, 1994), cepstral-time matrices (Milner and
Vaseghi, 1995), and articulatory front ends (Ram-
say and Deng, 1995) provide an enhanced repre-
sentation of the dynamics of the speech signal.

As direct precursors of the modulation spec-
trogram, the log-RASTA-PLP and J-RASTA-PLP
front ends are of particular interest. The two
RASTA-PLP algorithms are temporal processing
extensions to perceptual linear prediction (PLP)
(Hermansky et al., 1985; Hermansky, 1990), an
algorithm for producing a spectral shape estimate
that reflects properties of the human auditory
system. In PLP, incoming speech is segmented into
overlapping, fixed-length frames that are typically
around 20 ms in duration with about a 10 ms
overlap. A windowed FFT is performed on each
frame, and the square of the magnitude of each
component is computed to produce a power
spectrum. Each power spectrum is convolved with
a set of overlapping, trapezoidal filters that are
equally spaced on the Bark scale, to approximate
critical-band frequency resolution. The critical-

band power spectra are mapped to an approxi-
mation of perceptual loudness via a static
equal-loudness weighting and cube-root compres-
sion. The perceptually-warped power spectra are
then approximated by an autoregressive all-pole
model, and the resulting linear prediction coeffi-
cients are converted into cepstral coefficients. The
first eight to twelve cepstral coefficients plus the
energy term comprise the PLP output.

The general RASTA-PLP algorithm (Her-
mansky and Morgan, 1994) is an extension to PLP
that attempts to model the sensitivity of human
speech perception to preceding context (Summer-
field et al.,, 1984) and apparent insensitivity to
absolute spectral shape (Lea and Summerfield,
1994). This is accomplished by interposing a
compressive nonlinearity, a bandpass filter, and an
expansive nonlinearity between the output of the
critical-band filtering and the input to the loudness
approximation in PLP. The bandpass filter is a
differentiator followed by a leaky integrator, and
passes modulations between 1 and 12 Hz. log-
RASTA-PLP, which increases the robustness of
ASR systems to spectral shaping of speech, uses a
logarithm for the compressive nonlinearity and
an exponential for the expansive nonlinearity.
J-RASTA-PLP (Morgan and Hermansky, 1992),
which increases the robustness of ASR systems to
joint spectral shaping and additive noise, uses the
function y=In(1 + Jx) for the compressive non-
linearity and x =e¢”/J for the expansive nonlinear-
ity. The compressive nonlinearity is approximately
linear for small values of Jx and approximately
logarithmic for large values of Jx. During recog-
nition, the J parameter is varied in inverse pro-
portion to an estimate of the noise power in the
incoming speech signal, so that channels with low
power relative to the estimated noise are processed
to suppress the noise, while channels with high
power relative to the estimated noise are processed
to suppress spectral shaping.

Our research group is currently pursuing two
approaches to making better use of temporal in-
formation in ASR systems. First, we are investi-
gating the development of new front-end
representations for speech recognition that at-
tempt to capture and represent the temporal
structure of speech using signal processing meth-
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ods suggested by studies of human speech per-
ception. This work is being done in a flexible
framework that is a generalization and extension
of the RASTA-PLP algorithms. This framework
uses an FIR filterbank instead of the short-time
Fourier transform for frequency analysis, per-
forms automatic gain control and modulation
filtering separately, and uses different modulation
filters than RASTA-PLP. We have used both
visualization and ASR experiments to develop
these representations (Greenberg and Kingsbury,
1997; Kingsbury and Morgan, 1997; Kingsbury
et al., 1997). In parallel work described elsewhere
(Wu et al., 1998; Greenberg, 1997), the use of
syllables as a fundamental unit of speech recogni-
tion is being explored. The use of multiple streams
of information, either from different front-end
representations or from recognizers using different
units of recognition, is central to both lines of
inquiry.

5. Visualizing speech with the modulation spectro-
gram

We began our current study of speech repre-
sentations that emphasize temporal structure

with the development of a visual speech repre-
sentation insensitive to room reverberation and
noise. The result of this development, which we
call the modulation spectrogram, displays the
distribution of slow modulations in the speech
signal across time and frequency. Although it is
not a detailed model of auditory processing, a
number of processing steps are incorporated into
the modulation spectrogram that capture key
aspects of the auditory cortical representation of
speech (cf. Schreiner and Urbas, 1988). Namely,
it displays amplitude modulations at rates of 0-8
Hz, with a peak sensitivity at 4 Hz, in roughly
critical-band-wide channels, and includes auto-
matic gain control and peak enhancement
mechanisms.

