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Abstract

The proportion of successful hits, usually referred to as ‘‘accuracy’’, is by far the most dominant meter for measuring classifiers’

accuracy. This is despite of the fact that accuracy does not compensate for hits that can be attributed to mere chance. Is it a meaningful

flaw in the context of machine learning? Are we using the wrong meter for decades? The results of this study do suggest that the answers

to these questions are positive.

Cohen’s kappa, a meter that does compensate for random hits, was compared with accuracy, using a benchmark of fifteen datasets and

five well-known classifiers. It turned out that the average probability of a hit being the result of mere chance exceeded one third (!). It was

also found that the proportion of random hits varied with different classifiers that were applied even to a single dataset. Consequently,

the rankings of classifiers’ accuracy, with and without compensation for random hits, differed from each other in eight out of the fifteen

datasets. Therefore, accuracy may well fail in its main task, namely to properly measure the accuracy-wise merits of the classifiers

themselves.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Accuracy measures the number of successful hits relative
to the total number of classifications. It is by far the most
commonly used metric for assessing the accuracy of
classifiers for years (Lim et al., 2000; Alpaydin, 2004;
Witten and Frank, 2005; Demsar, 2006).

This research deals with a very serious anomaly of the
accuracy. Here is a simple example: Table 1 shows a binary
confusion matrix with 1000 classifications.

The accuracy in the confusion matrix of Table 1 is 0.5;
Fifty percent of the classifications were correct. But what
can be said about the classifier that produced these
predictions? One can hardly think of a worse classifier.
This is due to the fact that a randomly tossed fair coin will
produce approximately similar results. In other words, all
the classifier’s predictions of Table 1 may be due to mere
chance. A good accuracy meter should explicitly measure
e front matter r 2007 Elsevier Ltd. All rights reserved.
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the added value, if any, of a classifier relative to a random,
or a majority-based, outcome. In this respect, the classifier
that produced the confusion matrix of Table 1 has no
added value at all. Saying that the accuracy is 50%, though
arithmetically correct, does not explicitly convey this
meaning. Similar examples can be given for any multi-
class case.
The machine-learning community has long been aware

of the fact that accuracy is far from being a perfect meter.
Usually, several classifiers are competing against each
other. Baseline classifiers (typically, majority based) are
often used too. There would have been nothing wrong with
this method provided that the effect of random hits was
similar across all classifiers for any given dataset. However,
this hidden assumption was never put to a real test.
Consider the following hypothetical example: Classifiers
A and B are applied to a single dataset. Classifier A scores
on the average 80% success rate, and classifier B (which
can be a baseline) only 70%. Assume further that a proper
statistical test on accuracy has concluded that A is more
accurate than B. This conclusion, however, would not
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Table 1

A simple confusion matrix

Correct class Predicted class

Good Bad Total

Good 250 250 500

Bad 250 250 500

Total 500 500 1000
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make much intuitive sense, should one also knew that 50%
of A’s successes may be due to mere chance, and only 10%
of B’s. This research clearly shows that such scenarios are
possible, because chance differently affects various classi-
fiers, even when they are applied to a similar dataset.
Classifiers’ accuracy should be compared after compensat-
ing for random hits, and this compensation may vary with
each classifier, even when a single dataset is used. By
ignoring the effects of random hits, one unavoidably risks
arriving at the wrong conclusions.

An alternative to accuracy, a meter that does compen-
sate for random hits, is known for decades. It is called
Cohen’s kappa (Cohen, 1960). Cohen’s kappa is routinely
used in disciplines such as Statistics, Psychology, Biology
and Medicine for a long period. However, for one reason
or another, it has received only very little attention in
machine-learning circles.

This research was focused at answering the following
two questions:
A.
 Is the problem of counting random hits meaningful in
the context of machine leaning?
B.
 Are rankings according to accuracy always identical to
those that are arrived at using Cohen’s kappa? In other
words, can we arrive at different conclusions about
classifiers accuracy when chance considerations are
taken into account?
To answer these questions, an empirical study was
conducted. Fifteen datasets were tested using five well-
known classifiers. The results are quite interesting:
A.
 On the average, more than one third of the hits in the
benchmark could be attributed to chance alone.
Accuracy ignores this high proportion altogether.
B.
 The rankings by accuracy and via Cohen’s kappa
differed from each other in eight out of the fifteen
datasets. Different rankings may lead to different
conclusions.
Table 2

Another confusion matrix

Correct class Predicted class

Good Bad Total

Good 70 10 80

Bad 20 900 920

Total 90 910 1000
The findings of this research strongly suggest that we, the
machine-learning community, are traditionally using the
wrong meter, namely accuracy. We do that without being
fully aware of the fact that a significant portion of the so-
called ‘‘accuracy’’ is merely the product of chance. In this
respect, Cohen’s kappa is a more accurate meter for
measuring classifiers’ own merits than accuracy.
2. Cohen’s kappa and its very rare use in machine learning

Cohen’s kappa (Cohen, 1960) was first introduced as a
measure of agreement between observers of psychological
behavior. The original intent of Cohen’s kappa was to
measure the degree of agreement, or disagreement, between
two people observing the same phenomenon. Cohen’s
kappa can be adapted to machine learning, as shown in the
example of Table 2.
The accuracy shown in Table 2 is 97% ((70+900)/1000).

