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Abstract The classical Probability Ranking Principle (PRP) forms the theoretical basis

for probabilistic Information Retrieval (IR) models, which are dominating IR theory since

about 20 years. However, the assumptions underlying the PRP often do not hold, and its

view is too narrow for interactive information retrieval (IIR). In this article, a new theo-

retical framework for interactive retrieval is proposed: The basic idea is that during IIR, a

user moves between situations. In each situation, the system presents to the user a list of

choices, about which s/he has to decide, and the first positive decision moves the user to a

new situation. Each choice is associated with a number of cost and probability parameters.

Based on these parameters, an optimum ordering of the choices can the derived—the PRP

for IIR. The relationship of this rule to the classical PRP is described, and issues of further

research are pointed out.

Keywords Probabilistic retrieval � Interactive retrieval � Optimum retrieval rule

1 Introduction

Interactive retrieval systems have become a commodity today. Although there is a sig-

nificant amount of research on this type of systems, the theoretical foundation for this type

of system is still in its infancy. Most work has focused on cognitive issues or usability

aspects. Empirical studies of complete systems mostly focus on variations of single

components.

Given this state of research, the construction of a good interactive IR system is still a

task for which there are only some guidelines concerning certain aspects of the system.

However, for the core problem, namely performing effective retrieval in such a setting, no
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solid knowledge is available. The classical probability ranking principle (PRP) (Robertson

1977) forms the theoretical basis for optimizing the results of ad-hoc retrieval. On the other

hand, experiments in interactive retrieval (Voorhees and Harman 2000; Turpin and Scholer

2006) have shown that systems performing quite differently in the standard retrieval setting

(i.e. ad-hoc retrieval for a fixed query) are indistinguishable when being used in an

interactive setting. Further studies (Turpin and Hersh 2001) pointed out that this is due to

the fact that scanning through document lists for identifying the relevant entries is not the

most crucial activity in interactive retrieval.

In this article, we develop a framework for extending probabilistic IR approaches to

interactive information retrieval (IIR). For that we develop an abstract view of the

functional level of an IIR system, and then derive certain desirable properties that a

system should fulfill at this level. Ultimately, this leads us to the formulation of a PRP

for IIR.

The remainder of this article is structured as follows: First, we briefly revisit the

classical PRP and point out its shortcomings. In Sect. 3, we describe the basic concepts of

our approach, followed by the development of a cost model in Sect. 4. Based on these

notions, we are able to derive the PRP for IIR in Sect. 5. In Sect. 6, we describe first steps

towards applying this theoretical framework. Section 7 gives a survey on related work,

before the final section concludes and gives an outlook on further research.

2 Motivation

The classical PRP focuses on the task of retrieving relevant documents for a given, fixed

information need. The major assumption is this model is that the relevance of a docu-

ment to a query is independent of the relevance of other documents the user has seen

before. The task addressed by the PRP is the user’s scanning through the list of ranked

documents.

Both the independence assumptions and the restriction to the scanning task are

questionable:

1. In real settings, relevance always depends on documents the user has seen before.

Besides the trivial case of duplicates (which happens frequently during Web retrieval),

often a user wants to find relevant documents that provide different answers to a given

problem (aspectual recall). Thus, the relevance of any additional relevant document

clearly depends on the relevant documents seen before.

2. Interactive retrieval consists of user actions of various types, and scanning through

document lists for identifying the relevant entries is not the most crucial activity in

interactive retrieval (Turpin and Hersh 2001). In contrast, other activities (like e.g.

query reformulation) seem to be more ‘expensive’ from the user’s point of view.

Somewhat related to the first point, there is the empirical finding (see e.g. O’Day and

Jeffries 1993) that user information needs are not static throughout a search, they change

in reaction to the information a user has seen already. In light of this result, relevance

feedback methods can hardly work, since they try to optimize the query formulation for

an information need that is assumed to be static; instead, we are dealing with a moving

target.

So we see that the assumptions underlying the classical PRP are not appropriate for

interactive retrieval, and its focus on the result list misses the major part of the interaction,

thus yielding at best a local optimization.
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3 Approach

3.1 Requirements

In order to develop a PRP for interactive IR, we aim at fulfilling the following

requirements:

• Consider the complete interaction process: Instead of focusing on document ranking,

the new approach should cover all kinds of interactions of a user with an IR system,

like e.g. browsing through lists of related terms, categories or cluster labels, looking at

summaries of varying granularity (e.g. White et al. 2005), or following links between

documents.