Fig. 1 illustrates our implementation of the
modulation spectrogram. A spectral analysis into
roughly critical-band-wide channels is performed
on an incoming speech signal, sampled at 8 kHz,
using an eighteen-channel FIR filterbank. The fil-
ters have a roughly trapezoidal magnitude re-
sponse, with minimal overlap between adjacent
channels. The filter bandwidths are set according
to a slightly modified version of Greenwood’s
cochlear place-to-frequency mapping function
(Greenwood, 1961). In each channel, an ampli-
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Fig. 1. Diagram of the signal processing used to produce modulation spectrographic displays of speech. The processing attempts to
capture, in a simple manner, key aspects of the auditory cortical representation of speech. These aspects are critical-band frequency
resolution, automatic gain control (adaptation), sensitivity to low-frequency amplitude modulations and enhancement of spectro-

temporal peaks.
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tude-envelope signal is computed by half-wave
rectification and lowpass filtering with a cutoff
frequency of 28 Hz. Each amplitude envelope
signal is then downsampled by a factor of 100 to
reduce subsequent processing time and to match
with the typical data rate into the phonetic clas-
sification stage of an ASR system. Each envelope
signal is normalized by computing the average
level over an entire utterance and dividing by this
magnitude. The slow modulations in each nor-
malized envelope signal are then analyzed by fil-
tering the signal through a complex bandpass filter
and taking the log of the magnitude of the output.
The filter response is a Hamming window modu-
lated by a 4 Hz complex exponential, so the result
of the filtering and magnitude calculation is
equivalent to computing the FFT over the signal,
windowed with a 250-ms Hamming window, and
computing the log magnitude of the 4-Hz com-
ponent. The filter has a passband of 1.25-6.72 Hz,
and passes significant modulation energy in the
0-8 Hz range. The log magnitudes are then plotted
in spectrographic format, with a normalization
and thresholding applied such that the peak level
over all channels is set to 0 dB, and levels more
than 30 dB below this peak are all set to —30 dB.
Bilinear smoothing is used to produce the final
image.

Displays of clean and corrupted versions of the
same utterance appear more alike in the modula-
tion spectrographic format than in the traditional
spectrographic format, and the syllabic structure
of the speech is emphasized in the modulation
spectrographic display. Fig. 2 illustrates these
properties of the modulation spectrogram. It
shows modulation spectrograms and wideband
spectrograms of clean and noisy versions of the
telephone-bandwidth utterance ‘‘seventy-three”
produced by a male speaker. The noisy version of
the utterance was produced by mixing the clean
utterance with pink noise at an overall signal-to-
noise ratio of 0 dB. The wideband spectrograms
were produced by filtering the input signal, sam-
pled at 8 kHz, with a pre-emphasis filter with a
transfer function H(z)=1 - 0.94z7!, then com-
puting 256-point FFTs over an § ms Hamming
window, zero-padded to a length of 32 ms, once
every 2 ms. To facilitate comparison with the

modulation spectrogram, the peak value in each
wideband spectrogram was normalized to 0 dB,
and levels below —30 dB were set to —30 dB. Note
that Fig. 2 is much clearer in color. A color ver-
sion of this figure is available on the World-Wide
Web at http: //www. icsi.berkeley. edu/
real/specom_fig2 color.gif.

The wideband spectrogram of the clean speech
portrays a significant amount of spectro-temporal
detail. Sharp onsets and pitch pulses are clearly
visible, as are formant trajectories. In the wide-
band spectrogram of the noisy speech, however,
only a general indication of the energy distribu-
tion of the speech, including formant trajectories,
is evident. The modulation spectrogram of the
clean speech is much less detailed than the
wideband spectrogram. It provides a rough pic-
ture of the energy distribution over time and
frequency, but there is no representation of har-
monic structure, and pitch pulses and onsets are
smeared out by the modulation filtering. The
gross distribution of energy over time and fre-
quency, however, is the information that is best
preserved in the presence of acoustic interference.
As a result, the modulation spectrogram of
speech is more stable than the wideband spec-
trogram.