Can all these 97% be attributed to the sophistication of the
classifier alone? Does chance have anything to do with it?
Cohen’s kappa is defined as

K ¼
p0 � pc

1� Pc
, (1)

where P0 is the total agreement probability, or accuracy,
and Pc is the ‘‘agreement’’ probability which is due to
chance.
For the data of Table 2 kappa is computed as follows:

P0 ¼
70

1000
þ

900

1000
¼ 0:97 ði:e:; accuracyÞ,

Pc ¼
80

1000
�

90

1000
þ

920

1000
�

910

1000
¼ 0:84

and the value of kappa is thus

K ¼
0:97� 0:84

1� 0:84
¼ 0:81.

According to the kappa statistic, the classifier that
produced the confusion matrix of Table 2 has a less
impressive ‘‘accuracy’’: 0.81 and not 0.97.
What the kappa statistic expresses can be explained in a

nutshell as follows: kappa evaluates the portion of hits that
can be attributed to the classifier itself (i.e., not to mere
chance), relative to all the classifications that cannot be
attributed to chance alone.
What about a case of a perfect agreement?
In this case, shown in Table 3, a, b are integers and C1

and C2 are class values.

p0 ¼
a

aþ b
þ

b
aþ b

¼ 1,

pc ¼ 2
a

aþ b

� �2

X0
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Table 3

Prefect agreement confusion matrix

Correct class Predicted class

C1 C2 Total

C1 a 0 a
C2 0 b b
Total a b a+b

Table 4

Prefect disagreement confusion matrix

Correct class Predicted class

C1 C2 Total

C1 0 a a
C2 b 0 b
Total b a a+b

Table 5

A random confusion matrix

Correct class Predicted class

C1 C2 Total

C1 a a 2a
C2 a a 2a
Total 2a 2a 4a
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when a ¼ b

K ¼
1� Pc

1� Pc
¼ 1.

Should a classifier and reality be in a perfect disagree-
ment with each other, a confusion matrix similar to the one
shown in Table 4 is expected:

Similar to the case of Table 3,

p0 ¼ 0,

Pc ¼
2ab

aþ bð Þ
2
.

Therefore

K ¼
�2ab

a2 þ b2

and when a ¼ b

K ¼ �1.

Finally, in a random binary ‘‘classification’’ case, such as
the one of Table 1, the confusion matrix of Table 5 is
expected

p0 ¼ 2
a
4a

� �
¼ 0:5,

Pc ¼ 2
2a
4a

� �2

¼ 0:5.

Therefore

K ¼
0:5� 0:5

1� 0:5
¼ 0.

Cohen’s kappa statistic, thus, ranges from �1 (total
disagreement) through 0 (random classification) to 1
(perfect agreement). It can be shown that the above results
do hold in any multi-class case; not only in binary-class
problems.

The theoretical range of the kappa statistic (i.e., from �1
to +1) is different from that of accuracy (0–1). This may
seemingly cause difficulties while trying to compare the two
meters. Fortunately, most classifiers (at least those which
are considered ‘‘reasonable’’ in machine-learning circles)
do at least as good as random or as majority-based
classifiers on most real-world datasets, so by definition they
score kappa higher than zero. This observation, that was
first made by Margineantu and Dietterich (1997), and is re-
confirmed by the results this experiment, makes the actual
comparison of both meters much easier than initially
expected.
Sometimes it is more convenient to calculate kappa in

terms of cell counts rather than probabilities.

K ¼
N SI

i¼1xii � SI
i¼1xi:x:i

N2 � SI
i¼1xi:x:i

, (2)

where xii is the cell count in the main diagonal, N is the
number of examples, I is the number of class values, and
x.i, xi. are the columns and rows total counts, respectively.
Formula (2) is given in terms of counts, but by dividing
both the nominator and the denominator of (2) by N2 one
gets probabilities.
The expected probability of a hit being the result of

chance is

Pc ¼
1

N2

XI

i¼1

xi:x:i, (3)

where N, I, x.i, xi. are as in (2).
The kappa statistic has mainly been used in Social

Sciences, Biology, Statistics, and in Medical Sciences for a
couple of decades. However, within the context of machine
learning, it has not received much attention. One of the few
exceptions can be found in (Margineantu and Dietterich,
1997), where Cohen’s kappa was used for pruning quite
successfully. It was not used there, however, as a meter for
measuring the resulting classifiers’ accuracy.
The WEKA Machine Learning Project (WEKA) is

another exception. Cohen’s kappa statistic is calculated
as one of the measures of classifiers’ accuracy in WEKA for
a couple of years by now. Yet, few, if any, scientific
publications in machine learning do make any use of it as
an accuracy meter for classifiers.
There are many possible sources for using the kappa

statistic without bothering with tedious calculations.
WEKA is clearly one option, but statistical packages such
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as SPSS and SAS can also be used. Other statistical
packages, such as MedCalc (MedCalc), used mainly by the
medical research community, also include kappa calcula-
tions. There are also many free Internet downloads, such as
the version written by P. Bonnardel (Bonnardel), that can
be used as a stand-alone application.