• Allow for different costs and benefits of different activities: The types of activities in

IIR require different effort (e.g. selection of a proposed expansion term may be cheaper

than finding a synonym for a search term). Vice versa, the benefit resulting from an

action may also vary—modifying a query will often have a bigger effect than declaring

a single document to be relevant.

• Allow for changes of the information need: Finally, the model should be more dynamic

than the classical PRP. In principle, any positive information a user finds during a search

may change his information need—like e.g. in the berrypicking model (Bates 1989).

3.2 Assumptions

Like in all probabilistic IR models, our approach refers to the system’s representation of

documents and information needs (see e.g. Fuhr 1992). Since we are dealing with inter-

active retrieval here, our model refers to the system’s knowledge about the state of the

search. Thus, in contrast to cognitive models, which may refer to certain users’ states of

mind, our model can only take into account information that is available for the system—

either through direct input by the user, or by appropriate sensors (like e. g. an eyetracker—

future systems might even observe the user’s face in order to detect satisfaction or

disappointment).

Based on the requirements listed above, we formulate the following assumptions

underlying our approach:

• Focus on the functional level of interaction: Although human–machine interaction

involves a variety of usability and visualization issues, we want to restrict here to a

purely functional level. That is, the same activity (e.g. selecting expansion terms from a

list) may require different effort, depending on the actual design of the interaction.

These aspects may affect the values of certain parameters in our model, but we do not

consider this issue here.

• Decisions are the major interaction activity: As the most important cognitive activity

of the user, we focus on decision making. Thus, we assume that the system offers

binary choices to the user, who in turn has to decide about these choices. In case the

user accepts a choice, we call it a positive decision, otherwise negative. In the positive

case, if the user does not want to modify the decision as soon as he learns about its

consequences, we call the decison ‘correct’. (Without explicit feedback from the user,

however, the system will not be able to distinguish this case from the one where the

user found the resulting information relevant and then went back to the original list in

order to check the next item.) The evaluation of choices may require cognitive acts of
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various size (e.g. looking at a single proposed term versus reading through a full

document), which is accounted for by the effort attributed to the actual choice. Creative

actions like entering a new term that was not proposed by the system are also regarded

as choices here—obviously with a much higher cognitive effort than in the case of a

selection from an explicit list of alternatives.

• Users evaluate choices in linear order: This means that there is a (explicit or implicit)

linear order in which a set of choices is evaluated. Examples could be explicit linear

lists, but also the set of links occurring in a text. When there is no such order, we can

split up the set of choices so that we have linear orders within each of its subsets, and

assume that the user makes the explicit decision to move to another subset. Also, there

may be cases where no strict linear order is given (e.g. the ‘tag clouds’ used by many

popular Web 2.0 sites), but the total order considered in this article can be used for

deriving such a partial order. There may be user interface designs where several lists

are presented simultaneously (e.g. White et al. 2005), and the system does not know in

what order the the user evaluates these lists—unless we use an eyetracker. As an

approximation, one can assume that the user regarded only the list where he made an

explicit, positive decision, since the system will use this information for recomputing

all the lists currently shown. Further research will be needed for validating this

assumption, or deriving better approximations in cases of incomplete knowledge.

• Only positive, correct decisions are of benefit for a user: This is the strongest assumption

we have to make. There are many non-IR examples of decision-making where both

accepting or declining a choice have a certain benefit (because of the usually limited

number of choices, rejection implicitly means a restriction to the small set of alternative

choices). However, the spectrum of choices in IR typically is rather large, so that the

system can conclude hardly anything useful from the rejection of a choice (e.g. even

when the user has given negative relevance feedback to all the documents he has seen

before, the system has no information on how to improve the query).