The vertical black bars in the spectrograms in
Fig. 2 indicate the onsets of the syllables [s eh],
[v ih n dcl], [d iy], and [th r iy] that make up the
utterance. Most of the energy that appears in
the modulation spectrographic display falls be-
tween these onsets, corresponding to syllabic
nuclei.

This enhancement of the segmental structure of
speech and representational stability are produced
by several processing steps. The filtering that em-
phasizes modulations at rates of 0 Hz to 8 Hz, with
peak sensitivity at 4 Hz, acts as a matched filter for
signals with temporal structure characteristic of
speech. Modulations at rates around 4 Hz corres-
pond to syllables (Houtgast et al., 1980; Greenberg
et al., 1996). The critical-band-like frequency res-
olution expands the representation of the low-
frequency, high energy portion of the speech
signal, and the thresholding emphasizes spectro-
temporal peaks in the signal that rise above the
noise floor.
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Fig. 2. Modulation spectrograms and wideband spectrograms of clean and noisy (0 dB SNR pink noise) versions of the telephone-
bandwidth utterance ‘“‘seventy-three”. The black vertical bars mark syllable onsets. A time-aligned phonetic labeling using ARPAbet
symbols is provided at the top of each spectrogram. The symbol “dcl” marks a d-closure. This figure is much clearer in color. A color
version of it is available on the World-Wide Web at http: //www. icsi. berkeley. edu/real/specom_fig2_color.gif.
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6. Automatic speech recognition with the modulation
spectrogram

The stability of the modulation spectrogram is
useful not only for producing relatively invariant
displays of speech, but also for more robust ASR.
Table 1 shows the results of a set of experiments
comparing the performance of recognizers that use
PLP, log-RASTA-PLP, J-RASTA-PLP, or the
modulation spectrogram, either singly or in com-
bination, on six different test sets: a clean set, a
reverberant set produced by convolving all the
clean test set utterances with a real room impulse
response having a reverberation time of 0.5 s and a
direct-to-reverberant energy ratio of 0 dB, and
four noisy test sets generated by adding pink noise
from the NOISEX database to the clean utterances
at SNRs of 30, 20, 10 and 0 dB. Because the rec-
ognizers are trained only on clean speech, these
results illustrate the relative invariance of the dif-
ferent front ends in the presence of acoustic in-
terference. Note that all recognition results are
reported in terms of word error rate, which is the
sum of the number of word substitutions, deletions
and insertions divided by the total number of
words in the test set. Substitutions, deletions and
insertions are found by aligning the reference and
recognized word strings using a dynamic pro-
gramming routine.

The experiments summarized in Table 1 were
performed using a connected-word, hybrid hidden
Markov model/multilayer perceptron (HMM/

Table 1

MLP) recognizer in which phone probabilities are
estimated from acoustic features using an MLP
and speech decoding is performed with a Viterbi
search (Bourlard and Morgan, 1994). A variant of
the modulation spectrographic features, described
in more detail below, was compared against PLP,
log-RASTA-PLP, and J-RASTA-PLP features
supplemented with delta features. The PLP, log-
RASTA-PLP and J-RASTA-PLP front ends used
a 25 ms window for spectral analysis, and pro-
duced a vector of nine cepstral and nine delta-
cepstral coefficients (including the energy term) at
a rate of one vector every 10 ms. The delta-cepstral
features were calculated from the cepstral features
by regression over a nine-frame window centered
on the current frame. The modulation-spectro-
graphic front end produced an output vector of
thirty features, produced by applying two different
modulation filters to 15 channels, at a rate of one
every 10 ms. The MLP phonetic classifier for the
PLP, log-RASTA-PLP, and J-RASTA-PLP fea-
tures had 162 input units, corresponding to the
current frame, the four previous frames and the
four next frames, 488 hidden units, and 56 output
units, while the MLP phonetic classifier for the
modulation spectrogram features had 270 input
units, also corresponding to the current frame, the
four previous frames and the four next frames, 328
hidden units, and 56 output units. A multiple-
pronunciation lexicon with simple duration mod-
eling and a backoff bigram grammar was used for
recognition. To ensure a good match between the