Kappa has some interesting properties that will not be
discussed here in detail. For instance:
1.
 Majority-based classifiers that are traditionally used as
baselines in machine-learning literature, always score
zero kappa.
2.
 All random classifiers (i.e., those that randomly classify
according to the class distribution) also score zero
kappa.
3.
 Note that according to the kappa statistic, there is no
added value in neither a majority-based nor in a random
classifier, so kappa essentially estimates how (hopefully)
better a classifier does relative to these two.
4.
 The value of Pc, the hit probability that is due to chance,
can be computed for any class distribution, symmetric
or skewed, by formula (3).
5.
 Complex loss functions can be incorporated into kappa,
making its modified version, known as ‘‘weighted
kappa’’, a good candidate meter for cost-sensitive
applications.

Similar to any other statistic, kappa it has its own
limitations. Many concerns were raised over the years and
some remedies were suggested. The interested reader is
referred to publications such as Maclure and Willett
(1987), Thompson and Walter (1988), Cook (1998) and
Cicchetti and Feinstein (1990) for more details.

3. Related accuracy meters

Many attempts to use meters other than accuracy for
measuring classifiers’ performance were made. Perhaps the
most famous is Quinlan’s use of entropy in ID3 (Quinlan,
1987). The concept of entropy was borrowed from
communications. Entropy basically measures uncertainty.
In a certain universe its value is zero. Later on, an
extension, named Information Gain (Quinlan, 1993) was
introduced. Both entropy and Information Gain were used
for guiding a greedy search for the most explanatory
attributes (i.e., those that minimize the entropy). Both were
quite successful. However, entropy and Information Gain
do not compensate for random hits. In this respect they are
similar to accuracy. Despite of the fact that entropy and
some entropy-based improvements thereafter proved valu-
able concepts for building decision trees, most publications
did evaluate their resulting trees in terms of accuracy.

Compensating for random hits at the rule level was an
integral part of Clark and Nibeltt’s (1989) CN2. CN2 uses
a likelihood ratio statistic that measures the difference
between class probability distribution in the set of
examples that are covered by a rule, versus that of the
entire set of examples. A rule is considered significant if it
locates regularity that is not due to chance. Rules that were
selected this way were found to perform quite accurately.
However, the indication for the usefulness of CN2 came by
comparing the end concepts’ accuracy; not the likelihood
ratios which were used for rule selection.
The weighted relative accuracy (WRA), a concept

introduced by Lavrac et al. (1999), is a single metric that
trades off generality and relative accuracy. WRA combines
precision and recall, two concepts that are widely used in
information retrieval. It has been shown in Todorovski
et al. (2000) that WRA generates more compact rule bases
compared with those of CN2, on the expanse of slightly
lower accuracy. Since only accuracy was used for classifier
ranking, it is unclear if the more compact rule bases that
were generated by WRA resulted in more or less random
hits than those that were generated by CN2. This question
was never raised nor tested.
All the above-mentioned meters were shown to be

effective for attribute or rule selection. However, they were
never universally accepted as measures for accuracy, even
for their own generated concepts; accuracy has typically
been used instead.
Provost and Fawcett (1997) brought the idea of using

receiver operating characteristics (ROC) curves form the
area of communications to machine learning. ROC curves
are a very useful visualization tools for analyzing tradeoffs
between true positives and false positives. The area under
curve (AUC) is often used as a measure of accuracy. AUCs
can be used to estimate the added value (if any) of a
classifier relative to a random one, by subtracting the AUC
of the latter from the AUC of the first.
ROC curves and AUCs are particularly useful in binary-

class problems. They were rarely used in three-class
problems too. However, using them in multi-class pro-
blems (e.g., problems with more than three classes), such as
in most of the datasets that are used in this experiment,
though technically possible by making (potentially
many) binary splits, may be very cumbersome and not
too practical; In particular, when many classes are
involved. So far, the usefulness of ROC Curves and AUCs
has not been demonstrated on real-world problems with
more than three class values.
Clearly, being a scalar, Cohen’s kappa is less expressive

than ROC curves when applied to binary-class cases.
However, for multi-class problems, kappa is a very useful,
yet simple, meter for measuring classifier’s accuracy while
compensating for random successes.

4. The experiment

Fifteen classification datasets were used in this experi-
ment. They are shown in Table 6.
Eight datasets were taken from the UCI machine-

learning repository (UCI). One thousand examples were
randomly selected from the original Nursery dataset to
reduce learning and classification time. Four datasets were
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taken from the WEKA web site. These datasets are well
documented, and will not be discussed here any further.
EFE is a dataset that was collected in order to study which
attributes of matriculation examination questioners mostly
affect their quality. English Comprehension dataset is a
part of an ongoing research project currently conducted in
Holon Institute of Technology. This research aims at
improving English comprehension of students. The Project
Management dataset was collected in an attempt to
identify the most influential factors in the success or failure
of R&D projects in Israel. Fourteen of the datasets shown
in Table 6 cover a wide range of real-world classification
problems. Only one, Monks-3, is an artificial dataset.