3.3 Situations

As an important new concept, we introduce the notion of a situation. A situation reflects

the system state of the interactive search a user is performing. In terms of our model, a

situation consists of a list of choices the user has to evaluate in this situation. The first

positive decision by the user will move him to another situation (depending on the choice

he selected positively). In order to avoid the user getting stuck in a situation, we assume

that there is always a last choice that will move him to another situation with an alternative

list of choices (e.g. when the user has found no relevant document, the system might

propose terms for modifying the query or browsing of document clusters). This ‘last

choice’ is not covered by our model, since we are focusing on the order of choices, which

does not affect the ‘last choice’.

From a system’s point of view, its knowledge about the user’s information need does

not change during a situation, knowledge is added only when switching to another situation

due to a positive decision. Vice versa we can assume the information need to be static

while the user is within the same situation, but a transition to another situation may change

the information need. By taking this approach, we implicitly also drop the PRP assumption

of the independence of relevance judgments: A positive relevance judgment may change

the information need, and thus a previously relevant document now may become irrelevant

for the user.
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4 A cost model for IIR

4.1 Situations, choices and expected benefits

For modeling the interaction, we assume that the user moves from situation to situation. In

each situation, the user is presented a list of (binary) choices, about which he decides in

sequential order. The first positive decision moves the user to a new situation. A decision

requires some effort, and with a certain probability, will be positive. There is some benefit

from a positive decision, provided that the decision was correct.

In each situation si, we have a set of choices Ci ¼ fci1; ci2; . . . ci;ni
g: Then we define pij

as the probability that a user in situation si will accept choice cij. (The precise specification

of the underlying event space is given in the Appendix.)

The only independence assumption we now have to make is the following: the prob-

ability of a user accepting a choice cij is independent of the choices he rejected before. In

most cases, this supposition will be fairly valid (e.g. ranked list of documents, or list of

expansion terms). Please note that this assumption is much weaker than that of the classical

PRP, where independence of both positive and negative relevance judgments is assumed.

With this presupposition, we exclude any sequence effects, i.e. changing the order of the

choices being presented does not affect their probability of being accepted.

Furthermore, let qij denote the probability that acceptance of this choice is not revised

later. In addition, we assume that pij [ 0 for j = 1,…, ni (it does not make sense to offer

choices a user certainly will reject, and some of the derivations given below are valid for

pij [ 0 only).

In addition to these probabilistic parameters, we introduce three cost factors. Since we

are interested in maximizing the benefit of a user, we will use the term ‘benefit’ for

referring to negative costs, and specify all parameters as benefits. The decision about the

choice cij requires the effort eij \ 0. In case of acceptance, and if the decision was right, the

resulting benefit will be bij; if the decision was wrong, the additional effort for correction is

gij B 0.

With these parameters, we can estimate the expected benefit of choice cij as

EðcijÞ ¼ eij þ pij qijbij þ ð1� qijÞgij

� �
ð1Þ

Since we are describing a general framework in this article, we do not address the issue

of estimating the parameters pij, qij, bij, eij, and gij here; these parameters are specific to the

underlying model and the actual design of the user interface. In Sect. 6, however, we

discuss some approaches for parameter estimation.

As an illustrating example, assume that a user enters the term t0 = ‘Java’ in a Web

search engine, which yields n0 = 290 mill. hits. Now the system proposes three terms ti for

query refinement along with their number of hits ni, as shown in Table 1.1 As probability of

acceptance, we have assumed that pij = ni/n0 (i.e. query terms follow the same frequency

distributions as document terms); furthermore, as a rough expression of the cost of a

choice, we chose bij ¼ log n0

ni
(as an information theoretic measure for the gain when

narrowing down from t0 to ti). Obviously, the benefit for the less common terms ‘blend’

and ‘island’ is much higher than that for ‘program’. On the other hand, the expected

benefit—approximated here by pij bij—is lower for the latter. This outcome seems to be

reasonable: most users will be interested in Java programs, thus this choice should be

1 The columns headed nq0 and .ij are explained in Sect. 6.
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presented first. For a minority of users, however, the other two choices would be very

helpful.

4.2 Maximizing expected benefit

In a good IIR system, the expected benefit of the choices presented to the user should be as

high as possible. As a first conclusion from Eq. 1, we can say that the expected benefit of

any choice presented to the user should be positive—otherwise the user would not gain

anything from a choice.

This condition already limits the set of choices to be presented to a user. As an implicit

consequence of this statement, choices with pij = 0 should not occur in the selection list,

since their expected benefit will be negative (due to eij \ 0).