Percent word error rates for clean, moderately reverberant (T60 = 0.5 s) and noisy speech using PLP, log-RASTA-PLP, J-RASTA-PLP
and the modulation spectrogram. Statistically significant differences range from 0.9 on the clean test to 1.7 on the 0 dB SNR test. The
criterion for statistical significance is p < 0.5 using a one-tailed significance test based on a normal approximation to a binomial

distribution

Experiment Features Clean Reverb 30 dB SNR 20 dB SNR 10 dB SNR 0 dB SNR
Baseline PLP 6.4 37.6 28.3 435 60.7 78.8
Log-RASTA 6.4 26.0 114 16.3 27.8 51.6
J-RASTA 6.6 279 15.6 23.5 35.7 54.4
Mod. spec. 8.5 27.3 14.6 22.9 38.7 61.5
Combined probabilities PLP & Log-RASTA 5.7 26.9 15.9 26.6 43.7 67.3
PLP & Mod. spec. 6.1 29.1 20.5 36.1 53.5 71.3
Log-RASTA & mod. spec. 5.5 20.1 10.4 14.7 232 44.7
Double num. of MLP Log-RASTA 59 26.1 10.8 16.4 29.7 54.7
parameters Mod. spec. 8.2 27.9 14.4 22.1 39.8 65.3
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MLP phone probability estimator and the lexicon,
an embedded Viterbi training procedure was used
in which a trained recognizer was used to label the
training set via a forced-alignment procedure and
a new recognizer was trained on the new labels.
The modulation-spectrographic features used
for these recognition experiments differ from those
used to produce speech displays, such as those in
Fig. 2. Some changes do not significantly alter the
representation. For example, the features used for
the recognition experiments employed a filterbank
with quarter-octave frequency resolution and
modulation filters based on a Kaiser window
rather than a Hamming window. Other changes
are more significant. The recognition features used
no thresholding of modulation energy, while the
features used for producing displays had a
threshold of 30 dB below a global peak level.
Also, the recognition features used cube-root
compression of the output instead of log com-
pression and used two modulation filters corre-
sponding to the real and imaginary components of
the complex modulation filter used to produce the
visual displays. These changes were inspired by a
series of ASR experiments described in Section 7.
The experiments were performed on a subset of
the Numbers corpus, a collection of speech data
distributed by the Center for Speech and Language
Understanding at the Oregon Graduate Institute.
The Numbers corpus consists of spontaneous,
continuous utterances collected over the telephone
and digitized at an 8-kHz sampling rate with a 16-
bit A/D converter. The subset used for these ex-
periments does not contain any words cut off by
the automatic segmentation used in the data col-
lection, nor does it contain any out-of-vocabulary
words. All of the material was phonetically tran-
scribed by experienced transcribers. The vocabu-
lary comprises thirty words and two filled pauses,
and is restricted to numbers, including confusable
sets such as “seven,” “‘seventeen’ and ‘‘seventy.”
A sample utterance from the corpus is “thirty-one
thirty-five.” For the recognition experiments, a
training set containing 3590 utterances (a total of
13873 words) and a disjoint test set of 1206 ut-
terances (a total of 4673 words) was used. Utter-
ances in the subset range in length from one to ten
words, with a mean of 3.9 words. The distribution

of utterance durations is roughly Gaussian, with a
mean of 1.7 s and a standard deviation of 0.7 s.

Two sets of experiments were performed. In the
baseline experiments, a recognizer was trained on
clean speech and its performance on the six dif-
ferent test sets measured. In a second set of ex-
periments, phone probability estimates from pairs
of MLPs trained on PLP, log-RASTA-PLP, and
the modulation spectrogram were combined and
then used for recognition. The MLPs used as
phonetic classifiers estimate posterior probabili-
ties, that is, the probability of a phone given the
acoustic data. These posterior probabilities are
converted to scaled phone likelihoods by dividing
by the phone priors, estimated from a labeling of
the MLP training set. The combination of phone
probabilities is accomplished by multiplying to-
gether scaled phone likelihoods. This method
works best when the MLPs tend to make inde-
pendent errors and produce relatively flat output
distributions for difficult-to-classify inputs. Be-
cause recognizers using these combined probabil-
ities effectively have twice as many parameters in
their phonetic classifiers, the results of these tests
are compared with recognizers that use a single
feature set and have twice as many weights in their
MLP phonetic classifiers to provide a fair refer-
ence.