Five well-known classifiers were selected: C4.5 (Quinlan,
1993), SMO (Platt, 1998), Naı̈ve Bayes (Domingos and
Pazzani, 1997), Logistic Regression, and Random Forest
(Breiman, 2001). They represent different approaches to
the building of classifiers. They all have good reputation as
Table 6

Main characteristics of the datasets

Name Source

1 Balance UCI

2 Car UCI

3 Contraceptive UCI

4 Credit UCI

5 EFE Israel ministry of education

6 Engish_Comp HIT—Project

7 ERA WEKA

8 ESL WEKA

9 Housing UCI

10 LEV WEKA

11 Monks-3 UCI

12 Nursery UCI

13 Post Operative UCI

14 Proj. Man. Beer Sheva U

15 SWD WEKA

Table 7

Average results for each dataset

Dataset Accuracy 95% CI

1 Balance 0.8419 0.0211

2 Car 0.9148 0.0151

3 Contraceptive 0.4566 0.0229

4 Credit 0.8484 0.0324

5 EFE 0.5813 0.0788

6 Engish_Comp 0.2069 0.0951

7 ERA 0.2676 0.0329

8 ESL 0.6569 0.0409

9 Housing 0.7057 0.0414

10 LEV 0.6096 0.0343

11 Monks-3 0.9944 0.0041

12 Nursery 0.9026 0.0133

13 Post Operative 0.6733 0.0571

14 Proj. Man. 0.3192 0.0924

15 SWD 0.5708 0.0381

Average 0.6367 0.0413
being relatively accurate. The experiment was done using
WEKA 3.5.3. More references about these classifiers and
details about their WEKA implementation can be found in
(Witten and Frank, 2005). All the results that are reported
here are based on stratified ten-fold cross validations, and
the default parameter values of the respective classifiers.

5. Major findings

Table 7 shows the main results for each dataset. These
results are averages of all the five classifiers.
The average accuracy, Cohen’s kappa statistic, and Pc,

the seemingly ‘‘agreement’’ probability that can really be
attributed to chance alone, are shown at the respective
columns. The latter is labeled ‘‘chance’’. To their right are
the average half widths of two-sided, t distribution, 95%
confidence intervals. The bottom row shows a simple
average of each column. Every dataset, regardless of its
Size No. of attributes No. of classes

625 4 5

1728 6 4

1473 9 3

690 15 2

124 8 4

91 13 6

1000 4 9

488 4 9

506 12 4

1000 4 5

432 6 2

1000 8 5

90 8 3

89 10 7

1000 10 4

Kappa 95% CI Chance 95% CI

0.7078 0.0383 0.4189 0.0338

0.8111 0.0336 0.5447 0.0065

0.1544 0.0350 0.3571 0.0056

0.6948 0.0646 0.5037 0.0033

0.2020 0.1490 0.4726 0.0437

�0.0014 0.1222 0.2077 0.0208

0.1442 0.0381 0.1442 0.0033

0.5665 0.0528 0.2080 0.0057

0.5393 0.0622 0.3621 0.0149

0.4418 0.0502 0.3001 0.0077

0.9889 0.0081 0.0699 0.0345

0.8570 0.0197 0.3181 0.0028

�0.0186 0.1040 0.6788 0.0411

0.0641 0.1176 0.2708 0.0423

0.3490 0.0553 0.3409 0.0078

0.4334 0.0634 0.3465 0.0182
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Table 9

Different rankings by accuracy and kappa

Dataset Model Ranking by

accuracy

Ranking by

kappa

3 Contraceptive Logistic 1 2

3 Contraceptive N Bayes 2 1

3 Contraceptive SMO 3 3

3 Contraceptive C4.5 4 5

3 Contraceptive Random

forest

5 4

5 EFE N Bayes 1 1

5 EFE Random

forest

2 2

5 EFE C4.5 3 4

5 EFE SMO 4 5

5 EFE Logistic 5 3

6 Engish_Comp C4.5 1 1

6 Engish_Comp Random

forest

2 3

6 Engish_Comp Logistic 3 2

6 Engish_Comp SMO 4 4

6 Engish_Comp N Bayes 5 5

8 ESL Logistic 1 1

8 ESL SMO 2 2

8 ESL N Bayes 3 4

8 ESL C4.5 4 3

8 ESL Random

forest

5 5

9 Housing SMO 1 2

9 Housing Random

forest

2 3

9 Housing Logistic 3 1

9 Housing C4.5 4 4

9 Housing N Bayes 5 5

10 LEV Random

forest

1 2

10 LEV SMO 2 1

10 LEV Logistic 3 3
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size, has an equal weight in that average. Again, all the
results that are shown in Table 7 are averages over all the
five classifiers mentioned above.

The average accuracy was about 64%. The average kappa
was about 43%. On the average, kappa had a higher
variance than accuracy. This fact is reflected by its wider
average 95% confidence interval. Most surprisingly, and
perhaps the most important finding shown in Table 7, is the
fact that on the average, about 35% of all the hits (34.65%
to be exact) could be attributed to chance alone. In other
words, on the average, more than one third of the hits could
not be attributed to the classifiers’ sophistication. This
finding raises the question whether accuracy, that totally
ignores this phenomenon, is a trustworthy meter.