Regarding a single choice cij, our major goal is of course the maximization of its

expected benefit. Given that the benefit bij and the backtracking effort gij of a decision are

fixed, there are three strategies for maximizing E(cij):

1. Minimizing the effort jeijj. However, this may lead to more erroneous decisions, thus

reducing the other addends of the expected benefit. So the system should provide

enough information for avoiding too many erroneous decisions.

2. Maximizing the ‘selection probability’ pij, i.e. the user should choose cij whenever it is

appropriate. At the same time, however, the ‘success probability’ qij should not drop.

This can only be achieved if the user spends more effort on the decision, which

increases eij.

3. Maximizing qij by avoiding erroneous positive decisions (but keeping pij high): Again,

this will increase the user’s effort for deciding about a choice.

Overall, we can see that the system has to find a good compromise between these three

strategies in order to maximize the expected benefit.

As a simple example, assume that the system proposes some terms for query expansion.

As one possibility, only the terms themselves are listed. Alternatively, for each term, the

system could show a few example term occurrences in their context, thus giving the user

some information about the usage of the term. The user effort per choice is lower in the

first case, but the decisions will also be more error-prone.

5 Optimum ranking for IIR

So far, we have regarded single choices, and discussed ways for optimizing the expected

benefit of a choice. Now we consider the complete set of choices to be presented in a

situation. As mentioned above, we assume that these choices are presented in linear order.

So we have the problem of arranging the set of choices in an optimum order—which will

ultimately lead us to the PRP for IIR.

Table 1 Example: query
refinement and expected benefit

Term ni pij bij pijbij nq0 .ij

Program 195 mill. 0.67 0.4 0.268 3 -0.5

Blend 5 mill. 0.02 4.0 0.08 116 64

Island 2 mill. 0.01 4.9 0.049 290 188
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In order to simplify the following discussion, let

aij ¼ qijbij þ ð1� qijÞgij

denote the ‘average benefit’ of a choice, thus simplifying the formula for the expected

benefit to

EðcijÞ ¼ eij þ pijaij

5.1 Expected benefit of a selection list

Now we assume that the set of choices Ci of a situation si is ordered in a linear list

ri ¼ hci1; ci2; . . .; ci;ni
i:

For computing the expected benefit for this list, we assume that the user considers the

choices in linear order, and the first positive decision will move the user to a new situation.

EðriÞ ¼ ei1 þ pi1ai1

þ ð1� pi1Þ ei2 þ pi2ai2ð
þ ð1� pi2Þ ei3 þ pi3ai3ð
þ . . .

ð1� pi;n�1Þ ein þ pinainð ÞÞÞ

ð2Þ

¼
Xn

j¼1

Yj�1

k¼1

ð1� pikÞ
 !

ðeij þ pijaijÞ ð3Þ

(Here we assume that the iterative product yields 1 for the case of an empty range.)

5.2 Optimum ranking of selections

For discussing the optimum ranking of selections, we are regarding an arbitrary pair of

choices cil and ci,l+1 which appear in adjacent order at positions l, l + 1 (with 1 B l \ ni) in

the list of choices. Then we can rewrite the expected benefit E(ri) as follows

Table 2 List of symbols
Symbol Meaning

S Set of situations

si Situation

Ci Set of choices in situation si

ni = jCij (number of choices)

cij Single choice

pij Probability that choice cij is accepted

qij Probability that acceptance of cij is correct

eij User effort for evaluating cij

bij Benefit from accepting cij

gij Correction effort if cij was chosen erroneously

aij ‘Average benefit’ if cij is accepted
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EðriÞ ¼
Xn

j ¼ 1

l 6¼ j 6¼ lþ 1

Yj�1

k¼1

ð1� pikÞ
 !