This combination of evidence occurs on a
frame-by-frame basis. Other combination methods
have also been used successfully in combining the
RASTA-PLP and modulation spectrogram fea-
tures, including combination on a whole-utterance
basis via rescoring of N-best lists (Wu et al., 1998)
and combination on a syllable-by-syllable basis
using a two-level dynamic programming search
(Wu, 1998). All three methods achieve similar
performance on clean speech. On reverberant
speech the frame-by-frame and whole utterance
methods achieve comparable levels of perfor-
mance, and the syllable-by-syllable method per-
forms significantly better, with a word error rate of
17.6% on the test set used in the experiments in
Table 1.

In the baseline experiments the log-RASTA-
PLP features give the best performance across all
conditions, including reverberation. The J-RAS-
TA-PLP and modulation spectrographic features
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give roughly equal performance on the reverbe-
rant, 30-dB SNR, and 20-dB SNR cases, with
J-RASTA-PLP outperforming the modulation
spectrographic features on the clean, 10-dB SNR,
and 0-dB SNR cases. Except on clean speech,
where it matches the performance of log-RASTA-
PLP, the simple PLP front end exhibits the worst
performance. In this experiment, the front ends
that incorporate some form of temporal process-
ing emphasizing slow modulations, log-RAS-
TA-PLP, J-RASTA-PLP, and the modulation
spectrogram, are more robust to acoustic inter-
ference than PLP, the one front end that performs
no such modulation filtering. We are not certain
why log-RASTA-PLP outperforms the modula-
tion spectrogram and J-RASTA-PLP matches it
on these tasks, when earlier experiments have
shown that J-RASTA-PLP has better performance
than 1log-RASTA-PLP on noisy speech and that
modulation spectrogram features are better than
log-RASTA-PLP and J-RASTA-PLP on highly
reverberant speech. In any case, these results
should be interpreted with care because the more
sophisticated, multiple-pronunciation lexicon with
duration modeling used in the most recent tasks
was trained on a recognition that used log-RAS-
TA-PLP features with deltas, while the earlier ex-
periments used a lexicon that was not specialized
for any of the feature sets.

When phone probability estimates from pairs of
MLPs are combined and used for recognition, the
combination of the modulation spectrogram and
log-RASTA-PLP is the only one to provide a
significant improvement over the baseline log-
RASTA recognition. This improvement is
achieved on the reverberant, 20-dB SNR, 10-dB
SNR, and 0-dB SNR tests. Performance on the
clean and 30-dB SNR tests is also improved, but
the difference is not statistically significant. The
performance of the recognizers using log-RASTA-
PLP or modulation spectrogram features and
twice as many MLP weights are either the same as
or slightly worse than their respective baseline
recognizers.

The PLP, log-RASTA-PLP, and modulation
spectrogram features have significantly different
temporal properties. PLP does no temporal pro-
cessing, while log-RASTA-PLP strongly enhances

the onsets of sounds (cf. Fig. 8 in Hermansky and
Morgan, 1994) and the modulation spectrogram
enhances syllabic nuclei, as shown in Fig. 2. This
may explain the success of the log-RASTA-PLP
and modulation spectrogram combination. Both
feature sets have enhanced robustness due to their
focus on slow modulations in speech, but they tend
to emphasize distinct temporal portions of the
signal, and are thus somewhat independent.

7. Optimizing the modulation spectrogram for
automatic speech recognition

The modulation spectrogram was originally
developed as a visual representation of speech. In
general, representations of speech intended for
visual display do not give the best performance
when they are used as representations for ASR.
Therefore, before performing the experiments de-
scribed in Section 6 the modulation spectrographic
representation was optimized for use in ASR. A
series of recognition experiments were performed
in which different variants on the modulation
spectrogram were tested on clean and reverberant
speech. The best variant representation was then
used for the recognition experiments described
above.

To accomplish a faster turnaround, these pre-
liminary recognition experiments used a smaller
subset of the Numbers corpus, with a training set
of 875 utterances (a total of 3315 words) and a test
set of 657 utterances (a total of 2426 words). This
subset used a slightly larger vocabulary of 36
words and no filled pauses. The vocabulary of this
subset included all the words in the subset de-
scribed in Section 6, plus the words, “a”, “and”,
“dash”, “double”, “hyphen” and ‘‘thousand”.
Two versions of the test set were used: a clean set
and a reverberant set that was generated by digi-
tally convolving all of the utterances in the clean
set with an impulse response designed to match
the gross acoustic characteristics of a highly re-
verberant hallway approximately 6.1 m long, 2.4
m high and 1.7 m wide with concrete walls, floor
and ceiling. Reverberation times in different fre-
quency bands were estimated from a simultaneous
recording of speech produced in the hallway using
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Table 2
Estimated subband reverberation times for a highly reverberant
hallway