Up to this point, question A. of Section 1 was dealt with.
Let us turn our attention now to the second question,
namely, can the use of kappa affect model rankings relative
to those that are obtained by accuracy?

Formula (1) suggests that some positive correlation does
exist between accuracy and kappa. But to what degree can
changes in accuracy explain changes in kappa? To answer
this question, a Linear Regression was carried out. kappa
was the dependent variable, and accuracy was the
independent one. There have been 150 such couples in this
run, ten for each dataset, generated by the ten-fold cross
validation trails. The main results are shown in Table 8.

Table 8 shows that, on the average, variations in
accuracy can explain about 78% of those in the kappa
statistic. Although a positive correlation between accuracy
and the kappa statistic was found (as expected), on the
average, 22% of the latter’s variations remained unex-
plained. Consequently, it has been hypothesized that
accuracy and kappa-based rankings can sometimes differ
from each other. This hypothesis was tested here as well.

Appendix A shows the results of the stratified ten-fold
cross validation for each classifier. The tables of Appendix
A are similar in their structure to those of Table 7, so no
further explanations about them will be given. Based on the
results that are shown in Appendix A, the classifiers were
ranked by accuracy as well as by kappa. It turned out that
in eight out of the fifteen datasets (53%) the rankings
according to the kappa statistic differed from the rankings
that were based on accuracy. The rankings for these eight
datasets are shown in Table 9, where 1 stands for ‘‘the most
accurate’’, 2 for the ‘‘second most accurate’’, etc. Identical
Table 8

Regression results

Model R2 p-value

1 C4.5 0.7467 o0.00001

2 SMO 0.7654 o0.00001

3 Naı̈ve Bayes 0.7687 o0.00001

4 Logistic 0.8180 o0.00001

5 Random forest 0.7924 o0.00001

Average 0.7782 o0.00001
rankings of datasets via the two meters are not shown in
Table 9.
As hypothesized, kappa is likely to result in different

accuracy-wise rankings than accuracy; in more than one half
of the datasets the rankings did change. Sometimes, the best
ranking classifier according to accuracy was ranked also the
best via kappa (i.e., the ranking of the remaining classifiers
changed). In other cases, such as in the Housing and LEV
datasets, the best ranking classifier via accuracy ranked only
the second according to kappa. In Post Operative and
10 LEV C4.5 4 4

10 LEV N Bayes 5 5

13 Post Operative C4.5 1 3

13 Post Operative N Bayes 2 2

13 Post Operative SMO 3 5

13 Post Operative Logistic 4 1

13 Post Operative Random

forest

5 4

14 Proj. Man. N Bayes 1 3

14 Proj. Man. SMO 2 2

14 Proj. Man. Logistic 3 1

14 Proj. Man. Random

forest

4 4

14 Proj. Man. C4.5 5 5



ARTICLE IN PRESS

Table 10

Results of the Post Operative dataset

Dataset Model Accuracy Ramk Kappa Rank Chance

13 Post Operative C4.5 0.7000 1 �0.0174 3 0.7049

13 Post Operative N Bayes 0.6889 2 �0.0109 2 0.6901

13 Post Operative SMO 0.6778 3 �0.0509 5 0.6938

13 Post Operative Logistic 0.6556 4 0.0157 1 0.6481

13 Post Operative Random Forest 0.6444 5 �0.0295 4 0.6568

Table 11

Highest and lowest chance of random hits

Dataset Lowest chance Highest chance Chance: relative difference

11 Monks-3 The other four models N Bayes Very high

1 Balance Logistic N Bayes 80.9%

14 Proj. Man. Logistic Random forest 28.3%

5 EFE Logistic Random forest 14.7%

6 Engish_Comp SMO C4.5 10.7%

7 ERA N Bayes C4.5 8.9%

13 Post Operative Logistic C4.5 8.8%

3 Contraceptive N Bayes C4.5 8.6%

9 Housing N Bayes SMO 6.7%

15 SWD N Bayes C4.5 6.0%

8 ESL Logistic N Bayes 5.7%

2 Car SMO N Bayes 5.3%

10 LEV SMO N Bayes 4.7%

12 Nursery Logistic N Bayes 2.5%

4 Credit SMO N Bayes 2.0%
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Project Management datasets, the best ranking classifier
according to accuracy ranked only third via kappa.

We turn our attention now to the values of Pc. Table 10
is also based on the data of Appendix A. It shows, as an
example, the values of Pc for each classifier when applied to
the Post Operative dataset, sorted in decreasing order of
accuracy. In this case, C4.5 was the classifier with the
highest Pc (0.7049) and Logistic with the lowest (0.6481).
The difference between these two values relative to the
lowest was 8.8% 1000:7049�0:6481

0:6481

� �
. We later refer to this

value as the ‘‘relative difference’’ in Pc values.
The relative difference in Pc values, as shown for the data

of Table 10, was computed for each dataset in the bench-
mark, and the main results are shown in Table 11. Table 11
shows the name of the model that resulted in the lowest and
the highest Pc, and the relative difference between them as
explained above. Table 11 is arranged in decreasing order of
relative differences of Pc for the entire benchmark.