ðeij þ pijaijÞ þ tl;lþ1
i ð4Þ

where

tl;lþ1
i ¼ðeil þ pilailÞ

Yl�1

k¼1

ð1� pikÞ þ ðei;lþ1 þ pi;lþ1ai;lþ1Þ
Yl

k¼1

ð1� pikÞ

In the following, we only regard the case where pij \ 1 for j = 1,…, l - 1; otherwise,

choices cil and ci,l+1 would never be reached, and their sequence would not matter. Now we

assume that we would change the order of these two choices; in this case, only the term

tl;lþ1
i in (4) changes, and let us call the corresponding term tlþ1;l

i : So the difference between

the expected benefits of these two lists is tl;lþ1
i � tlþ1;l

i : In order to simplify the derivation,

we divide this difference by the probability that the user did not select any of the choices

before, i.e. the product of the corresponding counter-probabilities. This simplified differ-

ence can be transformed as follows:

dl;lþ1
i ¼ tl;lþ1

i � tlþ1;l
iQl�1

k¼1ð1� pikÞ
¼ eil þ pilail þ ð1� pilÞðei;lþ1 þ pi;lþ1ai;lþ1Þ
� ei;lþ1 þ pi;lþ1ai;lþ1 þ ð1� pi;lþ1Þðeil þ pilailÞ
� �

ð5Þ

¼ pi;lþ1ðeil þ pilailÞ � pilðei;lþ1 þ pi;lþ1ai;lþ1Þ ð6Þ

Since
Ql�1

k¼1ð1� pikÞ is positive, the expected benefit of the original list is not less than that

of the modified list iff dl;lþ1
i � 0:

Now let us first regard the special cases where pi,l = 0 or pi,l+1 = 0. If pi,l = 0 = pi,l+1,

then the difference is negative and the two choices should be reordered in for increasing the

benefit. Otherwise, if pi,l+1 = 0, then the difference will be nonnegative, and the choices

should remain in the current order. So these two conditions would lead to the effect that all

choices with zero selection probability would be moved to the end of the choice list (and

thus, they better should not be included in this list).

In the following, we assume that pi,j [ 0 for 1 B j B ni. Then the combination of the

condition dl;lþ1
i � 0 with Eq. 6 yields the following criterion:

ail þ
eil

pil
� ai;lþ1 þ

ei;lþ1

pi;lþ1

ð7Þ

So we have a condition for bringing two adjacent choices into the right order, for

increasing the expected benefit of the complete choice list. By applying this condition

iteratively, and reordering two adjacent choices in case the condition is not satisfied

(similar to bubble sort), we can bring the whole list into an order where the expected

benefit is maximized.

So we can formulate our probability ranking principle for interactive information
retrieval (IIR-PRP): rank choices cij by decreasing values of
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.ðcilÞ ¼ ail þ
eil

pil
: ð8Þ

5.3 Analysis

The first interesting observation is the fact that our ranking criterion . for a choice cij is

different from its expected benefit. As a simple example, assume that we have two choices

ci1 and ci2 where pi1 = 0.5, ai1 = 10, ei1 = -1 and pi2 = 0.25, ai2 = 16, ei2 = -1. Then

we have E(ci1) = 4 versus E(ci2) = 3. However, .ðci1Þ ¼ 8 versus .ðci2Þ ¼ 12 . It can be

checked that our ranking criterion indeed maximizes the expected benefit of the list:

E(hci1, ci2i) = 4 + 0.5 � 3 = 5.5 versus E(hci2, ci1i) = 3 + 0.75 � 4 = 6. The reason for this

difference lies in the fact that the expected benefit of a list is not just the sum of the

expected benefits of the single choices (as is the case with the classic PRP—see below), as

shown in Eq. 3.

Another important issue is the comparison with the classical PRP. We can show easily

that our IIR-PRP is a generalization of the classical PRP. Let eij ¼ �C \ 0 (the cost for

reading a document) and ail = C (the benefit of a relevant document); substituting these

values in Eq. 7, we get:

C þ
�C

pil
�C þ

�C

pi;lþ1

)

pil � pi;lþ1

So we have the classical PRP, where documents are ranked by decreasing values of their

probability of relevance.

Although the ‘probability of relevance’ pij still plays a major role in the IIR-PRP, we see

that the major extension of our new model is the consideration of varying values for the

effort eij and the average benefit aij, as well as the tradeoff between these two parameters.