Freq. band (Hz)

Reverb. time (s)

0-250 3.1
250-500 2.6
500-1000 2.2
1000-2000 1.6
2000-4000 1.4

a head-mounted, close-talking microphone and an
omnidirectional microphone located on the floor,
roughly 2.5 m from the speaker. Table 2 summa-
rizes the estimated reverberation times. A sample
of Gaussian white noise was analyzed into iden-
tical subbands, and each noise band was modu-
lated with a decaying exponential envelope
matched to the estimated reverberation times. The
modulated noise bands were added together to
produce the reverberant tail of the impulse re-
sponse, while the early reflections were estimated
using a time-domain image expansion simulation.
The ratio of direct to reverberant energy was set
manually to match the recording from the omni-
directional microphone. The resulting impulse
response has a gross reverberation time of about
2 s and a direct-to-reverberant energy ratio of
—-16 dB.

These experiments also used a simpler recogni-
tion system than the earlier experiments. The PLP,
log-RASTA-PLP, and J-RASTA-PLP representa-
tions were not supplemented with delta features
and the energy term (zeroth-order cepstral coeffi-

Table 3

cient) was not included in the feature vector. Also,
all four front ends produced one feature vector
every 12.5 ms instead of one vector every 10 ms.
To compensate for the lack of delta features, a
longer acoustic context window of fifteen frames
was used as input to the MLP phonetic classifiers.
The MLPs were roughly 15% smaller, with the
PLP, log-RASTA-PLP, and J-RASTA-PLP clas-
sifiers containing 120 input units, corresponding to
the current frame, the previous seven frames and
the next seven frames, 512 hidden units, and 56
output units, and the modulation spectrogram
classifier containing 225 input units, corresponding
to the current frame, the previous seven frames
and the next seven frames, 320 hidden units, and
56 output units. For recognition, a single-pro-
nunciation lexicon of word models with no dura-
tion modeling and a class bigram grammar were
used. Embedded Viterbi training was used to en-
sure a good match between the MLP phone
probability estimator and the lexicon.

7.1. Initial recognition experiments

In the first set of experiments, summarized in
Table 3, three different types of experiment were
carried out. In the baseline experiment, a recog-
nizer for PLP, log-RASTA-PLP, J-RASTA-PLP,
and the version of the modulation spectrogram
used to produce the visual displays, was trained on
the clean training set then tested on the clean and
highly reverberant test sets. In the second type of
experiment, phone probability estimates from

Percent word error rates for clean and highly reverberant (specified in Table 2) speech using the PLP, log-RASTA-PLP, J-RASTA-
PLP and modulation spectrogram features. Statistically significant differences range from 1.6 for the clean test with combined
probabilities to 2.2 for the reverberant test with the baseline recognizers. The criterion for statistical significance is p < 0.5 using a one-
tailed significance test based on a normal approximation to a binomial distribution

Experiment Features Clean error Reverb error
Baseline PLP 15.8 70.1
Log-RASTA 14.5 72.7
J-RASTA 15.1 71.3
Mod. spec. 30.1 65.2
Combined probabilities PLP & Log-RASTA 11.9 68.7
PLP & Mod. spec. 13.6 64.1
Train on reverb PLP 72.5 48.5
Mod. spec. 45.4 43.5




128 B.E.D. Kingsbury et al. | Speech Communication 25 (1998) 117-132

MLPs trained in the baseline experiment on dif-
ferent feature sets were combined and used for
recognition. In the third type of experiment, rec-
ognizers using the modulation spectrogram and
PLP features were trained on a reverberant version
of the training set, then tested on the clean and
reverberant test sets.

On the baseline clean tests, there is no signifi-
cant difference in performance between the PLP,
log-RASTA-PLP and J-RASTA-PLP recognizers,
while the modulation spectrogram recognizer
performs significantly worse. On the reverberant
test, however, there are significant differences be-
tween all scores, with the modulation spectrogram
recognizer performing best. When phone proba-
bilities from the PLP and log-RASTA-PLP MLPs
are combined, the best recognition performance on
the clean test set is attained, and performance on
the reverberant test set is significantly improved.
Combining probabilities from the PLP and mod-
ulation spectrogram MLPs gives the second-best
performance on the clean test set and the best
performance on the reverberant test set. The im-
provement in performance observed when the
probabilities are combined is not the result of an
increased number of parameters in the phonetic
classifier. Using only one feature set and doubling
the number of weights in the MLP does not im-
prove recognizer performance. The difficulty of the
reverberant test set is illustrated by the results of
the third experiment in which reverberant speech
was used for training. Even when the training and
testing conditions for the recognizer are matched,
the word error rates from the test set are still in the
44-50% range.