The first row of Table 11 indicates a ‘‘very high’’ relative
difference between Naı̈ve Bayes and the rest of the models.
This is due to the fact that the value of Pc was 34.96% for
Naı̈ve Bayes versus zero for the other classifiers. Recalling
that Monks-3 was the only synthetic dataset in the
benchmark, one can consider it an exception. However, it
is evident from the rest of the fourteen datasets that:
A.
 In some datasets, such as Monk-3, Balance, and Project
Management—the odds of a hit being the result of mere
chance varied quite significantly with the classifier that
was tested. In other datasets, those at the bottom of the
Table 11, these odds were quite similar to each other.
B.
 Logistic, Naı̈ve Bayes and SMO appear in the column
‘‘lowest chance’’ in Table 11 in approximately similar
frequencies. Random Forests and C4.5, on the other hand,
are absent from that column. They do appear, however, in
the column ‘‘highest chance’’, in which Naı̈ve Bayes
dominates. While it is not possible to draw any definite
conclusion from this benchmark alone, it seems that some
classifiers are more likely to generate random hits than
others. A comprehensive investigation of this topic,
however, per classifier, is outside the scope of this research.
6. Discussion

The results shown above demonstrate an important
property: While taking chance into consideration via the
kappa statistic, classifier rankings may differ from those
that rely on accuracy. In eight out of the fifteen datasets,
the rankings by accuracy and by kappa were not identical.
Different rankings may result in different statistical
conclusions.
Table 12 shows three pair-wise rankings that are based

on two-sided t-test at a ¼ 0.05. The first line of Table 12
compares the accuracy of Naı̈ve Bayes (Model A) with that
of C4.5 (Model B) on the Contraceptive dataset. According
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Table 12

Different statistics yield different conclusions

Model A Model B Dataset Ranking by accuracy Ranking by kappa

Naı̈ve Bayes C4.5 Contraceptive No signif. difference AbB

Naı̈ve Bayes Random Forest Contraceptive No signif. difference AbB

SMO Naı̈ve Bayes LEV No signif. difference AbB
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to accuracy—both classifiers were statistically indistin-
guishable at a ¼ 0.05. However, when the kappa statistic
was used, the null hypothesis was rejected, so one can
conclude that according to this particular statistical test,
Naı̈ve Bayes was found more accurate than C4.5 at
a ¼ 0.05 on this dataset (AbB in the rightmost column
of Table 12 indicates that classifier A is more accurate than
B). The data that leads to this conclusion is shown on line 3
of Tables A.1 and A.3 in Appendix A. The remaining two
lines of Table 12 are to be read similarly.

Table 12 shows three examples of statistical conclusions
about model rankings that were meter dependent. The
interested reader is invited to brows through Appendix
A. in search of more such examples. It is possible that
different statistical methods, if used, would have lead to
different conclusions, of course. However, as has been
demonstrated here, any selected statistical method may
yield different conclusions should it rely upon accuracy or
on the kappa statistic, and the results shown in Table 12
just demonstrate this fact.

Let us turn our attention now back to a point that was
made in the Section 1, namely that the effect of chance on
successful hits varies from one classifier to another, even
when the classifiers are applied to a similar dataset. As can
be seen in Table 10, when applied to the Post Operative
dataset, C4.5 ranked first according to accuracy. However,
it had also the highest value of Pc (0.7049), 8.8% higher
than Logistics. For this reason, Logistic ranked first by
kappa, and C4.5 only the third.

The Post Operative results shown in Table 10 demon-
strate yet another small convenience of using the kappa
statistic. Note that the kappa values of all the classifiers that
were tested on this particular dataset were around zero. By
definition, any majority-based classifier and any random
classifier, if applied to any dataset, would have scored zero
kappa. The actual computation of such classifiers as
baselines (as many researchers do while using accuracy)
for determining the added value (if any) of a classifier is not
required here in the first place, since they will score zero
kappa by definition. Since the kappa values of all the
classifiers in Table 10 are close to zero—the immediate
conclusion is that they all have failed to show any added
value relative to a majority-based or a random classifier,
should they were applied to this particular dataset.

On the other end of the spectrum one can point at the
results of the Monks-3 dataset (Table 7, dataset number
11), where both accuracy and the kappa statistic indicate
very good average classifiers’ accuracy. This is an example
of a case where the kappa statistic has a relatively small
added value relative to accuracy. In Monks-3, accuracy
was very high (above 99%), and only about 7% of the hits,
on the average, could be regarded random. However,
recalling that Monks-3 was the only artificial dataset in this
experiment, one can rightfully argue that it does not
represent real-world classification problems. As shown in
Table 7, most of the datasets did result in a higher
difference between the values of their accuracy and their
kappa. Table 7 shows that, on the average, more than one
third of the hits were actually ‘‘chance driven’’, so to speak.
This is not an outcome of a magnitude that can be
overlooked. Accuracy ignores this fact, while Cohen’s
kappa does not. The high proportion of ‘‘chance driven’’
hits is also reflected by a difference in the averages of
Table 7: 0.6367 for accuracy, and only 0.4334 for kappa.
Classifier’s properties such as bias, as well as character-

istics of the datasets, affect Pc. This can clearly be seen from
formula (3). Further investigations of these interesting topics
were outside the scope of this work, and they are proposed
for future research. Hopefully, such research will be able to
identify characteristics of classifiers and datasets that tend to
be less vulnerable to random agreements than others.