The classical PRP minimizes the cost of a search by ranking documents according to

increasing values of expected cost (or decreasing benefit), which is estimated as pilC þ
ð1� pilÞ �C: In the example from above, we have shown that a ranking according to

decreasing benefit in general is not optimum in our case. The reason for this difference is

the variability of the effort and benefit values in our model. In case these values are

constants, our model reduces to the classical PRP. In fact, in this case our model is

equivalent to the PRP for finding one relevant document (since the first positive decision

brings up a new situation), and for this problem, the PRP is known to yield the optimum

solution. For finding more relevant documents, the PRP assumes that the information need

remains unchanged and that the relevance judgments of documents are independent of each

other; since out approach abandons these assumptions, we are not able to make predictions

about further relevant documents (this task is left to other, more specific models which may

use certain additional assumptions—e.g dropping only the second of these assumptions, so

that the user wants to see more relevant, but substantially different documents).

Bookstein (1983) describes a generalization of the classical PRP to multi-valued rele-

vance scales, where different relevance values are associated with different cost factors.

Then it is shown that optimum retrieval is achieved when document are ranked according

to increasing costs. However, in terms of our model, Bookstein regards the term

pij(aij + eij), whereas we separate the effort for a decision from its potential benefit in case
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of acceptance. So the two models are not directly comparable. Only for the binary case

with constant effort and benefit values, our model corresponds to the PRP.

Finally, readers familiar with Markov models may notice that our approach describes

in fact such a model: situations correspond to states, and a choice cil is a transition with

probability pil

Ql�1
k¼1ð1� pikÞ: In our approach, we pose no restrictions on the number of

situations/states: In general, each sequence of choices c1i, c2j,…,cmk may lead to a unique

situation that can only be reached via this sequence. Thus, we have a Markov model

where the number of possible states is infinite, but countable. Since we assume that the

transition probability is always positive (0 \ pij \ 1), the Markov chain is irreducible.

However, the problem is more complicated due to creative actions of the user (like

adding a term to the query that was not explicitly proposed by the system). In terms of

our model, we would represent such a decision by estimating the corresponding effort

and its expected benefit. Indeed, the actual benefit depends very much on the term

chosen. In the followup situation, the system knows this term, and can react appropri-

ately. Due to this problem, there is no straightforward way for applying more elaborated

methods from Markov models, which aim at analyzing paths through the model. Further

research is needed in this area.

6 Towards application

As mentioned before, the work presented here forms a framework similar to the classical

PRP. Thus, it describes which parameters should be considered, but does not specify how
these parameter can be estimated. Nevertheless, we want to outline here some directions of

further research that we deem useful for accomplishing this task.

With regard to the kind of research required, we can distinguish three groups of

parameters:

1. Selection probability pij: Many IR models are addressing this problem. Besides the

probability of relevance of documents, there are also many approaches for computing

query expansion terms, or for generating document summaries. Thus, for most kinds of

selection lists, there is already a substantial amount of research which provides useful

solutions (or at least starting points) for estimating this parameter. However, since

most of these approaches are still based on the assumption of a static information need,

more work is required to make these models more dynamic.

2. Effort parameters eij, gij and the success probability qij: In this area, most research is

needed. Here empirical studies with real users should be performed, closely

monitoring the users’ actions (involving eye-tracking)—see e.g. Joachims et al.

(2007). As an additional problem, visualization aspects may affect results heavily

(see e.g. Malik et al. 2006). Thus, this kind of research should also develop some

‘best practice’ methods that serve as reference points for the parameter values

derived.

3. Benefit bij: Of course, there is the general problem of information value, which is

heavily application-dependent. Another possible definition is that of saved effort,

relative to some baseline. Below, we outline an estimation method following the latter

approach. There may be other—even better—methods for estimating these parameters,

but we want to demonstrate that there are already solutions to this problem.

By defining benefit as saved effort, we of course depend on the problem of estimating

the effort of certain actions. However, for quantifying benefit, here we consider a single
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type of action only, namely that of scanning through a ranked list of documents. So we

assume a unit effort per document in the rank list—the problem of scaling is to be solved in

connection with the methods estimating user effort.

The basic assumption of our method is the following: for the current situation, the

system has constructed (explicitly or implicitly) the sub-optimum query q0, and the user’s

choice will now lead to the optimum query q, where he only will have to scan the ranked

list of documents. In addition, we assume that the user wants one relevant document only

(or only one more, in case he has found some already). There may be many other user

standpoints, but here we regard the most simple case only.