We also performed a human listening experi-
ment in order to obtain a measure of human rec-
ognition  performance under comparable
conditions. For this experiment, three subjects
who were native speakers of American English,
had no known hearing impairments, and were
experienced at phonetic transcription of speech
were asked to perform word-level transcription of
the reverberant test set. The subjects were given a
list of the words present in the test set, to provide
them with the same knowledge available to the
automatic recognition systems. The order of pre-
sentation of the utterances was randomized to

prevent the listeners from learning speaker char-
acteristics. The subjects were allowed to listen to
each utterance as many times as they wished, and
were provided with an initial training on ten ut-
terances from the reverberant training set to fa-
miliarize them with the task. During transcription
of the test set, the subjects had no feedback on
their transcription accuracy. The utterances were
produced by the 16-bit D/A converter in a
SPARC-5 workstation at a sampling rate of 8 kHz,
and were presented through headphones at a
comfortable listening level in a quiet office. The
listeners’ transcriptions were scored by the
program used for scoring machine recognition re-
sults.

The human listeners had considerably less dif-
ficulty on the reverberant test set than the auto-
matic recognizers did. The human listeners had an
average word error rate of 6.1%, roughly ten times
less error than the best automatic system. Al-
though transcription accuracy on the clean test set
was not measured, we note that the word error
rate for humans transcribing utterances from the
TI DIGITS corpus was 0.105% (Leonard, 1984).

7.2. Finding the important processing steps

The results of these initial ASR experiments
were encouraging, with the modulation spectro-
gram features giving the best performance on
highly reverberant speech and when combined
with PLP giving good performance on clean
speech. However, it would be preferable for the
modulation spectrogram features to give good
performance on clean speech without combining
them with other feature sets. We therefore per-
formed a second series of experiments aimed at
understanding which steps in the modulation
spectrogram processing were important for ro-
bustness in reverberation and for improving the
performance on clean speech.

First, different variants on the modulation
spectrogram in which some processing steps were
omitted were used as ASR front ends, and the
performance of recognizers using these variant
representations was measured on clean and re-
verberant speech. The steps that were optionally
omitted in the variants were
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Table 4

Percent word error rates for clean and highly reverberant speech using variants of the modulation spectrogram features. The presence
of an ‘X’ in a cell indicates that the corresponding processing step was included in the feature calculation. Statistically significant
differences range from 1.6 for the best clean tests to 2.2 for the reverberant tests. The criterion for statistical significance is p < 0.5 using
a one-tailed significance test based on a normal approximation to a binomial distribution

Env. norm Cplx filt Glob peak Out. thrsh Clean error Reverb error
X X X X 30.1 65.2
X X X 30.6 67.8
X X X 17.5 66.1
X X 13.6 69.9
X 18.3 68.8
16.1 73.5

1. the normalization of the envelope signals by
their long-term averages,

2. the complex filtering that measures modulation
levels in the 0-8 Hz range,

3. the normalization of the global peak to 0 dB,
and

4. the thresholding of levels more than 30 dB be-
low the global peak.

When all of these steps are omitted the resulting

front end produces the log of the squared subband

envelope signals — a simple filterbank-based power

spectrum. Table 4 summarizes the results of these

experiments.

The most significant result is that thresholding,
which is vital for the production of stable visual
displays of speech in low signal-to-noise ratio or
highly reverberant conditions, has deleterious ef-
fects on the performance of automatic recognition
systems. Eliminating the thresholding reduces the
error rate on the clean test set by about half, while
only slightly increasing the error rate on the re-
verberant test set. Because the thresholding is
based on a global peak level, it is likely that it
impairs representation of low-energy segments of
speech. It is also clear that the complex filtering
operation is vital for good recognition perfor-
mance on the reverberant test set. Comparing the
recognition scores of all pairs of recognizers that
differ only by the presence or absence of the
complex modulation filter, the recognizers with the
filter perform significantly better on the reverbe-
rant test set than the recognizers without the filter.