7. Conclusions

Two important findings were presented here for the first
time:
A.
 In the context of machine learning, there are likely to be
many potentially random hits hidden in the meter named
‘‘accuracy’’. More than one third successful classifica-
tions, on the average, were found in this experiment as
hits that can be attributed to chance alone, and not to
the merits of the classifiers that were tested. A result of
such a magnitude cannot be overlooked in any scientific
research or in any practical application.
B.
 The use of Cohen’s kappa may influence classifiers’
rankings relative to those that are based on accuracy.
More than one half of the classifiers’ rankings changed
when the kappa statistic was applied, relative to the
rankings that were based on accuracy.
There are also two practical lessons that should be
learned from the results of this experiment:
1.
 When one uses accuracy in order to compare two or
more classifiers (one of which may be a baseline classifier),
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he/she must first verify that chance equally affects all the
classifiers. This experiment shows that this is rarely the case.
2.
 If for whatever reason one does not use ROC curves or
AUCs (for instance, in multi-class problems)—he/she
should at least consider using kappa, since it compen-
sates for random hits. Kappa makes intuitive sense, and
it is very easy to compute and to interpret. As a small
bonus—while using the kappa statistic, one does not
resort to any majority-based or random classifier as
baselines, for the simple reason that it is known that
they score zero kappa by definition.

Some interesting questions were not included in this
study. For example, what are the conditions, if any, under
which only a small fraction of hits will be attributed to
chance and vise versa? Characteristics of the datasets, as
well as those of the classifiers, eventually play a role. Which
le A.1

.5

Dataset Accuracy 95% CI

Balance 0.6336 0.0361

Car 0.9236 0.0151

Contraceptive 0.4345 0.0256

Credit 0.8536 0.0347

EFE 0.5615 0.0660

Engish_Comp 0.2811 0.1205

ERA 0.2670 0.0363

ESL 0.6598 0.0335

Housing 0.6998 0.0321

LEV 0.6040 0.0451

Monks-3 1.0000 0.0000

Nursery 0.8930 0.0131

Post Operative 0.7000 0.0384

Proj. Man. 0.2694 0.0547

SWD 0.5650 0.0291

Average 0.6231 0.0387

le A.2

O

Dataset Accuracy 95% CI

Balance 0.9056 0.0147

Car 0.9375 0.0121

Contraceptive 0.4664 0.0187

Credit 0.8551 0.0285

EFE 0.5545 0.0831

Engish_Comp 0.1733 0.0778

ERA 0.2790 0.0328

ESL 0.6617 0.0449

Housing 0.7274 0.0324

LEV 0.6280 0.0305

Monks-3 1.0000 0.0000

Nursery 0.9150 0.0108

Post Operative 0.6778 0.0451

Proj. Man. 0.3278 0.0847

SWD 0.5600 0.0494

Average 0.6446 0.0377
one? How do they affect? What typifies problems with
relatively high accuracy but low kappa? These and other
interesting questions are left for future research.
It is not a simple matter to suddenly become suspicious

of a meter one is accustomed to for decades. Hopefully, the
findings of this research will convince the machine-learning
community to adopt meters such as AUCs and Cohen’s
kappa, that take random successes into consideration, as a
standard.

Appendix A. Detailed results

The results shown in this Appendix are of stratified ten-
fold cross validations, done with WEKA 3.5.3. They are
similar in structure to those of Table 7. The interested
reader is referred to the explanations of that table in the
text for further details (see Table A.1).
Kappa 95% CI Chance 95% CI

0.3222 0.0645 0.4596 0.0047

0.8345 0.0321 0.5390 0.0064

0.1093 0.0418 0.3650 0.0068

0.7057 0.0693 0.5032 0.0042

0.1414 0.1439 0.4845 0.0363

0.0850 0.1472 0.2156 0.0235

0.1405 0.0429 0.1472 0.0031

0.5699 0.0444 0.2083 0.0083

0.5267 0.0495 0.3656 0.0188

0.4317 0.0655 0.3030 0.0097

1.0000 0.0000 0.0000 0.0000

0.8428 0.0193 0.3190 0.0029

�0.0174 0.0393 0.7049 0.0376

�0.0315 0.0627 0.2917 0.0340

0.3336 0.0403 0.3476 0.0077

0.3996 0.0575 0.3503 0.0136

Kappa 95% CI Chance 95% CI

0.8255 0.0271 0.4590 0.0031

0.8648 0.0263 0.5376 0.0074

0.1610 0.0296 0.3640 0.0073

0.7115 0.0559 0.4981 0.0032

0.1335 0.1731 0.4807 0.0412

�0.0294 0.1096 0.1948 0.0209

0.1551 0.0379 0.1467 0.0025

0.5720 0.0575 0.2092 0.0050

0.5672 0.0480 0.3708 0.0141

0.4747 0.0430 0.2919 0.0059

1.0000 0.0000 0.0000 0.0000

0.8755 0.0161 0.3169 0.0032

�0.0509 0.0587 0.6938 0.0374

0.1113 0.1047 0.2429 0.0371

0.3280 0.0733 0.3454 0.0093

0.4467 0.0574 0.3435 0.0132
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Table A.4