For a given query q, Nottelmann and Fuhr (2003a, b) describe methods for estimating

the number rq of relevant documents in the database as well as their proportion among the

top k documents.

For the latter, we need an assumption about the retrieval performance of the system. As

a simple model, we use a linear recall-precision curve of the form

PðRÞ :¼ P0 � ð1� RÞ ð9Þ

where P denotes precision, R stands for recall, and the parameter P0 is the initial precision

to be chosen. Let nq be the position of the first relevant document in the ranked list. For this

point, we have P = 1/nq and R = 1/rq. Substituting these values in Eq. 9, we get as

approximation of the position of the first relevant document

nq ¼
rq

P0ðrq � 1Þ ð10Þ

So we know the effort for locating the first relevant document in the ranking list of the

optimum query q. In the current situation, however, we are still dealing with the query q0,
and we want to know how many documents the user would have to scan in the corre-

sponding result list until he finds a relevant document. For that, we define the probability

P(qjq0) that a random document from the result list of q also occurs in the result list of q0

(of course, here we would have to limit the length of the result lists in a reasonable way—

one possible approach would be the assumption of Boolean retrieval). Based on the data

available in the IR system, this parameter can be computed easily (e.g. by retrieving the top

k documents for q, and then determining their position in the output of the current query

q0). The probability P(qjq0) obviously has a multiplicative effect on the precision, so that

we get as modification of Eq. 10 the position of the first relevant document in the ranked

list of q0 to

nq0 ¼
rq

Pðqjq0ÞP0ðrq � 1Þ ð11Þ

Based on these results, the benefit for moving from q0 to q can be estimated as nq0 � nq:
For illustration, let us return to our Java example in Table 1. Assuming that half of the

documents in which all query terms occur are also relevant, and with an initial precision of

P0 = 0.5, we would get nq � 2 in all cases. If we estimate the values P(qjq0) based on

Boolean retrieval, they are identical to the corresponding pij value shown in the table.

Using these estimates, we would arrive at the nq0 values as shown in the second to last

column, from which we would have to subtract nq = 2 for computing the final benefit.

Assuming further that the effort for selecting a term is eij = 1, we would arrive at the

values for the ranking criterion as shown in the last column. Obviously, this would lead to a

reverse ranking of the choices; moreover, the expected benefit eij þ pijðnq0 � nqÞ for the
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term ‘program’ would be negative (-0.33), so this choice should not be shown. So it turns

out that our initial ranking for this example may not have been correct—it all depends on

the actual effort and benefit parameters.

7 Related work

The shortcomings of the classical PRP have been noticed already in Stirling (1975), where

a theoretical model for considering dependencies between documents is presented. On a

more practical side, Carbonell and Goldstein (1998) describe experiments where the

similarity of the top-k documents is used for re-ranking, in order to present the most

dissimilar, but potentially relevant documents to the user. In Chen and Karger (2006),

different metrics considering dependencies between retrieved documents are regarded, and

corresponding methods for optimizing result ranking are presented.

The dynamic nature of information needs has been emphasized by several authors

following the cognitive approach to IR (Belkin et al. 1982; Borlund and Ingwersen 1998;

Ingwersen 1996); e.g. the latter asks ‘to view relevance in IR as situational, relative,

partial, differentiated and non-linear’.

However, the only actual IR system following these ideas is the implementation of the

ostensive model (Campbell 2000), which uses a kind of ‘aging’ mechanism for relevance

feedback data in order to determine the next documents to be presented to the user.

Moreover, this system is highly dynamic (partly due the task of image retrieval studied

here), and each selected choice creates a new situation (according to our terminology).

From the area of human–computer interaction, Williamson and Murray-Smith (2004)

and Williamson (2006) present interfaces for displaying time-varying information; they use

probabilistic predictions of user behavior and their potential goals for arranging the

information displayed to the user.

Our model is remotely related to the Page Rank model (Page et al. 1998) which also

regards transition probabilities between interaction states (i.e. page views); however, in our

approach, we would consider the order in which the different links are encountered by the

user when looking through a page, whereas the Page Rank model ignores this factor.