Second, the role of the complex modulation
filter was examined. Although the complex filter
has the advantage of producing a strictly positive

output that may be converted to a decibel scale, it
requires twice as much computation as a real filter
of the same length. Also, the temporal resolution
of the complex filter is lower than that of either its
real or imaginary part, as illustrated in Fig. 3. We
therefore investigated the use of the real part of the
filter, the imaginary part of the filter, or both parts
without the magnitude calculation. Because the
individual parts of the filter could produce nega-
tive outputs, the log compression was replaced
with a cube-root compression. When the outputs
of both the real and imaginary filters were used,
the front end produced an output vector with
thirty spectral features, so an MLP phonetic
probability estimator with 450 input units, 176

0.1
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response

-0.02
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Fig. 3. The magnitude of the impulse response of the complex
modulation filter is compared with the impulse responses of its
real and imaginary components. Note that the temporal re-
sponse of the complex filter is broader than that of either
component.
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Percent word error rates for clean and highly reverberant speech using the modulation spectrogram features computed with different
compression methods and modulation filters. Statistically significant differences range from 1.8 for the best clean tests to 2.2 for the
reverberant tests. The criterion for statistical significance is p < 0.5 using a one-tailed significance test based on a normal approxi-

mation to a binomial distribution

Filter Compress. Clean error Reverb error
Complex Log 17.8 63.8
Complex Cube root 17.8 67.2
Real Cube root 16.5 68.3
Imaginary Cube root 17.3 64.3
Real and imag. Cube root 14.7 63.5

hidden units, and 56 output units, was used. This
MLP had roughly the same number of weights as
the MLPs used for the other recognizers. Table 5
summarizes the results of these experiments.

When the complex modulation filter was used
with cube-root compression, the performance on
the clean test set was unchanged, but the perfor-
mance on the reverberant test set was significantly
degraded. This may be a result of the small degree
of compression at high signal levels afforded by the
cube-root function relative to log-based compres-
sion. When cube-root compression is used there is
no significant difference in performance between
the complex filter and its real part on either the
clean or reverberant test set. Using the imaginary
part of the filter also has no significant effect on
performance for the clean test set, but it does
provide a significant improvement on the re-
verberant test set. This is probably due to the
enhancement of changes in the amplitude envelope
produced by the imaginary part of the filter. Fi-
nally, using the outputs of the real and imaginary
parts of the filter together provides the best per-
formance on the clean test set. Performance on
the reverberant test set is equivalent to that of the
complex filter with log compression. Using the
outputs of both filters is similar to using both
spectral and delta-spectral features. The real part
of the filter is a smoothing filter, while the imagi-
nary part is a differentiator.

8. Conclusions

Focusing on the temporal structure in speech
is a promising direction for work on robust

speech representations. Even a very simple set of
processing steps that capture basic aspects of the
auditory cortical representation of speech — criti-
cal-band frequency analysis, automatic gain con-
trol, and sensitivity to slow modulations — is
sufficient to produce relatively robust visual dis-
plays of speech and to significantly improve the
performance of an ASR system on highly re-
verberant speech. Although the modulation
spectrogram is not as robust as log-RASTA-PLP
in the tests on moderate reverberation or additive
noise, the combination of the two representa-
tions, both emphasizing slow modulations in
somewhat different ways, yields a significant im-
provement in performance over log-RASTA-PLP
on its own.

Research towards improving the modulation
spectrogram is continuing. The current emphasis is
on the development of an entirely on-line version
of the algorithm, the reduction of the spectral
resolution of the final representation, and the in-
tegration of the front end with a syllable-based
ASR system. An on-line gain control mechanism
would enhance the representation of onsets, and
thus may further improve robustness of the rep-
resentation, as suggested by the results of com-
bining 1log-RASTA-PLP and the off-line
spectrogram features. Preliminary results from
experiments with an on-line modulation spectro-
gram support this hypothesis. On its own, an on-
line modulation spectrogram front end achieves a
word error rate of 19.1% on the reverberant test
set used in the experiments summarized in Table 1,
and in framewise combination with log-RASTA-
PLP features a word error rate of 17.6% is
achieved. In both cases performance on the clean



B.E.D. Kingsbury et al. | Speech Communication 25 (1998) 117-132 131

set is comparable to the results reported here for
the off-line algorithm.
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