Logistic regression

Dataset Accuracy 95% CI Kappa 95% CI Chance 95% CI

1 Balance 0.9856 0.0100 0.9750 0.0174 0.2548 0.1569

2 Car 0.9312 0.0164 0.8502 0.0361 0.5398 0.0053

3 Contraceptive 0.4813 0.0262 0.1840 0.0390 0.3645 0.0044

4 Credit 0.8333 0.0290 0.6639 0.0580 0.5044 0.0032

5 EFE 0.5455 0.0764 0.1920 0.1479 0.4313 0.0472

6 Engish_Comp 0.2189 0.0973 0.0166 0.1239 0.2057 0.0176

7 ERA 0.2690 0.0341 0.1446 0.0386 0.1456 0.0034

8 ESL 0.6701 0.0442 0.5858 0.0567 0.2030 0.0034

9 Housing 0.7236 0.0539 0.5687 0.0798 0.3605 0.0136

10 LEV 0.6190 0.0314 0.4560 0.0462 0.2994 0.0074

11 Monks-3 1.0000 0.0000 1.0000 0.0000 0.0000 0.0000

12 Nursery 0.9220 0.0106 0.8861 0.0158 0.3148 0.0036

13 Post Operative 0.6556 0.0696 0.0157 0.1877 0.6481 0.0292

14 Proj. Man. 0.3250 0.0859 0.1170 0.1196 0.2324 0.0425

15 SWD 0.5700 0.0410 0.3482 0.0620 0.3402 0.0081

Average 0.6500 0.0417 0.4669 0.0686 0.3230 0.0231

Table A.3

Naı̈ve bayes

Dataset Accuracy 95% CI Kappa 95% CI Chance 95% CI

1 Balance 0.9136 0.0098 0.8398 0.0180 0.4608 0.0018

2 Car 0.8553 0.0178 0.6661 0.0432 0.5662 0.0082

3 Contraceptive 0.4671 0.0215 0.1974 0.0303 0.3360 0.0057

4 Credit 0.8478 0.0306 0.6908 0.0617 0.5081 0.0018

5 EFE 0.6346 0.0640 0.3098 0.0953 0.4719 0.0506

6 Engish_Comp 0.1411 0.0961 �0.0857 0.1248 0.2081 0.0152

7 ERA 0.2530 0.0288 0.1363 0.0333 0.1351 0.0049

8 ESL 0.6599 0.0451 0.5667 0.0581 0.2146 0.0064

9 Housing 0.6521 0.0464 0.4670 0.0688 0.3474 0.0169

10 LEV 0.5660 0.0331 0.3748 0.0494 0.3055 0.0075

11 Monks-3 0.9721 0.0205 0.9443 0.0406 0.3496 0.1726

12 Nursery 0.8770 0.0165 0.8183 0.0247 0.3227 0.0017

13 Post Operative 0.6889 0.0503 �0.0109 0.1181 0.6901 0.0398

14 Proj. Man. 0.3569 0.1272 0.0966 0.1621 0.2889 0.0530

15 SWD 0.5740 0.0402 0.3667 0.0559 0.3280 0.0074

Average 0.6306 0.0432 0.4252 0.0656 0.3689 0.0262

Table A.5

Random forest

Dataset Accuracy 95% CI Kappa 95% CI Chance 95% CI

1 Balance 0.7714 0.0347 0.5763 0.0648 0.4602 0.0023

2 Car 0.9265 0.0139 0.8400 0.0301 0.5406 0.0051

3 Contraceptive 0.4338 0.0223 0.1205 0.0342 0.3562 0.0037

4 Credit 0.8522 0.0393 0.7023 0.0779 0.5044 0.0039

5 EFE 0.6103 0.1047 0.2332 0.1848 0.4948 0.0431

6 Engish_Comp 0.2200 0.0839 0.0067 0.1055 0.2145 0.0267

7 ERA 0.2700 0.0325 0.1447 0.0377 0.1465 0.0024

8 ESL 0.6330 0.0366 0.5383 0.0471 0.2048 0.0052

9 Housing 0.7255 0.0419 0.5670 0.0646 0.3660 0.0113

10 LEV 0.6310 0.0315 0.4719 0.0471 0.3008 0.0078

11 Monks-3 1.0000 0.0000 1.0000 0.0000 0.0000 0.0000

12 Nursery 0.9060 0.0155 0.8623 0.0228 0.3171 0.0024

13 Post Operative 0.6444 0.0821 �0.0295 0.1162 0.6568 0.0616

14 Proj. Man. 0.3167 0.1093 0.0272 0.1388 0.2982 0.0448

15 SWD 0.5850 0.0308 0.3684 0.0448 0.3431 0.0063

Average 0.6350 0.0453 0.4286 0.0678 0.3469 0.0151
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