White and Drucker (2007) describe query trails of Web searches and their analysis;

however, this approach monitors only the positive decisions made by the user, but not the

choices they were faced with in each situation. In contrast, the work presented in Joachims

et al. (2007) uses eyetracking for observing users during Web searches, thus registering

e.g. the items from the result list users were looking at. Along with their time measure-

ments, this kind of research could be a good starting point for implementing the generic

model presented here.

On a more general level, interactive IR systems as proposed here can be seen as an

instantiation of interactive computing (Goldin et al. 2006) where systems interact con-

tinuously with the user and/or their environment. Thus, for the actual design of IIR

systems, this new computing paradigm may provide a fruitful basis.

8 Conclusion and Outlook

In this article, we have presented a framework for extending probabilistic IR to interactive

retrieval. Based on the notions of situations and decision making, we first have shown how
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the expected benefit of a single choice can be maximized. The most important result of our

paper is the derivation of the optimum ordering of choices—the probability ranking

principle for interactive IR. We also have shown that the classical PRP is a special case of

our new model.

Similar to the classical PRP, our model uses certain parameters, but does not specify

how the values of these parameters can be estimated. This is the subject of more spe-

cialized models (similar to the broad variety of probabilistic models that are all founded on

the PRP).

On the other hand, with the IIR-PRP as described here, there is a point of reference for

the development of IIR models and systems. IIR systems are a commodity nowadays, but

the functional design of these systems lacks an underlying theory. The work presented in

this article is a first step towards the development of such a theory.

Acknowledgments I wish to thank the Glasgow IR group, especially Keith van Rijsbergen, for their
hospitality and fruitful discussions when staying with them in August 2007, while I was writing this article.
The suggestions by the three anonymous reviewers were very helpful in improving the initial version of this
paper.

Appendix: Definition of the event space

Let S = {s0, s1, s2…} denote a (possibly infinite) set of situations. In each situation

si 2 S; we have a set of choices Ci ¼ fci1; ci2; . . .ci;ni
g with cij 2 S , i.e. choices are a

partial mapping c: S� IN ! S: Our event space is situation-specific, and we make no

assumptions how the event space changes when the user moves to a new situation. Let

U denote all uses of our system, and Ui � U is the set of all these uses which arrive at

situation si (e.g. in a Web search engine, all uses starting with the same query—

provided that no additional information is available—will lead to the same situation).

Now our event space is X = Ci 9 Ui. Unfortunately, we have only judgments about a

subset J � Ci � Ui of the elements of the event space—due to the fact that the user

leaves the situation as soon as he accepts a choice. Associated with each element J, we

have the acceptance decision of the user, which can be modelled as a relation A �
J � Ci � Ui: Furthermore, not all of the accepted choices will turn out to be right from

the user’s point of view (so that he will return to situation si—which we would model

as another use). Thus, right decisions are a subset R � A of the accepted ones. The

probabilistic parameters we define now are all independent of the actual uses—the

system knowledge about the use is implicitly represented by the actual situation. Let X
denote a random variable ranging over X, and Z a variable ranging over Ui. Then we

define pij ¼ PðX 2 AjX ¼ ðcij; ZÞ ^ X 2 JÞ as the probability that a use in situation si

will accept choice cij.

The only independence assumption we now have to make is the following: the

probability of a user accepting a choice cij is independent of the choices he rejected

before. In most cases, this supposition will be fairly valid (e.g. ranked list of docu-

ments, or list of expansion terms). Please note that this assumption is much weaker

than that of the classical PRP, where independence of both positive and negative

relevance judgments is assumed. With this presupposition, we exclude any sequence

effects, i.e. changing the order of the choices being presented does not affect their
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probability of being accepted. More formally, the independence assumption can be

written as follows:

P X 2 AjX ¼ ðcij; ZÞ ^ X 2 J ^
^

k:ðcik ;ZÞ2ðJ�AÞ
Yk ¼ ðcik; ZÞ

0

@

1

A

¼ PðX 2 AjX ¼ ðcij; ZÞ ^ X 2 JÞ

(Here the Yk’s are random variables ranging over all the choices of the same use Z).

Furthermore, let qij ¼ PðX 2 RjX ¼ ðcij; uÞ ^ X 2 AÞ denote the probability that accep-

tance of this choice is not revised later.
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